
HAL Id: hal-00952926
https://hal.science/hal-00952926v1

Preprint submitted on 27 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conservative conversion between LaTeX and TeXmacs
François Poulain, Joris van der Hoeven

To cite this version:
François Poulain, Joris van der Hoeven. Conservative conversion between LaTeX and TeXmacs. 2014.
�hal-00952926�

https://hal.science/hal-00952926v1
https://hal.archives-ouvertes.fr

Conservative conversion between

LATEX and TEXMACS
∗

by Joris van der Hoevena, François Poulainb

LIX, CNRS
École polytechnique

91128 Palaiseau Cedex
France

a. Email: vdhoeven@lix.polytechnique.fr

b. Email: fpoulain@lix.polytechnique.fr

February 27, 2014

Abstract

Back and forth converters between two document formats are said to

be conservative if the following holds: given a source document D, its

conversion D0, a locally modified version M 0 of D 0 and the back con-

versionM of M 0, the document M is a locally modified version of D.

We will describemechanisms for the implementation of such converters,

with the LATEX and TEXMACS formats as our guiding example.

Keywords: Conservative document conversion, LATEX conversion,

TEXMACS, mathematical editing

A.M.S. subject classification: 68U15, 68U35, 68N99

1 Introduction

The TEXMACS project [7, 10] aims at creating a free scientific office suite with an
integrated structured mathematical text editor [8], tools for graphical drawings
and presentations, a spreadsheed, interfaces to various computer algebra sys-
tems, and so on. Although TEXMACS aims at a typesetting quality which is at
least as good as TEX and LATEX [14, 15], the system is not based on these latter
systems. In particular, a new incremental typesetting engine was implemented
from scratch, which allows documents to be edited in a wysiwyg and thereby
more user friendly manner. This design choice made it also possible or at least
easier to use TEXMACS as an interface for external systems, or as an editor for
technical drawings. However, unlike existing graphical front-ends for LATEX such
as LyX [2] or Scientific Workplace [23], native compatibility with LATEX
is not ensured.

∗. Thiswork has been supportedby theDigiteo 2009-36HDgrant andRégion Ile-de-France.

1

Since LATEX is still the standard for scientific publications in areas such
as mathematics, physics and computer science, good compatibility between
TEXMACS and LATEX is a major issue. Several use cases are possible in this
respect. For the publication of papers, good converters from TEXMACS to LATEX
are a prerequisite. New TEXMACS users also would like to import their old
LATEX papers into TEXMACS. The most complex types of conversion arise when
a TEXMACS user collaborates with a person who refuses to use anything else but
LATEX. In that case, there is a need for lossless converters between both formats.

Unfortunately, TEX and LATEX do not really provide a data format, but
rather a programming language. Furthermore, unlike most other existing pro-
gramming languages, the TEX system does not provide a formal grammar for
the set of parsable documents. Moreover, the TEX syntax can be self-modified
at run-time and many basic TEX/LATEX capabilities are build upon syntactic
tricks. This makes it extremely hard (or even impossible in practice) to design
lossless converters between LATEX and essentially different formats. Current
software for conversions from LATEX [1, 2, 4, 5, 6, 11, 13, 16, 17, 18, 19, 20, 21]
therefore involves a lot of heuristics; we refer to section 3 for a quick survey of
existing approaches.

Nevertheless, even if we accept that the conversion problem is hard in general,
we would like our heuristic converters to address some important practical use
cases. For instance, assume that Alice writes a LATEX document and sends it to
her colleague Bob. Now Bob makes a minor correction in the LATEX document
using TEXMACS and sends it back to Alice. Then Alice would like to recover
her original LATEX document except for the minor change made by Bob (which
might possibly be exported in the wrong way). Converters between LATEX and
TEXMACS which admit this property will be called conservative.

There are several approaches to the implementation of conservative con-
verters. First of all, we might re-implement our converters from scratch while
taking into account the additional requirement. However, it took a lot of work
and effort to develop the existing heuristic converters, so this option is not partic-
ularly nice from the implementers’ perspective. Another idea would be to “hack”
some parts of the existing code and turn it into something more conservative.
Nevertheless, the existing converters are extremely complex; in particular, they
cover numerous kinds of irregularities inside LATEX. Adding an additional layer
of complexification might easily break existing mechanisms.

Therefore, we want to regard the current converters between LATEX and
TEXMACS as black boxes. The aim of this paper is to describe conservative con-
verters on top of these black boxes, which are currently under development. In
particular, we guarantee that failure of the conservative converters only occurs
in cases of failure of the original converters. Although our techniques were only
tested for conversions between TEXMACS and LATEX, it is likely that they can be
used for other formats as well.

The first major ingredient for our converters (see section 4) is to generate,
along with the main conversion, a correspondence between well chosen parts of
the source document and their conversions in the target document. In particular,

2 Section 1

we want to track the image of each paragraph in the source document. Ideally
speaking, assuming that we have a nice parse tree for the source document, we
want to track the images of all subtrees. In order to construct such correspon-
dences, we will add markers to the source document, convert the marked source
document, and finally remove the markers from the obtained marked target
document. Optionally, we may want to verify that the addition and removal of
markers does not disrupt the conversion process and that we obtain the same
final document as in the case of a plain conversion.

For the conservative conversion itself, there are several approaches, which
will be described in section 5. Our current implementations are mainly based on
the “naive” approach from sections 5.1 and 5.2, which directly attempts to sub-
stitute unaltered document fragments by their original sources, when performing
a backconversion of a modified converted document. We are also experimenting
with more elaborate approaches for which modifications are regarded as patches
and where the idea is to lift the conversion process to such patches.

2 The LATEX and TEXMACS document formats

2.1 The TEX and LATEX formats

As we mentioned in the introduction, TEX [14] is really a programming language
rather than a data format. The main emphasis of TEX is on presentation and
typesetting quality. TEX programs are strings with a highly customizable syntax;
the set of TEX primitives can also easily be extended with user defined macros.
We recall that LATEX [15] is a set of macros, built upon TEX. It is intended to
provide an additional layer of structural markup, thereby allowing for a limited
degree of presentation/content separation. It inherits both advantages and dis-
advantages from the TEX system.

One of the major disadvantages of TEX and LATEX is that it is hard or even
impossible to write reliable converters to other formats. For instance, in a recent
case study on existing LATEX to MathML converters [24], it turned out that the
success rates of these converters varied between 2% and 54%, when applied to a
large document base downloaded from ArXiv, and looking at the mathematical
formulas only. There are numerous reasons for this poor performance. Let us
briefly mention the main ones:

Lack of formal syntax. TEX documents do not comply to any well defined
syntax, since the syntax can be modified at run time. For instance, it is rather
easy to typeset an HTML snippet such as example in
the intended way using suitable TEX code. And, even though LATEX widely
advertises structured syntax, many LATEX packages actually tweak TEX syntax
in order to include external material (such as source code, algorithms, graphics)
or to provide syntactic sugar, allowing to write code such as foo!42!bar!!+++
(xcolor package) or ?[l]f*_ij^kl? (tensid package). As a consequence, all
existing parsers (except TEX-based parsers) are only able to correctly parse
subsets of valid TEX documents.

The LATEX and TEX
MACS

document formats 3

Lack of semantics. The semantics of certain LATEX language constructs
(such as \csname or \expandafter) may be hard to specify, and even harder
to translate into other data formats. Indeed, it’s quite usual to see code such
as \def\b{\begin} or \def\wd{\widehat} in real life LATEX documents, which
is completely meaningless when translated into a non-macro language. LATEX
also dramatically lacks of “public interfaces”. So much so that many customi-
sations are done using side effects, by redefining internal macros. So again,
all existing translators are only able to translate subsets of valid TEX documents.

Lack of orthogonality. LATEX, as a document format, dramatically lacks
of orthogonality. Numerous packages are mutually incompatible and numerous
document classes are providing different macro naming conventions, making code
non portable between classes (e.g. the declaration \newtheorem{thm}{Theorem}

may be used with the article class, but is forbidden with elsart). Numerous macros
suffer from arbitrary limitations (e.g. a paragraph cannot end inside a \texttt

argument; the nesting level in lists is limited to 4, etc.). Each document class
define its very own scheme for defining metadata and title pages. The characters
<, > and | behave very differently depending on the preamble. Etc. All these
irregularities make difficult to build generically valid LATEX documents.

2.2 The TEXMACS format

The TEXMACS document format is based on trees: all TEXMACS documents or
document fragments should be thought of as trees [9]. Of course, such trees
can be serialized as strings in different ways: as XML documents, as Scheme
expressions (S-expressions), etc. In what follows, we will representTEXMACS trees
using S-expressions. Figure 1 shows an example of a TEXMACS snippet.

A formula: Corresponding tree: Corresponding S-expression:

x+
1

2
+ y+ z
√

math

concat

x+ frac

1 2

+ sqrt

y+ z

(math

(concat

"x+"

(frac "1" "2")

"+"

(sqrt "y+z")))

Figure 1. An insight of the TEXMACS format.

In the example, the concat tag stands for “horizontal concatenation” and its
children expect “inline content”. Another important primitive which will be used
in subsequent examples is document; this tag is used for “vertical concatenation”
and it provides “block content”.

4 Section 2

3 Traditional converters for LATEX

3.1 Existing approaches

Not so surprisingly, the interoperability with LATEX is an asymmetric problem.
Conversion to LATEX is considered the easier problem, since we are free to restrict
ourselves to a subset of LATEX. However, even this problem is quite non trivial,
due to lack of orthogonality and arbitrary restrictions inside LATEX (see sec-
tion 2.1). Nevertheless, conversion from LATEX to other formats is indeed the
most difficult problem, usually. Although the techniques described in this paper
work both ways, we will therefore use this harder direction for our examples.

The main obstacle when converting LATEX documents to other formats is
that arbitrary LATEX documents are hard to parse. One way to bypass this
problem is to let TEX do the parsing for you. Some existing converters which
use this approach are TEX4ht, Tralics, LXir, Hermes and LATEXml [1, 4, 5,
13, 18]. The underlying principle is to build an overloaded DVI document [3, 22]
with additional markup which delimits the scope of a set of interesting macros.
Then, via an external program, it is possible to rebuild a tree reflecting the
structure of the original document. This alternative has the very benefit of
exploiting TEX parser without rewriting it, but it has also major concerns:

1. It supposes that you installed a complete TEX distribution (usually large
in size), whose version is compatible with the one required by the source.

2. It only works for complete documents, and not for code snippets.

3. User defined macros are expanded and thereby lose their semantics.

Concerning the last point, we agree with [12]: “macro expanding then translating
is best suited to display and does not provide converted documents suitable
for further use”, so this strategy does not fit our needs. Also, even if we could
preprocess sources in order to protect user defined markup, the two first concerns
are too restrictive for our project.

The remaining strategy is to parse ourselves the LATEX source files. This
approach has been followed by software such as LyX, HeVeA, PlasTEX,
Pandoc, Latex2html, Perl LaTeX::Parser, HyperLATEX, TtH, etc. [2,
6, 11, 16, 17, 19, 20, 21] Once the document parsed, a tree is generated and
is transformed in order to comply with the target format definition.

3.2 Traditional conversion from LATEX to TEXMACS

The existing LATEX to TEXMACS converter uses a custom TEX/LATEX parser,
with the ability to conserve the semantics of user defined macros. Many filters
are applied to the parsed LATEX document in order to get a suitable TEXMACS

tree. Some example transformations which are applied are the following:

– expansion of “dangerous” macros, such as \def\b{\begin};

– cutting the source file into small pieces, thereby reducing the risk of
serious parse errors due to (text/math) mode changes;

Traditional converters for LATEX 5

– many local and global tree rewritings (whitespace handling, basic nor-
malizations and simplifications, renaming nodes, reordering children,
migrating label definitions, extracting metadata, etc.);

– adding semantics to mathematical content (disambiguation of operators
and whitespace, matching delimiters, etc.);

– (optionally) compile the LATEX document with the preview package in
order to import hard-to-parse document fragments as pictures.

Due to the combined complexity of these transformations, we cannot make cer-
tain useful assumptions on the behavior of our converter, especially:

(non) Linearity. The conversion of a concatenation of snippets might not
be the concatenation of the conversion of the snippets.

(non) Locality. Local changes inside snippets may result in global changes.

(non) Time invariance. Two conversions of the same document at dif-
ferent times might result in different results. This is for instance due to
time stamping by external tools involved in the conversion of pictures.

3.3 Traditional conversion from TEXMACS to LATEX

The converter from TEXMACS to LATEX does not have to cope with the LATEX
parsing problem. Nevertheless, arbitrary restrictions inside LATEX and the gen-
eral lack of orthogonality make the production of high quality LATEX documents
(including preserved semantics of user defined macros) harder than it seems. The
LATEX export process is based on the following general ideas:

– converting the document body tree into a LATEX syntax tree;

– building the preamble by tracking dependencies and taking into account
all document style options;

– writing the preamble and the body.

Again, and for similar reasons as above, useful properties such as linearity,
locality and time invariance cannot be guaranteed.

4 Correspondence between subdocuments

4.1 Basic principles

One important prerequisite for conservative converters is our ability to maintain
the correspondence between parts of the source document and their images
in the target document. When writing conservative converters from scratch,
this correspondence can be ensured by design. In our setting, since traditional
converters are already written, we consider them provided as if they were black
boxes, independant from our conservative converters. Then, the key idea in order
to maintain the correspondence between source and target is to add markers to
the source document before doing the conversion. More precisely, we extend the
source and target formats with one new special tag for marking text, say marker.
Two design choices have now to be made.

6 Section 4

First of all, the marker tag can either be punctual or scoped. In the first
case, the tag takes a unique identifier as its single argument. In the second
case, the tag takes the marked text as its additional second argument (for large
multi-paragraph fragments of LATEX, this requires marker to be an environ-
ment). For unparsed LATEX source documents, substrings which correspond to
logical subexpressions of the parse tree can be hard to determine. Consequently,
punctual markers are most adequate for the initial conversions from LATEX to
TEXMACS. Nevertheless, using a post treatment, we will show in section 4.2 below
that punctual markers may be grouped by pairs into scoped markers, while
taking advantage of the tree structure of the generated TEXMACS document. For
conversions from TEXMACS to LATEX, we may directly work with scoped markers.

Secondly, we have to decide on the granularity of our conservative converters:
the more markers we use, the more locality will be preserved for small changes.
However, not all subtrees of the parse tree of the source document necessarily
give rise to valid subexpressions of the target documents. Moreover, in the case
of conversions from LATEX to TEXMACS, we have no direct access to the parse
tree of the source document, so appropriate places for markers have to be chosen
with care. At least, we need to mark all paragraphs. More sophisticated imple-
mentations will also mark macro definitions in the preamble, cells of tables, and
several well chosen commands or environments.

Example 1. In Figure 2, we have shown a simple example of added punctual
markers inside a LATEX source document. The granularity is slightly better
than a purely paragraph based marking with which the markers 4 until 9 would
be suppressed. Nevertheless, an even better granularity could for instance be
obtained by putting markers around the b and c of the fraction. As a post
treatment we typically group the punctual markers by pairs into scoped markers.
In this case, the pairs are (1, 2), (3, 10), (4, 7), (5, 6), (8, 9) and (11, 12).

First paragraph.

%Some comments

\begin{remark}

Some mathematics

\[a+\frac{b}{c}. \]

More text.

\end{remark}

Last paragraph.

\marker{1}First paragraph.\marker{2}

%Some comments

\marker{3}\begin{remark}

\marker{4}Some mathematics

\[\marker{5}a+\frac{b}{c}.\marker{6} \]\marker{7}

\marker{8}More text.\marker{9}

\end{remark}\marker{10}

\marker{11}Last paragraph.\marker{12}

Figure 2. Rudimentary example of a marked LATEX source document body.

4.2 Grouping punctual markers by pairs

In order to transform matching pairs of punctual markers inside LATEX source
documents into scoped markers, we will make use of the tree structure of the
marked TEXMACS target document obtained after conversion.

Correspondence between subdocuments 7

Roughly speaking, for every subtree wich starts with marker i and ends with
marker j, we declare that (i, j) forms a matching pair. More precise implemen-
tations should carefully take into account the special nature of certain tags such
as concat and document. For instance, we may use the following algorithm:

– any concat tag or document tag starting and finishing by a marker is
replaced by the corresponding pair;

– any child of a concat tag or a document tag which is framed by two
markers is replaced by the corresponding pair;

– any concat tag or document tag with only one child which is a pair is
replaced by the pair;

– any remaining marker is removed.

Example 2. For the simple document from Example 1, the TEXMACS conversion
of the marked document would be as follows:

(document

(concat (marker "1") "First paragraph." (marker "2"))

(marker "3")

(remark

(document

(concat (marker "4") "Some mathematics")

(equation*

(document (concat (marker "5") "a+" (frac "b" "c") "." (marker "6"))))

(marker "7")

(concat (marker "8") "More text." (marker "9"))))

(marker "10")

(concat (marker "11") "Last paragraph." (marker "12")))

The pairs (1, 2), (5, 6), (8, 9) and (11, 12) are detected as matching pairs of
markers of inline content, whereas the pair (3, 10) is detected as matching pair
of block content. The pair (4,7) does not match, but the matching algorithm
can be further tweaked to better handle this kind of situations.

At a second stage, we may organize the matching pairs into a dag: a pair (i, j)
will be a descendent of a pair (p, q) whenever the source string corresponding to
(i, j) is included in the source string corresponding to (p, q). We will say that
the dag is well formed if it is actually a tree and whenever the source strings
corresponding to two different children of the same node never intersect.

Example 3. For our example document, and adding an implicit pair (0, 13) for
the root, the dag of matching pairs is a well formed tree:

(0, 13)

(1, 2) (3,10)

(5, 6) (8, 9)

(11,12)

8 Section 4

Example 4. Certain tags, such as figure, may produce badly formed trees:

\begin{figure}

\marker{2}\caption{\marker{3}Legend\marker{4}}

Some text.\marker{5}

\end{figure}

(big-figure

(concat

(marker "2")

"Some text."

(marker "5"))

(concat

(marker "3")

"Legend"

(marker "4")))

(1,6)

(2,5) (3,4)

In unfavourable cases, such as Example 4, the dag of matching pairs does not
yield a well formed tree. In such cases, we keep removing offending matching
pairs until we do obtain a well formed tree. At the end of this process, we are
ensured that marked subdocuments do not overlap in non structured ways, i.e.
other than via inclusion. Consequently, it is possible to transform the document
with punctual markers into a document with scoped markers.

Example 5. Applying the final transformation to Example 2, we obtain the
document below. Of course, the names of our scoped identifiers can be replaced
by simple numbers.

(document

(marker "1:2" "First paragraph.")

(marker "3:10"

(remark

(document

"Some mathematics"

(equation*

(document (marker "5:6" (concat "a+" (frac "b" "c") ".")))))

(marker "8:9" "More text.")))

(marker "11:12" "Last paragraph."))

4.3 Detection and reparation of irregularities

In most cases, removal of the markers from the conversion of a marked source
document yields the same result as the direct conversion of the source document,
modulo some normalization, such as merging and removing concat tags. How-
ever, this is not always the case. Let us give a few examples of how this basic
principle may fail.

Example 6. When putting markers inside certain special tags, such as
verbatim, the markers may not be converted as expected:

\begin{verbatim}

Some text.

\end{verbatim}

\begin{verbatim}

\marker{1}Some text.\marker{2}

\end{verbatim}

(verbatim

"\marker{1}Some text.\marker{2}")

Correspondence between subdocuments 9

Example 7. The conversion of certain LATEX documents may involve some
restructuring which is incompatible with the marking algorithm. For instance,
TEXMACS only allows for modified text properties of block content if the mod-
ified properties apply to a succession of entire paragraphs. LATEX also allows
emphasized text which starts in the middle of a paragraph, runs over several
subsequent paragraphs, and then ends in the middle of another paragraph. When
importing this kind of ill structured emphasized text, we therefore restructure
the emphasized text into three separate parts. However, such transformations
often interfere in unpredictable ways with the marking process.

In order to guarantee that our marking and unmarking mechanisms
never deteriorate the quality of the converters, we may use the following
simple procedure: convert the source document both with and without the
marking/unmarking mechanism. If the results are the same, then return the
result. Otherwise, keep locating those markers which are responsable for the
differences and put them into a blacklist. Now keep repeating the same process,
while no longer inserting the markers in the blacklist during the marking proce-
dure. In the worst case, this process will put all markers on the blacklist, in which
case conversion with and without the marking/unmarking mechanism coincide.

4.4 Conservative storage of documents

In order to allow for subsequent conservative back and forth conversions, the
result of a conservative conversion should contain additional information on how
the recover the original source file. More precisely, when converting a source
document D from format A into format B, the target document will consist of
a quadruple (D 0, D̄ , D̄ 0, �), where

– D 0 is the target document of format B.

– D̄ is the marked source document which gave rise to the marked version
D̄ 0 of the target document.

– � is a mapping which associates one of the two formats A or B to every
identifier for a marked subdocument.

If our target format is TEXMACS, then we simply store D̄ , D̄ 0 and � as attach-
ments to TEXMACS files. If LATEX is our target format, then, by default, we put
D̄ , D̄ 0 and � inside a comment at the end of the document. Alternatively, we
may store D̄ , D̄ 0 and � in a separate file, which will be consulted whenever we
convert a modification of the target document back to A. The last strategy has
the advantage that we do not clobber the converted file. However, one will only
benefit from the conservative converters when the LATEX reimportation is done
on the same computer and via the same user account.

Remark 8. Instead of specifying � as a separate mapping, it also possible to
suffix identifiers for marked subdocuments by a letter for the original format of
the marked text.

10 Section 4

Example 9. When importing the LATEX source file from Examples 1 and 5 into
TEXMACS, the mapping � will associate “LATEX” to each of the identifiers 1:2,
3:10, 5:6, 8:9, 11:12. If the LATEX source file was a modified version of the
result of exporting a TEXMACS file to LATEX, then the mapping � will associate
TEXMACS to every node of the tree, except for those nodes which correspond to
substrings in which modifications took place.

5 Conservative conversion

5.1 The naive approach

Let us return to the main problem of conservative conversion. Alice has written
a document D in format A, converts it to format B and gives the resulting
document D 0 to Bob. Bob makes some modifications and send a new versionM 0

back to Alice. How to convert the new version back to format A while conserving
as much as possible from the original version for the unmodified parts?

Let us first describe a naive solution to this problem. We will assume that
the format B is enriched with one new unary tag invariant, with an expression
of format A as its unique argument. The conversion from B to A of such a tag
will be precisely this argument.

In the light of the section 4.4, Bob’s new version contains a marked copy D̄
of Alice’s original version as well as its marked conversion D̄ 0 to format B.
Now for every subdocument S 0 occurring in M 0 which corresponds to a marked
subdocument of D̄ 0 (and which is maximal with this property), we replace S 0 by
an invariant tag which admits the subdocument S in D corresponding to S 0

as its argument. We finally convert the obtained document from B to A using
our slightly adapted black box converter.

Example 10. Assume that Bob adds two more dots to the paragraph More

text. in Example 2. Then the subdocuments corresponding to the pairs of
markers (1, 2), (5, 6) and (11, 12) still occur in the new document. Since (8, 9)
corresponds to a subdocument of (3, 10), we only declare the subdocuments
corresponding to (1, 2), (5, 6) and (11, 12) to remain invariant. More precisely,
we perform the conversion

(document

(invariant "First paragraph.")

(remark

(document

(invariant "Some mathematics

\[a+\frac{b}{c}. \]")

"More text..."))

(invariant "Last paragraph."))

First paragraph.

\begin{remark}

Some mathematics

\[a+\frac{b}{c}. \]

More text...

\end{remark}

Last paragraph.

Notice the change of indentation and the disappearance of the comment.

Conservative conversion 11

5.2 Fine tuning of the naive approach

A few additional precautions are necessary in order to make the naive approach
fully work. First of all, during the replacement procedure of subdocuments S 0

of M 0 by invarianted subdocuments S of D, some subdocuments S 0 of M 0 might
correspond to several marked subdocuments S1, ..., Sn of D. In that case, we first
investigate some of the context in which S 0 occurred, such as the first k=1, 2, ...
marked subdocuments before and after S 0. In many cases, there will be only
one subdocument Si which will both correspond to S 0 and its context. If such
a preferred match Si cannot be found for S 0, then we renounce replacing S 0 by
an invariant tag.

Secondly, the conversion algorithms are allowed to be context dependent. For
instance, ordinary text and mathematical formulas are usually not converted in
the same way. When replacing subdocuments S 0 of M 0 by invarianted subdocu-
ments S of D, we thus have to verify that the context of S 0 in M 0 is similar to
the context of S 0 in D 0.

Some other improvements can be carried out in order to further improve
the quality of naive conservative conversions. For instance, in Example 10, we
observed that the comment before the remark is lost. This would not have
been the case if Bob had only modified the last paragraph. It is a good practice
to detect adjacent unchanged portions of text and keep the comments in the
corresponding parts of the original source file, but it may be difficult to achieve.

Additional ad hoc techniques were used to solve others problems. For
instance, certain editors automatically damage the line breaking of LATEX source
code. This issue has been addressed by normalizing whitespace before testing
whether two subdocuments are identical.

5.3 Patch based conservative conversions

Another strategy towards conservative editing is to determine the changes
between the conversion S 0 of Alice’s version and Bob’s version D 0 in the form
of a “patch” � 0, and then try to convert this patch � 0 into a patch � that can
be applied to S. Before anything else, this requires us to fix formats A] and B]

for the description of patches for the formats A and B.
For instance, LATEX documents are strings, so LATEX patches could be sets of

triples (i, j ,R), where (i, j)∈N2 corresponds to a substring of the source string
and R stands for a replacement string for this substring. This language might
be further extended with pairs ((i1, ..., in), �)∈N

n×S n, where (i1, ..., in) is an
n-tuple of positions 0 6 i1< ···<in 6 l of the source string (of length l) and � a
permutation. The patch then applies the permutation � to the substrings (0, i1),
(i1, i2), ..., (in, l) of the source string.

Similar patches can be used for TEXMACS trees, by operating on the children
of a node instead of the characters in a string. In TEXMACS, we also implemented
a few other types of elementary patches on trees for the insertion or removal of

12 Section 5

new nodes and splitting or joining nodes. However, we have not yet used these
more complex kind of patches in our conservative converters. In general, we
notice that richer patch formats lead to more conservative converters, but also
make implementations more complex.

Let us study the most important kind of patches � 0 which simply replaces
a subdocument X 0 of D 0 by Y 0. If X 0 is marked inside D̄ 0, with X as the
corresponding source in D, then we take � to be the replacement of X by
contextual conversion Y of Y 0 into format A. This contextual conversion of Y 0

is obtained by performing a marked conversion of M 0 into format A and then
look for the conversion of Y 0 as a subdocument of M 0.

Example 11. Assume again that Bob adds to more dots to the paragraph
More text. in Example 2. Then � 0 is the patch which replaces subtree "More

text." by "More text...". This subtree "More text." corresponds to the pair
of markers (8, 9) and to the unique substring More text. in the original source
document. Consequently, � will be the patch which replaces this substring by
More text..., which leads to the conservative conversion

First paragraph.

%Some comments

\begin{remark}

Some mathematics

\[a+\frac{b}{c}. \]

More text...

\end{remark}

Last paragraph.

5.4 Fine tuning of the patch based approach

Several things have to be fine tuned for the patch based approach. Example 11 is
particularly simple in the sense that the patch � 0 which replaces "More text."

by "More text..." replaces a subtree by another tree. More generally, we have
to consider the case when a succession of children of a subtree is replaced by
a sequence of trees. This occurs for instance when inserting or deleting a cer-
tain number of paragraphs. For special types of nodes (such as the TEXMACS

document tag for successions of paragraphs), we know how the node behaves
under conversions, and we can devise an ad hoc procedure for computing the
patch �. In general however, we may have to replace � 0 by a less fine grained
patch which replaces the entire subtree by a new tree.

A similar situation arises when the patch � 0 replaces as subdocument X 0 of
D 0 which is not marked inside D̄ 0, or when the subdocument Y 0 of M 0 does not
lead to marked subdocument D of the marked conversion of M 0 into format A.
In these cases as well, a simple solution again consists of replacing � 0 by a less
fine grained patch which replaces a larger subtree by another tree.

Conservative conversion 13

Example 12. In Example 2, assume that Bob replaces the numerator b of
the fraction by x. This corresponds to a patch � 0 which does not operate on
a marked subtree of D̄ 0. Nevertheless, the patch which replaces the marked
subtree (concat "a+" (frac "b" "c")) by (concat "a+" (frac "x" "c"))

does admit the required form.

5.5 The combined approach

The quality of conservative converters can be further enhanced by combining
the naive and patch based approaches. Assume that M 0 is obtained from D 0

through the application of a set �1
0, ..., �n

0 of independent patches (i.e., acting on
disjoint subdocuments of D 0). If n > 0, then we will reduce the general “patch
conversion” problem to a problem of the same kind but with a strictly smaller
number of patches n0.

Consider a subdocument S 0 of D 0 with the following properties:

– The subdocument is marked inside D̄ 0 and corresponds to the subdocu-
ment S of D.

– At least one of the patches �i
0 applies to a part of S 0.

– S 0 admits no strictly smaller subdocuments satisfying the same proper-
ties.

Let T 0 be the result of applying all relevant patches �i
0 to S 0. Now apply the

marked version of the naive conversion techniques from sections 5.1 and 5.2
toM 0. This will yield a conservative contextual conversion T of T 0 into formatA.

We now consider the new “source document”D� obtained fromD through the
replacement of S by T . Similarly, we consider the new “conversion”D 0� obtained
from D 0 through the replacement of S 0 by T 0. These replacements admit marked
versions which basically change nothing outside S and S 0 and remove all markers
strictly inside S and S 0. This completes our reduction of the general “patch con-
version” problem to one with strictly less patches (namely, all remaining patches
which did not apply to S 0). In practice, several non overlapping subdocuments S 0

can be treated in a single iteration, so as to increase the efficiency.

6 Conclusion

Conservative converters should make collaborations easier between people who
are working with different authoring tools. Although we only considered conver-
sions between TEXMACS and LATEX here, our methods should also be useful for
other formats. We also notice that the approach generalizes in a straightforward
way to the documents which are written using three or more different tools or
formats.

The implementations inside TEXMACS have only started quite recently and
some time will still be needed for testing and maturing. Nevertheless, our first
experiences are encouraging. Currently, we are still struggling with conserva-
tive conversions of user defined macros and metadata such as title information.

14 Section 6

Nevertheless, we are confident that a suitable solution can be worked out even
for complex conversion challenges of this kind, by finetuning the grain of our
marking algorithm, and through the progressive integration of the patch based
approach.

Bibliography

[1] Romeo Anghelache. Hermes. http://hermes.roua.org/, 2005.

[2] M. Ettrich et al. The LyX document processor. http://www.lyx.org, 1995.

[3] David Fuchs. The format of TEX’s DVI files. TUGboat, 3(2):13–19, 1982.

[4] José Grimm. Tralics. http://www-sop.inria.fr/marelle/tralics/, 2003.

[5] E. Gurari. TeX4ht: LATEX and TEX for hypertext. http://www.tug.org/applications/

tex4ht/mn.html, 2010.

[6] Sven Heinicke. LaTeX::Parser – Perl extension to parse LATEX files. http://

search.cpan.org/~svenh/LaTeX-Parser-0.01/Parser.pm , 2000.

[7] J. van der Hoeven. GNU TEXmacs: A free, structured, wysiwyg and technical text editor.

In Daniel Filipo, editor, Le document au XXI-ième siècle, volume 39–40, pages 39–50,

Metz, 14–17 mai 2001. Actes du congrès GUTenberg.

[8] J. van der Hoeven. Towards semantic mathematical editing. Technical report, HAL, 2011.

http://hal.archives-ouvertes.fr/hal-00569351 , submitted to JSC.

[9] J. van der Hoeven. GNUTEXmacs User Manual, chapter 14: The TEXmacs format. HAL,

2013. http://hal.archives-ouvertes.fr/hal-00785535 .

[10] J. van der Hoeven et al. GNU TEXmacs. http://www.texmacs.org, 1998.

[11] Ian Hutchinson. TtH, the TEX to html translator. http://hutchinson.belmont.ma.us/

tth/, 1997.

[12] Rodionov I. and S. Watt. A TeX to MathML converter. http://www.orcca.on.ca/

MathML/texmml/textomml.html.

[13] Jean-Paul Jorda and Xavier Trochu. LXir. http://www.lxir-latex.org/, 2007.

[14] D.E. Knuth. The TeXbook. Addison Wesley, 1984.

[15] L. Lamport. LATEX, a document preparation system. Addison Wesley, 1994.

[16] J. MacFarlane. Pandoc: a universal document converter. http://johnmacfarlane.net/

pandoc/index.html, 2012.

[17] L. Maranget. HeVeA. http://para.inria.fr/~maranget/hevea/index.html, 2013.

[18] B. Miller. LATEXML: A LATEX to XML converter. http://dlmf.nist.gov/LaTeXML/,

2013.

[19] R. Moore. LATEX2HTML. http://www.latex2html.org, 2001.

[20] T. Sgouros. HyperLaTeX. http://hyperlatex.sourceforge.net, 2004.

[21] Kevin Smith. plasTEX. http://plastex.sourceforge.net/, 2008.

[22] M. Sofka. TEX toHTML translation via taggedDVIfiles. TUGboat, 19(2):214–222, 1998.

[23] MacKichan Software. Scientific workplace. http://www.mackichan.com/index.html?

products/swp.html~mainFrame, 1998.

[24] H. Stamerjohanns, D. Ginev, C. David, D. Misev, V. Zamdzhiev, and M. Kohlhase.

MathML-aware article conversion from LATEX, a comparison study. In P. Sojka, editor,

Towards Digital Mathematics Library, DML 2009 workshop, pages 109–120, Masaryk

University, Brno, 2009. http://kwarc.info/kohlhase/papers/dml09-conversion.pdf .

Bibliography 15

	1 Introduction
	2 The LaTeX and TeXmacs document formats
	2.1 The TeX and LaTeX formats
	Lack of formal syntax.
	Lack of semantics.
	Lack of orthogonality.

	2.2 The TeXmacs format

	3 Traditional converters for LaTeX
	3.1 Existing approaches
	3.2 Traditional conversion from LaTeX to TeXmacs
	3.3 Traditional conversion from TeXmacs to LaTeX

	4 Correspondence between subdocuments
	4.1 Basic principles
	4.2 Grouping punctual markers by pairs
	4.3 Detection and reparation of irregularities
	4.4 Conservative storage of documents

	5 Conservative conversion
	5.1 The naive approach
	5.2 Fine tuning of the naive approach
	5.3 Patch based conservative conversions
	5.4 Fine tuning of the patch based approach
	5.5 The combined approach

	6 Conclusion
	Bibliography

