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In nuclear engineering studies, uncertainty and sensitivity analyses of simulation computer codes can be faced to 

the complexity of the input and/or the output variables. If these variables represent a transient or a spatial 
phenomenon, the difficulty is to provide tool adapted to their functional nature. In this paper, we describe useful 
visualization tools in the context of uncertainty analysis of model transient outputs. Our application involves 
thermal-hydraulic computations for safety studies of nuclear pressurized water reactors. 
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I. Introduction  

This work is part of current research concerning engineering 
studies of pressurized water reactor. EDF R&D and its 
partners develop generic probabilistic approaches for the 
uncertainty management of computer code used in safety 
analyses1). One of the main difficulties in uncertainty and 
sensitivity analyses is to deal with thermal-hydraulic 
computer code2). Indeed, most of mathematical tools are 
adapted to scalar input and output variables, while the 
outputs of thermal-hydraulic models represent 
time-dependent state variable (temperature, pressure, thermal 
exchange coefficient, etc.). 
As an industrial example, we will consider the Benchmark 
for Uncertainty Analysis in Best-Estimate Modelling for 
Design, Operation and Safety Analysis of Light Water 
Reactors3) proposed by the Nuclear Energy Agency of the 
Organization for Economic Co-operation and Development 
(OCDE/NEA). One of the study-cases corresponds to the 
calculation of LOFT L2.5 experiment, which simulated a 
large-break loss of primary coolant accident. It has been 
implemented on the French thermal-hydraulic computer code 
CATHARE2, developed at the Commissariat à l’Energie 
Atomique (CEA). One phase of the benchmark consists in 
applying on this study-case the so-called BEMUSE (Best 
Estimate Methods, Uncertainty and Sensitivity Evaluation) 
program in order to tests various uncertainty and sensitivity 
analysis methods3).  
Figure 1 illustrates the BEMUSE data, 100 Monte Carlo 
simulations (by randomly varying around 50 uncertain inputs of 
the LOFT L2.5 scenario), given by CATHARE2, of the 
cladding temperature in function of time. When looking at the 
overall behavior of this large number of curves, the main 
questions which arise are the following: 

1. What is the average curve? 
2. Can we define some confidence interval curves 

containing most of the curves? 

3. Can we detect some abnormal curves, in the sense of a 
strong difference from the majority of the curves (as 
outliers for scalar variables)? 

4. Are there some clusters which correspond to different 
behavior of the physical behavior of the output? 

5. … 
Question 4 has been treated in a previous work by Auder et 
al.2). In this work, we consider the other questions by the 
way of some functional data analysis tools. 

 

 
 
Figure 1: Visualization of the BEMUSE data: 100 temporal 
curves of the cladding temperature of the fuel rods. Each curve 
comes from the output of one computer code (CATHARE2) run. 
Source: CEA. 
 
A first problem consists in visualizing the uncertainty of a 
time-dependent variable, which is called in statistics a 
functional variable. Regarding their capacity to summarize 
rich and complex information, visualization tools are very 
important in statistical studies. Several types of visualization 



 

 

exist, depending on the information that have to be 
emphasized and the dimension of the involved problems. 
In this context, this article deals with studying 
methodologies meeting two main objectives: detecting some 
central tendency behavior and outliers; and linking these 
particular shapes of transients to the input values or 
combinations of inputs that have induced them.  
Two classes of methods have been identified as potential 
useful tools: a classical way to handle functional variables in 
statistics is to reduce their dimension via projection or 
regression techniques4); another one is to consider the 
concept of band depth5). The first part of this article presents 
two methods introduced by Hyndman and Shang6), based on 
dimension reduction. The second part is dedicated to the 
functional boxplot of Sun and Genton7), which implies depth 
of band concept.  
 
 
II. Methods based on dimension reduction 

This section presents two methods from an article by 
Hyndman and Shang6) for the construction of "functional 
boxplots", which are both based on a dimension reduction.  
Classical boxplot for scalar variables is a very common 
statistical tool that allows summarizing the main information 
of a data sample: median, first and third quartiles, and an 
interquartile-based interval which define the limit of 
non-outliers data. First step to build such boxplot is to rank 
data thanks to a statistical order; such order has first to be 
defined for functional data, which has lead to numerous 
research works in the literature. 
 
1. Some background on dimension reduction 
 
The goal of dimension reduction is to represent the source 
data into a new space with reduced dimensions, where it will 
be easier to study. The transformation should keep enough 
interesting information about the source data, while allowing 
simplifying the analysis. There are many methods for 
dimension reduction. Here, we focus only on the principal 
component analysis (PCA) in its classical and robust 
variants. 
Once in the new space, we can use different methods to 
estimate the quantiles and outliers. Stages for the size 
reduction stages and estimates depths are independent from 
each other. Thus, it is possible to combine several methods, 
for the reduction itself on one side, and for the calculation of 
depths on the other side. 
In classical linear PCA method, the aim is to find the 
orthogonal axis on which the projection of the data matrix 
has a maximized variance. The disadvantage of this method 
is the lack of robustness regarding extreme values. A variant 
of this criterion is to use another variable to be maximized. 
For instance, the Median Absolute Variance criteria offers to 
maximize the median of the absolute differences between the 
samples and the median, which are more robust to the 
extreme values than the mean value.  
Once the functional variable has been transformed to a fewer 
component space (typically two, but this dimension can be 
increased), the objective is to estimate quantiles in this space, 

in order to detect outliers.  
 
Remark on explained variance:  
 
The variance explained is an important factor in assessing 
the performance of the PCA component. For standard PCA, 
obtaining the variance explained by k components is a 
simple calculation of the percentage of k eigenvalues of the 
covariance matrix associated with these components k. 
We note that using two main components, the explained 
variance for BEMUSE data is 86.57%. Explained variance 
increases with the number of principal components up to 
95% , with 6 main components for data sets.  
 
2. Highest Density Regions method 
 
The principle of this method is to assimilate observations in 
the space of principal components to the realizations of a 
random vector with density f. By calculating an estimate of 
the density f, the quantiles can then be computed. 
A Gaussian smoothing kernel is used in the paper of 
Hyndman & Shang6):  �  X =

1� ∙ �)ܪܭ  − �݅)�
݅=1

 

 with  ܪܭ � = 1− ܪ 
2 ∙ ܭ 1−ܪ 

2 ∙ = � ܭ , � 1

2� ∙ exp  − 1

2
 �, �  the “standard” Gaussian 

kernel and the H matrix containing the smoothing 
parameters. Depending on this matrix (diagonal or not), 
some preferential smoothing directions can be chosen.  
Once the estimate of f is obtained, the higher density regions 
are considered as deeper data. Thus, on figure 2 the 50% 
quantile is represented with dark grey, and lighter grey zone 
is the 95% quantile zone. Points outside this zone are 
considered as outliers.  
The global mode �max = arg max � (�) is considered as the 
deepest curve. Note that this point does not necessarily 
match with a real curve in the data sample, since f is defined 
in every point of the component domain. 
This method needs to have an a priori on the number of 
outliers. In some cases, several outliers can be in the same 
region, and thus wrongly create a high density region, as 
shown on figure 3.  
When returning in the initial space, because of the loss of 
information from dimension reduction step, the dark and 
light grey zones do not represent strictly the same 
information. 



 

 

 
 
Figure 2: Visualization of the density estimator on the 
BEMUSE study case. Dark grey zone envelops 50% of the 
distribution. Light grey represents 95% quantile zone.  
 
 

 
 
Figure 3: Visualization of a density estimator on another 
example. Some outliers being very close from each other: high 
density regions may be wrong in this case. 
 

 
 
Figure 4: BEMUSE study-case: Visualization of functional 
quantiles and outliers, back in the physical space.  
 
 
3. Bagplot method 
 
The bagplot method was proposed by Rousseeuw et al.8) for 
the analysis of bivariate data. This is a generalization of the 
classical boxplot, an example of which is shown in figure 5. 
The dark blue area contains 50% of the data in the "center" 
of the distribution. The light blue area contains data that are 
"less central" without being considered outliers. Finally, four 
points above are detected as outliers. 

 

 

Figure 4: Example of bagplot (Source: Rousseeuw et al.8)). 
 



 

 

The construction of bagplot is based on the notion of depth 
of Tukey9). The depth of Tukey at one point θ, relatively to a 
set of points noted Z, is defined by:  ܮdepth  �, � = min card � ∩ � ; � ∈ DP(� �   
where DP �  is a closed half-plane whose boundary is a 
line containing θ (Figure 5). The Tukey depth is defined for 
all points in the plane, not only the experimental data.  
We define the "median" as the point at which the depth is 
higher. The definition of Tukey depth can easily be 
generalized to higher dimensions, but the calculation 
becomes extremely expensive. 

 
 
Figure 5: Illustration of the depth of Tukey. 
 
I in the following, four steps are detailed for the construction 
of a bagplot. 

1) Ranking points according to their depth: sort the 
points and draw the iso-depth contours. Many 
algorithms have been proposed, such as algorithm 
FDC proposed by Johnson et al.10). This 
classification allows building the central region 
containing 50% of points that have the highest 
depth. 

2) Defining the median point: find the median which 
is the point with the highest depth (this is not 
necessarily an experimental point). There are many 
algorithms to solve this problem, for example: 
HALFMED algorithm proposed by Rousseeuw and 
Ruts11). 

3) Detecting outliers: It is an "expansion in depth" of 
the central region. Points whose depth is less than ��limite  =  �médian  −  | �médian  –  ��bag  | ∗ coef 

are considered as outliers. Regarding the coefficient, 
Rousseeuw et al.8) proposed the value 3 while 
Hyndman and Shang6) suggest 2.57 because this 
value retains 99% of the points in the case of a 
Gaussian distribution. A confidence interval around 
the median point is constructed by using the 
bootstrap method proposed by Febrero et al.12). 

4) Representation of points in the functional space: 
The envelope of the curves contained in the central 
region is colored in dark gray. The confidence 

interval for the median point is presented by dotted 
lines. The outlier curves are drawn in different 
colors. Envelope of the other curves (not outliers) is 
colored in light gray (see Figures 6 and 7 for the 
application of this tool to the BEMUSE data). 

 
Figure 6: Bagplot of BEMUSE study case. 

 
 
Figure 7: Bagplot results in the functional space for BEMUSE 
study-case.  
 
Remarks on bagplot : 
 
1) Unimodality 
The bagplot implies unimodality. The figure below presents 
a difficult case to deal with this method. We see that the 
median is always detected in the center of the middle zone, 
while it is not always what we would get the most 
representative curve (Figure 8). This is the big difference 
between bagplot and HDR plot. HDR plot may well separate 
the different modes of distribution, but this is not the case 
with bagplot. 



 

 

 
 
Figure 8: Example of a non-unimodal problem, where bagplot 
is not relevant. 
 
2) Generalization to high dimensions 
Theoretically, bagplot can be generalized for large 
dimensions. There are powerful algorithms to determine the 
median point in higher dimensions, such as DEEPLOC 
algorithm proposed by Rousseeuw and Struyf13).  
However, tracing the contours of iso-depth in dimension 
greater than 3 is a difficult problem. Nevertheless, Chen et 
al.14) propose an algorithm using the Monte Carlo method. 
 
III. Methods using band depth concept 

This section presents a method for the visualization and 
analysis of functional data developed by Sun and Genton7). 
This method is based on the notion of depth band that 
classifies a sample of curves. 
To generalize the scheduling of a statistical sample, we 
introduced different versions of "depth of data." A "depth" is 
associated with each element of the sample, which allows 
classifying and thus finding the concepts of median and 
outliers. For functional data, Lopez-Pintado and Romo5) 
introduced a notion of band depth. This allows classifying a 
set of curves and thus defining functional quantiles, to 
identify the most central (median) curves and outliers curves 
Each curve is associated with a real that is the band depth. 
Specifically, from a sample of curves �1 � , … , �� �  , band 
depth will allow to obtain a ranked sample:  � 1  � , … , � �  �   where � 1 (�) is the deepest curve and � � (�) is the least one. The � 1 (�) curve plays the same 
role as the median in a classical boxplot. 
 
1. Band of curves 
 
Let us consider a n-sample of curves �1 , … , �� , and let us 
choose i curves among the sample: �݅1

, … , �݅݇ . The "band of 

curves" defined by �݅1
, … , �݅݇  is the subset 1݅� ܤ

, … , �݅݇  
defined as the set of points between the lower and the upper 
envelope of k curves, that is to say: 1݅� ܤ

, … ,�݅݇ =   �, � �  , � ∈ ; ܫ min݅=݅1 ,…,݅݇ �݅ � ≤ � � ≤ max݅=݅1 ,…,݅݇ �݅ �   
An illustration of this definition is given in figure 9, where a 
sample of curves is represented, the band is the area bounded 
by the two black lines. 
In this article, only the case of k=2 curves bands is 

considered, which is the most useful in practice. 
 

 
 
Figure 9: Example of band of curves.  
 
2. Band depth concept 
 
Lopez-Pintado and Romo5) define the band depth of a curve 
y, in the case of bands of two curves by 

BD2 �  =   �
2
 −1

݅� ܤ∋�1   ,�݆  ݅≠݆  

where  �
2
  is the number of pairs of two curves among n. 

Thus, the higher is the band depth, the more “central” is the 
curve position, that is to say, the more it is included in a 
large number of bands. If the highest band depth is reached 
by two different curves, the most central curve is the average 
of these curves where the maximal value is reached. 
 

Figure 10 shows a sample from Sun and Genton7) to 
illustrate this concept. The sample is composed of 4 curves, 
from which we can therefore form 6 bands of 2 curves. The 
shaded area corresponds to the band 1�)ܤ , �3), the curves �1 , �2 , �3 are in this band, but �4  is not. We can easily 
calculate that BD(�1) = 3/6 , BD(�2) = 5/6 , BD(�3) =

3/6  and BD(�4) = 3/6 . The curve 2y  is thus the most 

central (what will be called later the "central curve"). 
 

 
Figure 10: Illustration of band depth. Source: Sun and 
Genton7). 
 



 

 

3. Functionnal boxplot based on band depth 
 
The functional boxplot introduced by Sun and Genton7) is a 
generalization of the usual boxplot based on band depth. The 
principle of this type of graph is shown in figure 11, applied 
to the BEMUSE study-case. The dark grey area represents 
the central region, defined as the envelope of α- proportion 
of the deepest curves (0≤ α ≤ 1). The default value α =0.5 is 
provided by Sun and Genton7); region is then written 50ܥ% = , 1 �)ܤ … , � �

2
 ) 

where (� 1 , … , � � ) is as previously the ranked sample by 
decreasing band depth. The central region is equivalent to 
the box in the classical boxplot. It provides a visual 
representation of the extent of 50% of the curves. Moreover, 
within this zone, the black curve represents the central (or 
median) curve.  
Sun and Genton7) propose to consider as outlier any curve 
that is not completely within a region (not shown) obtained 
by "increasing" the central region, down and up, by an 
amount at each point proportional to the height of the band. 
The proportionality factor (sometimes called "expansion 
factor" in the following) is equal to 1.5 by default, by 
analogy with the usual boxplot. The envelope of all curves 
that are not outliers is shown in the graph (light grey line). 
The colored curves correspond to the detected outliers. 
 

 
 
Figure 11: Functionnal boxplot of BEMUSE study-case. 
 
IV. Results on the BEMUSE study-case 

The considered data set consists of 100 discretized curves of 
237 sampling points (figure 1). In order not to be disturbed 
by the stationary regime (end of transient), which is less 
interesting for industrial application, we have considered 
only the first 150 points of each curve.  The graphical 
representation of the bivariate space (see figure 2) seems 
rather unimodal, and the variance explained by the 
dimension reduction is quite high (85%). 
Figures 4, 7 and 11 show that the confidence intervals are 
very similar from a method to another. We see also that there 
are small differences between the dark gray area and the 

light gray area. It means that most of the curves are in the 
dark gray envelope. From its shape, we can observe the 
small uncertainty zone at the beginning of the transient and 
the large increase of uncertainty during the decrease phase of 
the temperature. 
From Figures 4, 7 and 11, we see also that outliers are quite 
similar among the three methods. The band depth method 
gives more outliers but this strongly depends on the 
expansion factor tuning. From Figures 4 and 7, one can 
guess two kinds of outliers: amplitude outliers down (visible 
between t = 30s and t = 100s), and amplitude outliers up (t> 
150s). In order to exploit these results, a fine analysis of the 
combination of CATHARE2 input parameters leading to 
these “abnormal” results have to be made. This analysis is 
not realized in this work. 
 
V. Conclusion  

In uncertainty studies, when analyzing a large number of 
results which are in a functional form (as time dependent 
curves), we are faced to difficult visualization problems/ In 
this paper, we have provided some methods in order to 
answer to three questions asked in introduction when dealing 
with a large number of one-dimensional curves: 

1. What is the average curve? 
2. Can we define some confidence interval curves 

containing most of the curves? 
3. Can we detect some abnormal curves, in the sense of a 

strong difference from the majority of the curves? 
The function boxplot and bagplot tools allows to answer to 
these three questions: the median curve for question 1, the 
gray areas for question 2 and the so-called outlier curves for 
question 3. 
 
We have also shown that visualization tools can be helpful 
for thermal-hydraulical transient selection: from a large 
number of curves, detecting which transients have a 
particular shape is not obvious. This question is particularly 
crucial in a sensitivity analysis approach, where this kind of 
tools could be coupled with other graphs (as cobweb plot): 
when other (scalar or functional) random variables are 
studied, it is important to have powerful visual ranking tool 
to show how influent a variable or group of variables is on 
the output quantity of interest. Future works will develop 
some links between curve band depth and sensitivity 
analysis objectives. 
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