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Liver carcinogenesis represents a paradigm to study the role of the microenvironment in cancer given that most tumors develop in a background of liver fibrosis/cirrhosis Tumor cell microenvironment remodeling is associated with tumor progression HSC play an important role in liver carcinogenesis as key modulators of fibrosis and tumor cell microenvironment

Targeting HSC and the crosstalk between tumor and stromal cells may represent a promising therapeutic strategy

Summary

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common types of primary tumors in the liver. Although major advances have been made in understanding the cellular and molecular mechanisms underlying liver carcinogenesis, HCC and ICC are still deadly cancers worldwide waiting for innovative therapeutic options. Growing evidences from the literature highlight the critical role of the tumor cell microenvironment in the pathogenesis of cancer diseases. Thus, targeting the microenvironment, particularly the crosstalk between tumor cells and stromal cells, has emerged as a promising therapeutic strategy. This strategy would be particularly relevant for liver cancers which frequently develop in a setting of chronic inflammation and microenvironment remodeling associated with hepatic fibrosis and cirrhosis, such processes in which hepatic stellate cells (HSC) greatly contribute. This review brings a genomic point of view on the alterations of the cellular microenvironment in liver cancers, particularly the stromal tissue within tumor nodules, emphasizing the importance of the crosstalk between tumor cells and stromal cells, notably activated HSC, in tumor onset and progression. Furthermore, potential therapeutic modalities of targeting the stroma and HSC are discussed.

Introduction

Growing evidences from genetic, genomic and cell-biology indicate that tumorigenesis is determined not only by malignant cells but also by their microenvironment [START_REF] Hanahan | Accessories to the crime: functions of cells recruited to the tumor microenvironment[END_REF]. The microenvironment is a complex and dynamic system involving extracellular matrix (ECM) components, soluble factors, and stromal cells, whose distribution and composition vary in space and time [START_REF] Hanahan | Accessories to the crime: functions of cells recruited to the tumor microenvironment[END_REF][START_REF] Bhowmick | Stromal fibroblasts in cancer initiation and progression[END_REF][START_REF] Junttila | Influence of tumour micro-environment heterogeneity on therapeutic response[END_REF]. Under physiological condition, the microenvironment serves as an important barrier to epithelial cell transformation, notably by maintaining cell polarity and by controlling cell proliferation [START_REF] Hanahan | Accessories to the crime: functions of cells recruited to the tumor microenvironment[END_REF][START_REF] Bhowmick | Stromal fibroblasts in cancer initiation and progression[END_REF][START_REF] Junttila | Influence of tumour micro-environment heterogeneity on therapeutic response[END_REF]. In response to emerging epithelial cancerous lesions, the microenvironment experiences important changes (e.g. recruitment/activation of stromal cells, ECM remodeling) which contribute to cancer initiation and progression and influence the therapeutic response [START_REF] Hanahan | Accessories to the crime: functions of cells recruited to the tumor microenvironment[END_REF][START_REF] Bhowmick | Stromal fibroblasts in cancer initiation and progression[END_REF][START_REF] Junttila | Influence of tumour micro-environment heterogeneity on therapeutic response[END_REF]. Thus, targeting the tumor microenvironment is now viewed as a promising strategy to treat cancer in a variety of organs including liver [START_REF] Junttila | Influence of tumour micro-environment heterogeneity on therapeutic response[END_REF][START_REF] Hernandez-Gea | Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[END_REF]. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two major types of primary tumors in the liver. Alteration of the microenvironment is a hallmark of liver carcinogenesis given that more than 80% of tumors arise in a setting of chronic inflammation associated with liver fibrosis and/or cirrhosis, such conditions which constitute real precancerous stages [START_REF] Hernandez-Gea | Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[END_REF].

As key drivers of liver fibrosis and ECM remodeling [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF], activated hepatic stellate cells (HSC) might represent attractive targets in the design of innovative therapeutic strategies against the stroma in liver carcinogenesis.

The tumor microenvironment in liver carcinogenesis

Tumor microenvironment includes cellular and non-cellular components. In the liver, HSC, fibroblasts, myofibroblasts as well as immune and endothelial cells represent the main cell types of the hepatocyte microenvironment [START_REF] Hernandez-Gea | Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[END_REF]. In addition to ECM macromolecules (e.g. collagens, proteoglycans), non-cellular components include diverse soluble factors such as cytokines and growth factors that can be stored into the ECM and orchestrate the interplays between tumor cells and the microenvironment [START_REF] Hanahan | Accessories to the crime: functions of cells recruited to the tumor microenvironment[END_REF][START_REF] Bhowmick | Stromal fibroblasts in cancer initiation and progression[END_REF][START_REF] Junttila | Influence of tumour micro-environment heterogeneity on therapeutic response[END_REF][START_REF] Hernandez-Gea | Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[END_REF].

Combination of cell and molecular biology, biochemistry, histopathology and gene to gene approaches greatly contributed to identify pathways deregulated in the tumor stroma and their impact on tumor cells [START_REF] Hanahan | Accessories to the crime: functions of cells recruited to the tumor microenvironment[END_REF]. Recently, genomic approaches revisited the field allowing an exhaustive and integrated view of these deregulations at a pangenomic scale [START_REF] Place | The microenvironment in breast cancer progression: biology and implications for treatment[END_REF]. Even more, by combining laser microdissection and gene expression profiling, stromal gene signatures linked to clinical outcomes were established in cancer [START_REF] Place | The microenvironment in breast cancer progression: biology and implications for treatment[END_REF]. This approach was proven to be fruitful for deciphering the molecular mechanisms underlying the alterations of the tumor microenvironment, with the ultimate goal of designing new therapeutic approaches, and identifying novel diagnostic and prognostic biomarkers [START_REF] Place | The microenvironment in breast cancer progression: biology and implications for treatment[END_REF]. In liver, few studies addressed this issue at a genomic scale. In HCC, gene expression profiling highlighted the importance of Th1 and Th2 cytokines in the surrounding non-tumor tissue of HCC associated with metastasis [START_REF] Budhu | Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment[END_REF]. A metastasisinclined microenvironment signature was characterized by an increase in Th2 cytokines and a decrease in Th1 cytokines [START_REF] Budhu | Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment[END_REF]. This study suggested that the dynamics of the immune microenvironment in the non-tumor tissue adjacent to the tumor nodules may result in the establishment of a suitable niche to promote tumor cell dissemination.

Genomic studies also provided molecular insights into the pathogenesis of ICC which is usually characterized by a dense desmoplastic stroma [START_REF] Andersen | Genetic profiling of intrahepatic cholangiocarcinoma[END_REF]. From these studies clinically relevant ICC subgroups were highlighted and new therapeutic opportunities were proposed, based on BRAF/KRAS mutations and activation of oncogenic pathways (e.g. receptor tyrosine kinases) [START_REF] Andersen | Genetic profiling of intrahepatic cholangiocarcinoma[END_REF]. Recently, we identified specific alterations of the stroma in ICC through an unsupervised analysis of microdissected human tumors [START_REF] Sulpice | Molecular profiling of stroma identifies Osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma[END_REF]. Thus, a signature which included genes related to cell cycle, ECM and transforming growth factor beta (TGFβ) pathways was shown to significantly discriminate the tumor stroma from fibrous tissue isolated in the adjacent non tumor liver. A clear correlation between genomic changes in the stroma and the aggressiveness of ICC was also demonstrated.

Notably, high stromal expressions of osteopontin and TGFβ were identified as poor prognosis factors [START_REF] Sulpice | Molecular profiling of stroma identifies Osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma[END_REF]. Besides promising biomarkers, osteopontin and TGFβ represent potential therapeutic targets given their proven role in driving the oncogenic process, from early stages of tumor development to late invasive stages. Indeed, gain and loss of function studies demonstrated osteopontin to be crucial for tumor cell growth and metastasis, notably by mechanisms involving apoptosis escape, angiogenesis, and ECM degradation [START_REF] Cao | Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers[END_REF]. Activation of the TGFβ signaling was found in HCC [START_REF] Coulouarn | Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer[END_REF], ICC [START_REF] Sulpice | Molecular profiling of stroma identifies Osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma[END_REF] and combined HCC-ICC [START_REF] Coulouarn | Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways[END_REF]. Importantly, studies using engineered mice demonstrated that the modulation of the TGFβ pathway in stromal fibroblasts influence the oncogenic potential of the adjacent epithelial cells [START_REF] Bhowmick | Stromal fibroblasts in cancer initiation and progression[END_REF]. These results imply that genomic alterations in stromal cells may result in tumor initiation and progression.

HSC in tumor onset and progression

The activation of HSC and subsequent phenotypic changes towards a myofibroblast-like phenotype is a key event in liver fibrosis [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF]. Gene expression studies showed that activated HSC markedly express genes involved in fibrogenesis and fibrolysis, inflammation and apoptosis [START_REF] De Minicis | Gene expression profiles during hepatic stellate cell activation in culture and in vivo[END_REF]. HSC activation is controlled by numerous factors and signaling pathways (e.g. TGFβ, platelet-derived growth factors (PDGF), hedgehog, notch, microRNAs) [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF]. Recently, the hedgehog signaling was shown to control the fate of HSC, thus opening new opportunities for a therapeutic targeting of HSC [START_REF] Chen | Hedgehog controls hepatic stellate cell fate by regulating metabolism[END_REF]. The nuclear factor-kappa B (NF-κB) pathway has been also reported to contribute to HSC activation and survival, and more largely to be a central factor in the progression of hepatic diseases, linking liver injury, inflammation, fibrosis and HCC (reviewed in [START_REF] Luedde | NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma[END_REF]).

Besides a major role in fibrogenesis, HSC exhibit biological functions that influence the onset and the progression of HCC [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF]. Thus, HSC can induce phenotypic changes in cancer cells, notably through the production of growth factors and cytokines in favor of tumor cell proliferation (e.g. hepatocyte growth factor, interleukin-6 (IL-6)) [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF][START_REF] Kang | Hepatic stellate cells: partners in crime for liver metastases?[END_REF].

Migration and proliferation of HCC cells are also modulated by ECM components produced by activated HSC, including basement membrane components, e.g. laminin-5 [START_REF] Santamato | Hepatic stellate cells stimulate HCC cell migration via laminin-5 production[END_REF]. Interestingly, HSC were reported as key players in liver tumorigenesis associated with the gut-liver axis [START_REF] Dapito | Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[END_REF]. Thus, the gut microbiome was shown to induce inflammatory and fibrogenic responses, and HSC activation leading to the production of epiregulin, a mitogenic factor for hepatocytes [START_REF] Dapito | Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4[END_REF]. Cellular and molecular approaches demonstrated that a bidirectional crosstalk exists between HSC-derived myofibroblasts and tumor hepatocytes [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF]. Early studies showed that the exposition of HSC to conditioned media derived from HCC tumor cells resulted in HSC activation, migration and expression of pro-angiogenic factors such as vascular endothelial growth factor alpha (VEGFA) [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF].

Recently, we reported that the crosstalk between hepatoma cells and activated HSC also increased the expression of proinflammatory cytokines and chemokines (e.g. IL-6, IL-8), and modified the phenotype of hepatoma cells toward motile cells, together with the generation of a permissive pro-angiogenic microenvironment, characterized by the overexpression of VEGFA and matrix metallopeptidase 9 (MMP9) in HSC [START_REF] Coulouarn | Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma[END_REF].

Interestingly, integrative genomics demonstrated that a gene signature of this crosstalk was predictive of a poor prognosis and metastasis propensity in human HCC [START_REF] Coulouarn | Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma[END_REF]. In addition to pro-inflammatory cytokines, TGFβ was reported to be central in driving the pro-tumorigenic effects of activated HSC on the progression of transformed hepatocytes [START_REF] Mikula | Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion[END_REF]. Interplay between HSC and cancer cells has been also reported in ICC, notably through the SDF1/CXCR4 axis which activation was shown to influence both cancer cell survival and metastasis [START_REF] Mikula | Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion[END_REF]. In addition to early stages of tumor development, HSC are involved in late tumor stages, notably by producing factors that directly participate in the formation of a pro-metastatic microenvironment [START_REF] Kang | Hepatic stellate cells: partners in crime for liver metastases?[END_REF]. Such factors in favor of the metastatic growth of tumor cells include inducers of the epithelial to mesenchymal cell transition (EMT), modulators of ECM synthesis and degradation, pro-angiogenic and immune-suppression factors (e.g. TGFβ, ECM proteins, MMP, VEGFA) [START_REF] Kang | Hepatic stellate cells: partners in crime for liver metastases?[END_REF]. HSC can produce immune-regulatory cytokines (e.g. MCP1, RANTES, CCL21) to promote chemotaxis, adherence and activation of inflammatory cells [START_REF] Friedman | Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[END_REF][START_REF] Mallat | Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis[END_REF]. Paracrine interactions of HSC with endothelial cells have been reported, as well as the secretion of VEGFA and angiopoietins by HSC favoring a pro-angiogenic microenvironment [START_REF] Mallat | Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis[END_REF].

Therapeutic targeting of tumor microenvironment and HSC

Targeting the microenvironment is emerging as a promising strategy given the wellrecognized role of the stroma in carcinogenesis [START_REF] Junttila | Influence of tumour micro-environment heterogeneity on therapeutic response[END_REF]. Examples of drugs targeting the microenvironment include anti-angiogenic and anti-proliferative agents such as bevacizumab, an inhibitor of VEGFA, cetuximab, an inhibitor of EGFR, and sorafenib, an inhibitor of multiple protein kinase receptors (e.g. EGFR, VEGFR, PDGFR) [START_REF] Hernandez-Gea | Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma[END_REF].

Interestingly, sorafenib, which is currently the only drug recommended for advanced HCC, was shown to reduce the proliferation of transformed hepatocytes but also to attenuate liver fibrosis, notably by reducing HSC proliferation and ECM accumulation [START_REF] Wang | New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis[END_REF]. This observation opens an opportunity to target not only the tumor cells but also their microenvironment. One can expect that a better understanding of the cellular and molecular mechanisms underlying the process of HSC activation/proliferation, and ECM remodeling associated with tumor onset and progression may open opportunities to design new lines of therapeutic approaches. Therapeutic targeting of HSC has been investigated with interest given the key role HSC in fibrosis and HCC [START_REF] Mallat | Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis[END_REF]. Induction of cellular apoptosis or senescence and reversion of activated HSC toward a quiescent state have been proposed as mechanisms to clear activated HSC [START_REF] Mallat | Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis[END_REF]. As example, selective induction of HSC apoptosis may be achieved by nanoparticules or gene transfer systems designed to inhibit NF-B transcription factor which controls HSC activation and proliferation [START_REF] Luedde | NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma[END_REF]. Boosting specific immune cell populations may represent another innovative strategy to control HSC. Recently, hepatic T-cells have been shown to promote the apoptosis of HSC through a mechanisms involving Fasligand [START_REF] Hammerich | Chemokine receptor CCR6-dependent accumulation of γδ T-cells in injured liver restricts hepatic inflammation and fibrosis[END_REF]. NK cells have been also shown to selectively kill early or senescent activated HSC and to produce anti-fibrotic cytokines such as IFN [START_REF] Mallat | Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis[END_REF]. Among immune effectors which exhibit anti-fibrotic potentials (e.g. IFN , IL-22, IL-10), IL22 was reported as a potent inducer of HSC senescence [START_REF] Mallat | Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis[END_REF].

Targeting the crosstalk between tumors cells and their microenvironment may also represent a promising therapeutic strategy. Exploring this possibility, we recently applied an integrative functional genomics approach to identify molecules that could interfere with the crosstalk between hepatocytes and HSC [START_REF] Coulouarn | Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma[END_REF]. Thus, by using a connectivity map algorithm we were able to connect a gene signature of the hepatocyte-HSC crosstalk with trichostatin A, an inhibitor of histone deacetylases. Accordingly, the effects of the crosstalk on tumor cell migration and endothelial cell angiogenesis were reversed in presence of trichostatin A, suggesting that epigenetic modulators may be clinically relevant [START_REF] Coulouarn | Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma[END_REF]. Soluble factors may be also targeted to modulate the communication between the tumor cells and the microenvironment. In that regard, TGF may represent a promising target given that this cytokine is involved in multiple stages of liver carcinogenesis. TGF exhibits both oncogenic and tumor suppressive properties depending on tumor stage [START_REF] Coulouarn | Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer[END_REF][START_REF] Giannelli | Inhibiting TGF-β signaling in hepatocellular carcinoma[END_REF]. As mentioned above, at preneoplastic stages TGF acts as a potent inducer of HSC activation and fibrogenesis but also exhibits growth-inhibitory and apoptosis-inducing effects, and in advanced stages TGF promotes HCC/ICC tumor cell invasion, notably as an inducer of EMT [START_REF] Coulouarn | Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer[END_REF][START_REF] Giannelli | Inhibiting TGF-β signaling in hepatocellular carcinoma[END_REF].

Thus, therapeutic targeting of the TGF pathway should be appropriately designed to inhibit its oncogenic properties while retaining its cytostatic effects. Targeting the TGF signaling by using small molecule inhibitors (e.g. LY2109761) or neutralizing antibodies has shown promising results in experimental HCC mouse models, including inhibition of cell invasion and abrogation of neo-angiogenesis [START_REF] Giannelli | Inhibiting TGF-β signaling in hepatocellular carcinoma[END_REF]. Inhibition of the TGF signaling was also reported to be effective in blocking tumor-stroma crosstalk and tumor progression in HCC [START_REF] Giannelli | Inhibiting TGF-β signaling in hepatocellular carcinoma[END_REF]. Thus, appropriately interfering with the crosstalk between cancer cells and their microenvironment may open new therapeutic opportunities in liver cancers (Figure 1).

Conclusive remark

Advances in understanding the molecular mechanisms involved in the crosstalk between tumor cells and their microenvironment at the pangenomic scale open the path to design new lines of therapeutic approach and associated biomarkers. Recent findings highlight that future adapted therapeutics would target both the tumor cells and the microenvironment by favorably modulating specific regulators in cellular pathways, and widespread mechanisms related to the neoplastic stroma evolution. 
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 11 Figure 1. Therapeutic potential of targeting HSC and the stroma in liver cancer.
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