
HAL Id: hal-00952896
https://hal.science/hal-00952896v1

Submitted on 27 Feb 2014 (v1), last revised 5 Nov 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance evaluation of DNA copy number
segmentation methods

Morgane Pierre-Jean, Guillem Rigaill, Pierre Neuvial

To cite this version:
Morgane Pierre-Jean, Guillem Rigaill, Pierre Neuvial. Performance evaluation of DNA copy num-
ber segmentation methods. Briefings in Bioinformatics, 2015, 16 (4), �10.1093/bib/bbu026�. �hal-
00952896v1�

https://hal.science/hal-00952896v1
https://hal.archives-ouvertes.fr


A performance evaluation framework of DNA copy

number analysis methods in cancer studies;

application to SNP array data segmentation

methods

Morgane Pierre-Jean∗1, Guillem Rigaill†2 and Pierre Neuvial‡1
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Abstract

A number of bioinformatic or biostatistical methods are available
for analyzing DNA copy number profiles measured from microarray or
sequencing technologies. In the absence of rich enough gold standard
data sets, the performance of these methods is generally assessed using
unrealistic simulation studies, or based on small real data analyses.

We have designed and implemented a framework to generate real-
istic DNA copy number profiles of cancer samples with known truth.
These profiles are generated by resampling real SNP microarray data
from genomic regions with known copy-number state. The original
real data have been extracted from dilutions series of tumor cell lines
with matched blood samples at several concentrations. Therefore, the
signal-to-noise ratio of the generated profiles can be controlled through
the (known) percentage of tumor cells in the sample.

In this paper, we describe this framework and illustrate some of
the benefits of the proposed data generation approach on a practical
use case: a comparison study between methods for segmenting DNA
copy number profiles from SNP microarrays. This study indicates that
no single method is uniformly better than all others. It also helps
identifying pros and cons for the compared methods as a function of
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biologically informative parameters, such as the fraction of tumor cells
in the sample and the proportion of heterozygous markers.

Availability: R package jointSeg: http://r-forge.r-project.

org/R/?group_id=1562

Keywords: DNA copy number, segmentation, realistic data generation,
performance evaluation.

1 Background

Changes in DNA copy numbers are a hallmark of cancer cells [10]. There-
fore, the accurate detection and interpretation of such changes are two im-
portant steps toward improved diagnosis and treatment. The analysis of
copy number profiles measured from high-throughput technologies such as
array-comparative genomic hybridization (array-CGH), Single Nucleotide
Polymorphism array (SNP array) or high-throughput DNA sequencing data
raises a number of statistical and bioinformatic challenges.

Various methods have been proposed in the past ten years for analyzing
such data. Form a practitioner’s point of view, it is quite difficult to find
which method is best for a given scientific question. In fact, it is likely that
the overall difficulty of the problem depends on the context (technology, type
of cancer, percentage of tumor cells). It is also likely that certain methods
are more appropriate for certain contexts. Therefore, it is important to take
this context into account when evaluating a set of methods, in order to 1)
get a sense of the overall difficulty of the problem when interpreting the
results and 2) choose appropriate methods for this context. The present
work is motivated by the problem of comparing the performance of existing
segmentation methods for identifying change-points from DNA copy num-
ber profiles from cancer patients. As any performance evaluation strategy,
addressing this question requires the definition of three objects:

1. data with known “truth”;

2. methods to be compared;

3. criteria for performance assessment.

In this paper, we propose such a definition and illustrate how it may be used
to compare segmentation methods. The main contributions of this work are

• a framework to generate realistic DNA copy-number profiles with known
“truth”. This framework is generic and may be applied to any copy
number data set;
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• a framework to address the question of which SNP array data seg-
mentation method performs best, depending on biologically relevant
parameters.

These frameworks are implemented in the R package jointSeg. The rest of
this paper is organized as follows. We start by giving some background on DNA
copy number segmentation (Section 2) and describe our proposed data generation
framework (Section 3). Then, we describe the pipeline we use for evaluating seg-
mentation methods (Section 4). Finally, the result of our comparison study on two
data sets are reported in Section 5.

2 DNA copy number segmentation

2.1 DNA copy number data

Normal cells have two copies of DNA, inherited from each biological parent of the
individual. In tumor cells, parts of a chromosome of various sizes (from kilobases to
a chromosome arm) may be deleted, or copied several times. As a result, DNA copy
numbers in tumor cells are piecewise constant along the genome. Copy numbers
can be measured using microarray or sequencing experiments. For illustration,
Figure 1 displays an example of copy number signals that may be obtained from
SNP-array data. Red vertical lines represent change points. In this particular
example, the first region [0-2200] is normal, the second one [2200-6100] is a region
where one of the parental chromosomes has been duplicated, and the third one
[6100-10000] is a region of uniparental disomy, that is, a region where one of the
parental chromosomes has been duplicated and the other one deleted. The top
panel represents estimates of the total copy number (denoted by c). The bottom
panel represents estimates of allelic ratios (denoted by b). We refer to [19] for an
explanation of how these estimates may be obtained. In the normal region [0-2200],
the total copy number is centered around two copies and allelic ratios have three
modes centered at 0, 1/2 and 1. These modes correspond to homozygous SNPs AA
(b = 0) and BB (b = 1), and heterozygous SNPs AB (b = 1/2). One important
observation is that change points occur at the same position in both dimensions.
This is explained by the fact that a change in only one of the parental copy numbers
is reflected in both c and b. Therefore, it makes sense to analyze both dimensions
of the signal jointly in order to identify change points.

In order to facilitate segmentation, allelic ratios (b) are generally transformed
into unimodal signals, as originally proposed in [28]. This transformation is moti-
vated by the fact that allelic ratios can be symmetrized (“folded”) and that SNPs
that are homozygous in the germline (these SNPs are plotted in gray in Figure 1)
can be discarded as they do not carry any information about copy-number changes.
Following [2], we define the “decrease in heterozygosity” d = 2|b− 1

2
| for SNPs that

are heterozygous in the germline, which is essentially a rescaled version of the “mir-
rored/folded BAF” defined by [28]. After this transformation, DNA copy numbers
can be considered as a bivariate, piecewise-constant signal, as illustrated by Fig-
ure 2.
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Figure 1: Example SNP array data. Total copy numbers (c), allelic ratios
(b) along 10,000 genomic loci. Red vertical lines represent change points,
and red horizontal lines represent mean signal levels between two change
points. SNPs that are homozygous in the germline are colored in black; all
of of the other loci are colored in gray.

2.2 Typology of copy number segmentation methods

Many different methods have been proposed for the analysis of DNA copy number
profiles. Most of them may be classified into four categories: methods based on
Hidden Markov Models (HMM), multiple change-point methods, fused lasso-based
methods and recursive segmentation methods.

1. HMM-based approaches rely on the idea that the recovered DNA copy num-
ber should be discrete and that these different levels can be modeled using
a small number of HMM states. A typical example of such an HMM is the
work of [7]. For the specific case of SNP array analysis in cancer samples,
several dedicated HMM have been proposed [29, 9, 5].

2. Multiple change-point methods assume that the observed signal is affected
by abrupt changes and that between these breaks the signal should be ho-
mogenous [23].

3. Methods based on a fused lasso penalty rely on the idea that, in most cases,
two successive measurements should have the same estimate. This is encoded
by a L1 penalty on successive differences. The recovered signal is guaranteed
to be piecewise constant. A typical example of such a fused model is the work
of [30]. This class of methods can be viewed as solving a convex relaxation
of the multiple change point problem.
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Figure 2: Example SNP array data along 10,000 genomic loci, after trans-
formation of allelic ratios (b) into decrease in heterozygosity (d), follow-
ing [2, 28]. Red vertical lines represent change points, and red horizontal
lines represent mean signal levels between two change points. SNPs that are
homozygous in the germline are colored in black; all of of the other loci are
colored in gray.
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4. Recursive segmentation approaches rely on the intuitive idea that a segmen-
tation can be recovered by recursively cutting the signal into two or more
pieces. A typical example of such an recursive approach is the work of [21].

We refer to [19, 33] for a more mathematical introduction to these methods. Here,
we only note that all of these methods assume that the signals are Gaussian. The
above classification is by no means exhaustive (see for example [13, 1]).

3 Generating data with known “truth”

3.1 Review of existing approaches

A number of data generation mechanisms have been proposed in the context of
performance evaluation of DNA copy number analysis in cancer samples, either in
comparison studies [32, 17, 16, 12], or in papers describing new analysis tools. The
generation of data with known “truth” can be done using either simulated or real
data, both of which have opposite assets and drawbacks.

At first glance, simulated data are more appealing than real data because (i)
“truth” is known with no ambiguity, (ii) the level of difficulty of the problem can be
tuned as desired, and (iii) a large number of simulated data sets can be generated.
As most DNA copy number segmentation methods rely on a Gaussian model (see
Section 2), their performance is usually assessed using Gaussian simulations (see,
for example, [23, 34]). While we do not question the usefulness of model assump-
tions for building statistical methods and for testing implementations, we believe
that performance evaluation should as much as possible avoid to rely on a particular
model. A recent study which compared several approaches for segmenting univari-
ate DNA copy number profiles using the multiple change point approach showed
that the best performing methods on Gaussian simulations performed quite poorly
on real data [27, Table 3]. In the remainder of this section, we briefly review some
existing approaches that have tried to take the best of both the “simulated data”
and the “real data” worlds:

An automatically annotated data set [32]. The authors analyzed real
data using one particular segmentation method to generate “truth”. They then used
resampling to generate realistic copy-number profiles, where (Gaussian) noise was
added in order to control the signal-to-noise ratio of the data set. Two drawbacks
of this approach are that the notion of “truth” depends on the chosen segmentation
method, and that the problem difficulty is not driven by biological considerations.

A dilution series [28]. In order to address the latter point, [28] have produced
a dilution data set, where DNA from a lung cancer cell line is mixed with matched
blood DNA from the same patient with varying (and known) mixture proportion
(see description in Appendix A.1). Therefore, the fraction of tumor cells in the
mixture controls the difficulty of the problem. The “truth” is a panel of regions
whose DNA copy number status in the cell line (normal, gain, hemizygous deletion,
copy-neutral LOH . . . ) is known. This evaluation method has been accepted as a de
facto standard and has been used in several subsequent papers, including [5, 20, 24].

An important drawback of this evaluation framework is that it focuses on a
very limited number of regions (ten), which results in very little discrimination
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between most methods in realistic settings. For example, four of the six methods
compared in [20] reach maximum sensitivity in all 10 regions for tumor cell fractions
greater than 25%. In practice, samples with less than 50% are rarely analyzed, in
particular because the performance of most methods typically decreases severely
when the fraction of tumor cells is less than 75%. We also note that sensitivity and
specificity are evaluated separately in [28], and this weakness has been perpetuated
in all subsequent papers based on the same evaluation framework.

A manually annotated data set [12]. The authors analyzed hundreds of
neuroblastoma array-CGH profiles in order to define regions containing breakpoints
(true signals), and regions not containing breakpoints (false signals). This data set
is freely distributed on CRAN1. Based on this large data set with known truth, the
authors have performed a comprehensive comparison of segmentation methods for
array-CGH data based on ROC curves. A drawback of this evaluation framework is
that once a particular data set is chosen, it is not possible to tune the signal-to-noise
ratio of the problem. Moreover, annotating a new data set is a challenging task,
because it has to be large enough to contain a set of change-points that discriminate
between competing segmentation methods.

A simulation model [17]. The authors designed a complex simulation model
to generate “realistic” copy-number profiles. This model is implemented in the R
package CnaGen, which is available from the authors’ web page2. The simulation
model depends on 24 parameters3. Some of them are directly driven by biological
considerations, such as the percentage of tumor cells in the sample or intra-tumor
heterogeneity. We empirically found it difficult to find a combination of parameters
that yield realistic copy-number profiles. This may be due to the fact that the
underlying data generation model is Gaussian. Table 1 summarizes the features of
approaches reviewed above.

Reference [32] [28] [12] [17] This paper

Based on real biological data? , , , - ,

SNR based on a biol. parameter? - , - , ,

Data generation possible? , - - , ,

Available as R package? , - , , ,

Table 1: Features of existing frameworks for real copy number data with
known “truth”.

3.2 Proposed data generation mechanism

Based on these considerations, we propose an original data generation framework
which aims at combining the advantages of all of the above-mentioned existing
approaches. Two necessary and sufficient ingredients for generating a copy-number
profile of length n are:

1http://cran.r-project.org/web/packages/neuroblastoma/
2http://web.bioinformatics.cicbiogune.es/cnagen/
3CnaGen version 2.1.
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• truth, in the form of K breakpoint positions (out of n− 1 intervals between
two successive loci) and K+1 copy-number state labels for all K+1 regions
between two consecutive breakpoints;

• signal, in the form of locus-level data. For SNP arrays, this is generally a n×3
matrix of total copy numbers (c), allelic ratios (b), and germline genotypes.

Our proposed approach is described below.

3.2.1 Generation of “truth”

When breakpoints and region labels are not user-supplied, we propose the following
approach for generating them:

breakpoints: given a signal length n, draw K breakpoint positions uniformly out
of the n − 1 possible intervals between successive data points (vertical red
lines in Figure 3);

region labels: draw K + 1 region labels from a pre-defined set of copy-number
state labels, such as normal, gain of one copy, hemizygous deletion, homozy-
gous deletion, copy-neutral LOH (labels on top of each plot in Figure 3). By
default, all region labels are equiprobable, but the user may provide a vector
of probabilities for each desired region label. By default, successive regions
are constrained in such a way that only one of the two parental copy numbers
changes at the breakpoint.

3.2.2 Generation of locus-level data

Given breakpoint positions and region labels, we generate a copy-number profile
as follows: for each region of size nR between two breakpoints, we sample nR data
points from a real copy-number data corresponding to this type of region.

The data generation mechanism therefore relies on real data where the under-
lying region label is (assumed to be) known. We have made available two such
“real data sets with known truth” in the package: each of them corresponds to a
different SNP array platform (Affymetrix or Illumina), and both of them are taken
from dilution series, consisting of mixtures of DNA from a tumor cell line and from
blood cells originating from the same patient, with varying mixture proportions.
For both data sets, we have selected several genomic regions which are represen-
tative of the diversity of copy-number states that are typically observed in tumor
samples. Contrary to [32], these labels do not rely on any automatic segmentation
or calling method. Both data sets are described in Appendix A.

3.3 Features of the proposed data generation mechanism

Our proposed data generation mechanism enjoys the following features:

• simplicity: small number of required parameters, all of which have a clear
biological interpretation. In particular, for a given data set, the SNR is
governed by the fraction of tumor cells. This is illustrated by Figure 3;

• flexibility: the user may specify breakpoint positions and region labels di-
rectly, if desired. Therefore, it is also possible to generate profiles with the
same underlying “truth”, but with different SNR, as illustrated by Figure 3;
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Data set 1, 100% Data set 2, 100%

Data set 1, 70% Data set 2, 79%

Data set 1, 50% Data set 2, 50%

Figure 3: Illustration of the variety of copy-number profiles that can be
generated from the same “truth” as in Figure 1. Each block of two plots
corresponds to total copy numbers (c) and allelic ratios (b) for one particular
combination of fraction of tumor cells (in rows) and data set (in columns).
Red vertical lines represent change points. SNPs that are homozygous in
the germline are colored in black; all of of the other loci are colored in gray.

9



• reliability: copy-number regions were identified using the profiles with 100%
tumor cells. In these profiles, the region labels may be defined manually un-
ambiguously. Because the same tumor cell line is used for the dilutions series
from a given platform, the regions identified on the profiles with 100% tumor
cells can also be considered as ground truth for the profiles with less tumor
cells, where direct manual identification would have been more problematic;

• versatility: the design choice of separating “truth” generation from locus-level
data generation implies that it is relatively easy to:

– annotate a new data set. Although dilution series are not publicly
available for all possible platforms, it is also possible to annotate rep-
resentative profiles from a given data set. Moreover, annotating a new
data set is not time-expensive, as one only needs to identify a few copy-
number regions.

– extend the framework to other data types (for example array-CGH
or high-throughput exome capture or whole genome sequencing) is
straightforward: only a set of annotated data is required.

4 Evaluation pipeline

Now that we have a framework to generate data, we describe how to evaluate the
performance of segmentation methods.

4.1 Benchmark

Synthetic copy-number profiles were generated as described in Section 3:

region-level “truth” : Each profile contains n = 200, 000 loci in copy number
signal and K = 20 breakpoints. We chose to impose the constraint that on
average, 90% of segments are either normal (1,1), copy-neutral LOH (0,2),
single copy-gain (1,2) or hemizygous deletion (0,1). The remaining 10% of
regions are given less common copy-number states, such as homozygous dele-
tion, or balanced duplication.

locus-level data: for each of B = 50 such “truth” profiles, corresponding locus-
level data are then generated for 100%, 70% and 50% of tumor cells for data
set 1, and 100%. 79% and 50% of tumor cells for data set 2.

4.2 Preprocessing

We log-transformed total copy numbers to stabilize their variance and smoothed
outliers using smooth.CNA [21] as it improved segmentation results for all meth-
ods. Allelic ratios were converted to (unimodal) decrease in heterozygosity (d) as
described in Section 2.1.

4.3 Compared segmentation methods

We evaluated different types of methods belonging to the different classes described
in Section 2.2: multiple change-point, recursive, fused, and HMM-based methods.
These methods are described in Table 2, where we mention which of them are
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Time (s)
Name R package function dims n=104 n=105 Ref

Multiple change-point
DP cghseg segmeanCO 1d 0.24 2.37 [26]
CST cnaStruct segment 2d 120 fail [18]
DP jointSeg doDynamicProgramming 2d 140 fail

Recursive
CBS DNAcopy segment 1d 0.34 1.69 [31]
PSCBS PSCBS segmentByPairedPSCBS 2d 1.04 4.00 [20]
RBS jointSeg doRBS 2d 0.15 1.15 [8]

Fused
GFLars jointSeg doGFLars 1d 0.29 3.70 [11]
GFLars jointSeg doGFLars 2d 0.08 0.60 [4]

HMM
PSCN PSCN segmentation 2d 7.25 73 [5]

Table 2: List of DNA copy number segmentation methods evaluated.

able to process both signal dimensions (c and d) or only one of them. Not all
of these methods were implemented in R. We ported from Matlab GFLseg4 to R

the implementation of multi-dimensional dynamic programming and the group-
fused LARS [4] , and we implemented recursive binary segmentation [8] in R. In
practice, as recommended by [4, 8, 11], both group-fused LARS and recursive binary
segmentation are used to quickly identify a list of candidate change points, which
is then pruned using dynamic programming.

4.4 Criteria for performance evaluation

Comparison studies typically assess the performance of DNA copy number analysis
methods either in terms of their ability to accurately identify breakpoint loca-
tions [16, 12], copy-number states [28, 17], or both [32]. This paper focuses on the
former only, because we are interested in comparing segmentation methods. The
problem of evaluating strategies for calling copy-number states is left for future
work.

As our proposed data generation framework provides copy number profiles with
known “truth”, a natural way to evaluate the performance of a given method is to
cast the problem of breakpoint detection as a binary classification problem. Specif-
ically, for each generated copy number profile, we know where the true breakpoints
are located. The number of true positives TP is the number of true breakpoints for
which at least one breakpoint is detected closer than a given tolerance parameter.
The number of false positives FP is defined as FP=P-TP, where P is the number of
“positives”, that is, the total number of detected breakpoints. With this definition,

4Available at http://cbio.ensmp.fr/~jvert/svn/GFLseg/html.
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Figure 4: Definition of false positive and true positive to build performance
evaluation.

whenever a method identifies two or more breakpoints within the tolerance area of a
true breakpoint, one of these breakpoints counts as a true positive, while all others
count as false positives. This definition of true and false positives is illustrated by
Figure 4, where gray areas highlight tolerance areas around the true change-points,
whose positions are identified as t1 and t2 on the x axis. In this example, break-
points were detected in both shaded areas, therefore the number of true positives
(solid blue lines) is two. There are four false positives (dashed green lines): one in
a gray area where there is already one true positive, and three which are not within
the tolerance area of any true breakpoint.

Related works. A similar definition of true and false positives is used in [32],
although the authors do not mention how the above case of multiple breakpoints
within the tolerance area is handled. Another related approach has been proposed
in [12]. There, copy-number profiles are real, array-CGH profiles for which re-
gions containing a breakpoint and regions containing no breakpoints have been
delineated by experts. The main difference is that only a subset of the “true”
and “false” breakpoints are annotated, and that the tolerance parameter cannot
be tuned without the expert re-annotating the data set. Finally, a similar type
of evaluation has been used by [16], at the the locus level instead of the break-
point level. This locus-level based evaluation method tends to favor segmentation
methods that accurately identify large altered regions, even if they fail to detect
breakpoints delineating smaller altered regions.

4.5 ROC-based evaluation

Usually, each method provides a segmentation and its associated set of breakpoints.
This can be translated into a measure of sensitivity and specificity using the above
definition of true and false positives. However, the methods have to be compared
at the same specificity or sensitivity level in order for this comparison to be fair.
Ideally, we would like to compute a Receiver Operator Characteristic (ROC) curve
for each method. To do this one needs to explore a large set of possible segmen-
tations with varying sensitivity and specificity, obtained by exploring the set of
tuning parameters of each method. Such an exhaustive exploration is tedious and
time consuming as soon as the number of parameters is larger than 2 or 3, and may
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lead to over-optimistic results. To overcome this problem, we adopted the follow-
ing strategy: for any given method m, we recovered a segmentation in km change
points using default parameters, and we retrieved for each k ∈ {1 . . . km} the best k
subset of these km using dynamic programming. Another possible strategy would
be to sort the km change points according to a measure of confidence.

One could be worried that the range of explored sensitivity/specificity is highly
variable across methods. In practice, we found that the default parameters of
a method tend to over-segment the data and typically, most of the true change
points are found, at the cost of a more or less large number of false positives. This
is in agreement with [12].

5 Results

5.1 Quantifying problem difficulty for known change points

Segmentation methods rely on a statistic to quantify the biological difference be-
tween any two regions. Based on this statistic, they aim at locating a good set of
regions or equivalently, of change points. This location problem is combinatorial in
nature. In this section, we try to quantify this biological difference independently of
this combinatorial problem. To do this, we assume that change point positions are
given a priori and we compare the power to call a change using total copy numbers
(c) or allelic signals (d) for different types of change points. In order to perform
this power study, we need to formally define the notion of power, or signal-to-noise
ratio (SNR), between copy number regions. We chose a definition of SNR which
is consistent with our proposed data-generation mechanism, in which DNA copy
number data from a given region are sampled from a population which represents
the corresponding copy-number state (see Section 3.3). Let us consider two regions
and label by “0” and “1” the copy number state of two regions. For univariate
signals (c or d), a natural definition of SNR is the (squared) Z statistic of the
comparison between the sample means of region “0” and region “1”:

SNR(c) =
(c̄0 − c̄1)

2

σ2

c,0/n0 + σ2

c,1/n1

(1)

SNR(d) =

(

d̄0 − d̄1
)2

σ2

d,0/n
⋆
0
+ σ2

d,1/n
⋆
1

, (2)

where ni is the total number of loci in region i, c̄i and σc,i are the sample mean and
population standard deviation of total copy numbers in state i and d̄i, σd,i are the
sample mean and population standard deviation of the decrease in heterozygosity
in state i. Note that the decrease in heterozygosity is only defined for SNPs that are
heterozygous in the germline, whereas the total copy number is defined for all loci.
Therefore, d̄i is calculated based on n⋆

i heterozygous SNPs, while c̄i is calculated
based on all ni loci. For a given DNA sample, the fraction of heterozygous SNPs
among those present on the microarray is typically close to 1/3; moreover, data set
1 contains not only SNP probes but also non-polymorphic loci, with a 1:1 ratio.
As a result, the fraction n⋆

i /ni is approximately 1/6 for data set 1 and 1/3 for data
set 2. A natural extension of this definition of SNR to the two-dimensional case of
the statistic (c, d) is

SNR(c, d) =
(

c̄0 − c̄1, d̄0 − d̄1
)

(S0 + S1)
−1

(

c̄0 − c̄1, d̄0 − d̄1
)

′

, (3)
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Figure 5: Average log(SNR) and corresponding standard errors across 100
samples as a function of the percentage of tumor cells for total copy numbers
(c, solid blue lines) and allelic ratios (d, dashed red lines). Each column
corresponds to a type of copy number transition. Each row corresponds to
a given data set.

where Si is the population covariance matrix of the bivariate vector (c, d), that

is Si =

(

σ2

c,i/ni τcd,i/n
⋆
i

τcd,i/n
⋆
i σ2

d,i/n
⋆
i

)

with τcd,i the covariance between c and d in state i.

In practice, the population parameters for copy-number state i (that is, σd,i, τcd,i,
and σd,i) are calculated from the annotated data. The sample parameters (c̄i and
d̄i) are calculated from samples of ni and n⋆

i loci, respectively. Note that SNR(c)
and SNR(d) are comparable with each other since they follow (non-centered) χ2

distributions with 1 degree of freedom under the null hypothesis of no breakpoint
between state 0 and state 1.

By definition, SNR is an increasing function of the length of each flanking seg-
ment. For i ∈ {0, 1}, we chose ni = 500. n⋆

i depends on proportion of heterozygous
SNPs in the sample; as explained above, it is very close to n0/6 for data set 1 and
n0/3 for data set 2. Therefore, the length of the flanking regions essentially acts as
a constant scaling factor across all transitions and settings. Therefore, SNR only
reflects differences between the underlying copy number states. Figure 5 shows the
average (and standard error) of log(SNR) across 100 samplings for three levels of
tumor purity level, for three common types of copy number transitions for data set
1 (top panel) and data set 2 (bottom panels). Several conclusions may be drawn:

• Difficulty generally increases with normal contamination: SNR gen-
erally increases with the percentage of tumor cells. This is true for all types of
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transitions for c. For d, the only situation in which SNR is not an increasing
function of tumor purity is the case of transitions deletion and copy-neutral
LOH (Figure 5c). This is expected theoretically because both of these states
correspond to LOH in the tumor cells of the sample, implying that the true d
in these cells is 1. In presence of normal cells, d estimates in both states are
shrunk d toward 0, but in a state-specific way (see [2, Figure 4] for a detailed
explanation of this phenomenon);

• SNR levels depend on the type of copy number transition for a given
data set (that is, for a given row in Figure 5). This holds for both statistics (c
or d). Note that in the case of c, this is unexpected, as all plotted transitions
correspond to a one-copy gain.

• Possibly low power. Note that in some cases (e.g. data set 1, (a) and
(c)), the computed SNR is lower than 2. Under the null hypothesis of no
difference in mean levels, SNR follows a centered χ2(1) distribution, so that
this range of observed SNR correspond to p-values of the order of 1%, which
is not low considering the large number of data points (ni = 500).

• Neither c or d is always the best statistic. For a given type of transition
(that is, for a given column in Figure 5) and a given statistic, the trend in
SNR is comparable across data sets. However, the relative power of c with
respect to d is much higher for data set 1 than for data set 2. This is directly
related to the above-mentioned difference between ratios n⋆

i /ni of the number
of informative loci for each statistic.

In this subsection, we assessed the intrinsic difficulty of calling a change point
if the positions to test are known a priori. This study suggests that c and d
are complementary sources of information, implying that change point detection
methods should ideally take both of them into account. This study also sheds
light on the fact that low percentages of tumor cells severely impacts SNR. In the
remaining subsections, we assess the ability of segmentation methods to recover the
true location of change points.

5.2 Robustness of the evaluation to the tolerance parameter

Our first goal was to check the influence of the tolerance parameter on the meth-
ods’ performance. Our simulations were run using data generation as described
in section 4.1. We computed partial areas under the ROC curves (pAUC) with a
number of false positives between 0 and 10. Mean and 95% confidence intervals
of pAUCs across simulation runs were calculated for each method for 5 values of
the tolerance parameter (1, 2, 5, 10 and 20). For example, a tolerance of 5 means
that a breakpoint is considered correct if it lies within 5 data points of the true
breakpoints (see section 4.4 for more details). These results are reported in Figure
6 in the scenario without normal contamination. Similar results were observed for
other scenarios.

Increasing tolerance clearly increases pAUC for all methods. This is the case
even in the arguably “simple” scenario where no normal cells are present. However,
in most cases the ranking of all methods is not affected by tolerance. Based on
these results, we decided to report only pAUC for one particular value of tolerance:
5 loci on each side of the breakpoints.
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Figure 6: Method performance increase with the tolerance parameter for
both data sets. Partial AUC for FP ≤ 10 for data set 1 and 100% tumor
cells.

5.3 Joint segmentation generally increases performance

This section aims at comparing the quality of segmentations obtained using total
copy numbers only (c), allelic ratios only (d), and both of them (c, d) and how the
quality of the segmentation is affected by the purity of the sample. As explained in
section 5.1, it is typically expected that localization of the breakpoints is easier using
both dimensions of the signal. To do so, we compared 6 scenarios corresponding
to two data sets and three levels of purity (high, intermediate and low). Table
3 reports the pAUC of the best (c), (d) and (c, d) methods for data set 1 and 2,
respectively. Detailed results for all methods are presented in Table 4.

For both data sets it is quite clear that performance in terms of pAUC deterio-
rates when the level of contamination increases. Interestingly, (c) methods perform
better than (d) methods for both high and intermediate level of purity. For exam-
ple in the case of data set 2 the minimum difference in pAUC between (c) and (d)
is 26% for high level of purity and 7% for intermediate level of purity (Table 4).
For a low level of purity, the results depend on the data set. For data set 1, (c)
outperforms (d) but overall the pAUC are low. For data set 2, (d) outperforms (c)
with a minimum pAUC difference of 7%. In that case the pAUC are quite good.
These observations are in agreement with the results of Section 5.1. This difference
between data set 1 and 2 can be explained by the fact that the proportion of in-
formative probes for (d) (heterozygous SNPs) is twice less for data set 1 than for
data set 2.

Interestingly, (c, d) methods do not always outperform (c)-only and (d)-only
methods. However, as can be seen in Table 3, there are always several (c, d) ap-
proaches among top performers.
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5.4 Choosing the appropriate method for a given context

In practice, when analyzing SNP array data, biostatisticians and bioinformaticians
will choose one particular method to perform data segmentation. This choice is
often ad hoc and based on personal experience. Our purpose here is not to make
a comparison of all existing segmentation methods, but to compare relevant can-
didates in different classes of approaches. In the settings that we have considered
it seems that RBS (c, d) performs very well. However, the point of our framework
is not to select once and for all a best segmentation tool, but rather to justify the
use of one method for one particular type of scenario (cancer type, cellularity, data
set). In particular, we make no claim about the performance of RBS for other data
sets.

Data set 1 Data set 2
Statistic 100% 70% 50% 100% 79% 50%

(c, d) 0.93 0.63 0.22 0.97 0.95 0.75
(c) 0.94 0.64 0.18 0.96 0.89 0.49
(d) 0.22 0.15 0.07 0.64 0.77 0.63

Table 3: Best pAUC across methods for each combination of statistic, data
set and percentage of tumor cells.

Data set 1 Data set 2
Statistic Method 100% 70% 50% 100% 79% 50%

(c, d)
PSCBS 0.89 0.60 0.16 0.97 0.88 0.51
GFLars 0.46 0.35 0.13 0.90 0.87 0.61
RBS 0.93 0.63 0.22 0.97 0.95 0.75

(c)
CBS 0.92 0.59 0.16 0.91 0.84 0.45
GFLars 0.94 0.64 0.18 0.96 0.89 0.49
RBS 0.91 0.62 0.17 0.90 0.84 0.48
cghseg 0.93 0.61 0.18 0.95 0.88 0.49

(d)
CBS 0.22 0.14 0.09 0.61 0.70 0.56
GFLars 0.22 0.15 0.08 0.64 0.77 0.62
RBS 0.22 0.14 0.07 0.63 0.76 0.62
cghseg 0.22 0.15 0.08 0.63 0.77 0.63

Table 4: pAUC by for each combination of method, statistic, data set and
percentage of tumor cells.

5.5 Heterogeneity of breakpoint detection difficulty

An important question when using a biostatistical or bioinformatic tool is to assess
its ability to recover events and to know which events they are likely to find and
which of them are harder to detect. In Table 3 it can be seen that the pAUC is
never at 100%. This is not necessarily surprising as the signal is quite noisy and in
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Figure 7: log(SNR) for missed (left) and caught (right) breakpoints for four
types of breakpoints on data set 2 with 50% normal cell contamination.

fact considering noise level the pAUC is quite high. Figure 7 demonstrates that (as
could be expected) missed change-points are those for which we have a low signal
to noise ratio (the right panel is darker than the left panel). However, the signal to
noise ratio substantially depends on the type of change-point. Typically, in Figure
7 the column corresponding to the (0,2)-(1,2) transition is much darker than that
of the (1,1)-(1,2) transition. This is confirmed by Table 5, which indicates that
for a high level of normal contamination in data set 1, the proportion of missed
(1,1)-(1,2) change-points is greater than 1/2.

6 Summary and discussion

We have developed a framework to assess the performance of various DNA copy
number segmentation methods. A critical aspect of this framework is that it gener-
ates realistic copy-number profiles by resampling real SNP array data. This allows
to study a large number of scenarios without relying on a particular statistical
model. It is our opinion that this framework is simple to use as it depends on
few parameters, all of which have a straightforward biological interpretation. An R

package is available and we believe that our proposed data generation scheme can
be used readily as well as applied to other data sets and technologies. We illustrate
the usage of this framework on two data sets.

We were able to identify which technological and biological parameters drive
the performance of segmentation methods. First, it appears that the percentage of
tumor cells in the sample plays a critical role: for a percentage lower than 70%, it
is probably hopeless to recover the whole set of breakpoints with a high precision.
We emphasize the relevance of the considered range of cellularity for applications:
we expect that tumor cell lines should be well represented by the 100% setting,
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Statistic Method (0,1)-(0,2) (1,1)-(1,2) (0,1)-(1,1) (0,2)-(1,2)

(c, d)
RBS 0.40 0.47 0.32 0.31
GFLars 0.49 0.65 0.41 0.38
PSCBS 0.55 0.63 0.51 0.47

(c)

RBS 0.57 0.69 0.52 0.63
GFLars 0.54 0.70 0.45 0.58
CBS 0.59 0.71 0.52 0.62
cghseg 0.66 0.79 0.55 0.69

(d)

RBS 0.54 0.58 0.46 0.33
GFLars 0.56 0.54 0.42 0.29
CBS 0.63 0.58 0.55 0.49
cghseg 0.55 0.55 0.47 0.29

Table 5: Proportion of missed breakpoints by method, statistic and type of
copy-number transition (data set 2).

while the 50% is not unusual for clinical practice. Second, it seems that different
microarray technologies might lead to different performances. Specifically, the ratio
between the number of informative allelic probes to the total number of probes is
a crucial aspect, particularly for a high level of normal contamination. Finally,
not all methods achieve similar performance across the scenarios that we have
considered. Interestingly, we show that methods that take advantage of both signal
dimensions are generally but not always better than those using only one of them.
This variability between methods may be attributed to some extent to the biological
and technological contexts, in the sense that some methods might be more adapted
to certain scenarios.

Our framework provides a way to critically evaluate the performance of seg-
mentation methods, and therefore to rationally select one or several of them for
a particular data set. Such a quantitative assessment is also useful for interpre-
tation. For example, we showed that even in favorable scenarios, performances
are not perfect. Furthermore, perhaps unexpectedly, we showed that copy number
transitions involving the gain or loss of a single DNA copy are not equally easy to
recover, meaning that the proportion of different types of copy number transitions
recovered by a particular segmentation method may not be directly interpretable.

7 Key Points

We propose a framework for generating realistic copy number profiles, and a frame-
work to assess the performance of any segmentation method on such data. As our
data generation framework resamples real data, it allows the comparison of different
methods across a large number of different realistic scenarios. Our work highlights
that the performance of segmentation methods is mainly driven by biological pa-
rameters such as the proportion of tumor cells in the sample. This demonstrates
the importance of a correct and reproducible assessment of the performance prior
to any biological interpretation of the data. The R package jointSeg implements
this framework and allows anyone to reproduce our comparison study, either on the
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data sets provided or on other data sets.
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Appendix

A SNP array data sets

A.1 Data set 1

We have worked with a lung cancer data [25], for which raw data is accessible at
NCBI GEO database [6], accession GSE29172. DNA from patient-matched lung
cancer and blood cell lines NCI-H1395 and NCI-BL1395 were mixed to simulate
tumor tissue with 30, 50, 70, 100% cancer cells. DNA was analyzed on Affymetrix
SNP6.0 microarray. Data were normalized using ASCRMAv2 [3] followed by Tu-
morBoost [2]. For the sake of reproducibility, the R scripts that were written to
normalize this data set are distributed in the jointSeg package, together with the
normalized data itself.

A.2 Data set 2

We have also worked with a breast cancer data [28], for which raw data is accessible
at NCBI GEO database [6], accession GSE11976. DNA from patient-match breast
cancer cell line (HCC1395) and its match normal HCC1395BL were mixed to simulate
tumor tissue with 14, 34, 50, 79, 100% cancer cells. DNA was analyzed on Illu-
mina HumanCNV370-Duov1 microarrays. We obtained the BAF-normalized and
summarized data as calculated by the Illumina BeadStudio software [15, 14, 22]

23

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29172
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11976


A.3 Description of annotated copy-number regions

The list below describes the different copy number states available for data gener-
ation. They are labeled as a pair (c1, c2), where c1 corresponds to the minor copy
number (the smallest of the two parental copy numbers), and c2 corresponds to the
major copy number (the largest of the two) [19].

(1,1): normal (one copy from each parent)

(0,1): hemizygous deletion (loss of one parental copy)

(0,0): homozygous deletion (loss of both parental copies)

(0,2): copy-neutral LOH (loss of one parental copy and gain of the other)

(0,3): loss of one parental copy and gain of two copies from the other parent)

(1,2): single copy gain

(1,3): unbalanced two-copy gain (gain of two copies from the same parent)

(2,2): balanced two-copy gain (gain of one copy from each parent)

(2,3): three-copy gain (gain of one copy from each parent, and two copies from
the other parent)

CN state (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (0,0)
Data set 1 22615 24135 25405 21539 19048 20903 27924 31098 0
Data set 2 2492 5484 6545 3196 2746 0 3044 0 838

Table 6: Size of annotated copy-number regions for each of the 2 data sets.

B Reproducing the figures in this paper

library(jointSeg)

path <- system.file("figures", package="jointSeg")

filenames <- list.files(path, pattern="*.R$")

for (filename in filenames) {

print(filename)

pathname <- file.path(path, filename)

source(pathname, local=TRUE)

}

C Session information

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

24



attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] PSCBS_0.39.1 DNAcopy_1.36.0 PSCN_1.0.1 MASS_7.3-29

[5] changepoint_1.1 zoo_1.7-10 cghseg_1.0.1 jointSeg_0.4.3

[9] acnr_0.1.4 R.utils_1.27.5 R.oo_1.15.8 R.methodsS3_1.5.2

[13] matrixStats_0.8.12

loaded via a namespace (and not attached):

[1] grid_3.0.2 lattice_0.20-24 R.cache_0.9.0

25


	Background
	DNA copy number segmentation
	DNA copy number data
	Typology of copy number segmentation methods

	Generating data with known ``truth''
	Review of existing approaches
	Proposed data generation mechanism
	Generation of ``truth''
	Generation of locus-level data

	Features of the proposed data generation mechanism

	Evaluation pipeline
	Benchmark
	Preprocessing
	Compared segmentation methods
	Criteria for performance evaluation
	ROC-based evaluation

	Results
	Quantifying problem difficulty for known change points
	Robustness of the evaluation to the tolerance parameter
	Joint segmentation generally increases performance
	Choosing the appropriate method for a given context
	Heterogeneity of breakpoint detection difficulty

	Summary and discussion
	Key Points
	Appendix
	SNP array data sets
	Data set 1
	Data set 2
	Description of annotated copy-number regions

	Reproducing the figures in this paper
	Session information

