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Medical encoding support systems for  diagnoses and  medical  procedures  are  an  emerging

technology that  begins to  play a  key role  in billing,  reimbursement, and  health policies deci-

sions. A  significant problem to  exploit these systems  is how  to measure the  appropriateness

of  any automatically generated  list of codes, in  terms  of fitness for use,  i.e.  their quality. Until

now, only  information retrieval performance measurements have  been applied to  estimate

the accuracy of codes lists  as  quality indicator. Such measurements  do not give the value

of  codes  lists  for practical medical encoding, and  cannot  be used to globally  compare  the

quality of multiple  codes lists.  This paper defines and validates  a new  encoding information

quality measure that  addresses the problem of measuring  medical  codes lists quality. It  is

based on  a usability  study of  how expert coders  and physicians apply  computer-assisted

medical encoding. The proposed measure, named ADN, evaluates codes Accuracy, Disper-

sion and  Noise, and is adapted  to the variable length  and  content of generated codes  lists,

coping with limitations of  previous  measures. According to  the  ADN  measure,  the  informa-

tion quality of  a codes  list is  fully represented  by a  single point, within a suitably constrained

feature space. Using one scheme, our  approach  is  reliable to measure and compare the  infor-

mation quality  of hundreds of codes  lists, showing their  practical  value for medical  encoding.

Its pertinence is demonstrated by simulation and application to real data corresponding to

502 inpatient  stays  in four clinic departments. Results  are  compared to the  consensus  of

three expert  coders  who also coded this anonymized database  of  discharge summaries,

and to  five  information retrieval measures. Information quality assessment applying  the

ADN measure showed  the degree of  encoding-support system  variability from one  clinic

department to another, providing global evaluation of quality measurement trends.

1.  Introduction

The  fundamental  goal  of  medical  encoding is to  identify
diagnosis  related  groups  of patients and determine the
corresponding healthcare expenses,  billing, and reimburse-

∗ Corresponding  author. Tel.: +33 2290013 39.
E-mail address: John.Puentes@telecom-bretagne.eu (J. Puentes).

ment.  Medical  encoding  is  used  in  addition  to  record  diseases
morbidity  and  causes of mortality. This encoded informa-
tion  has  become increasingly important, given its  impact
on  medical activities evaluation at  various  levels of health



organizations. Moreover, encoding relevance affects patient
management, along with epidemiologic, safety, research, and
health policies decisions  [1]. Medical codes  are assigned to
define diagnoses  and procedures  of each care  episode that
occurred during an inpatient stay.  Codes  represent  [2,3]:  main
and secondary diagnoses,  complications, comorbidities, pri-
mary and secondary procedures. Currently, most of  medical
encoding is  carried  out  in  two distinct manual manners:

• By expert coders who, without having any particular ancil-
lary knowledge of the specific patient history, produce  lists
of codes that  are  considered to be exhaustive.

• By physicians  who code  essential aspects of  the care
episodes having some knowledge of  the specific patient his-
tory, but  usually generate a  subset of  the codes list produced
by expert  coders, because  of practical restrictions (mainly
focus on  current diseases, limited  awareness of encoding
guidelines, and  short  available time).

In both  cases medical encoding is expensive,  taking much
more time  for  the experts than for  the  physicians. The main
reason is that, in addition to the patient record human  coders
have to  examine hundreds of candidate codes  in encoding
references, to  define the codes  list that represents a given
inpatient stay. Nevertheless, the pertinence of resulting codes
sets strongly depends  on the variable  coders’ expertise, which
often produces inacceptable results like under or over  encod-
ing [1,4].

An emerging alternative is computer-assisted medical
encoding technology. It  analyses available patient  informa-
tion to automatically  generate  a list  of  most pertinent medical
codes. Thereafter,  coders select the  appropriate codes corre-
sponding to a specific  inpatient  stay.  In more than a  decade,
several approaches  have  been developed to produce the  cor-
responding encoding support  lists,  using  varied  types  of  input
information. These studies considered, among others: extrac-
tion of semantic labels from documents [5,6];  matching  of
structured encoding forms  and parsed clinical information
[7]; correlation with precedent encoding results [8]; use  of
encoding rules [9]; codes  linked to  specific keywords  [10]; a
combination of  an encoding classification with  ontologies  and
natural language  [11].

A significant problem with  this  kind  of  technology is  how
to measure the  proposed  codes lists appropriateness in terms
of fitness for  use, i.e. quality, according  to: the distribution
of correct and incorrect codes along  the  list,  the  amount  of
expected correct  codes, the observation  windows, and the
variable list  length. That information  quality measurement
should assert the practical value of any codes list, in  a  suitable
manner adapted  to the  different encoding practices of hos-
pitals and  countries [12–15].  Automatically generated codes
lists represent nevertheless information  of variable quality,
depending on  the quality  of input data. Such quality  is com-
plex to determinate particularly on the heterogeneous data
sets of  any  hospital information system  (HIS). Otherwise, the
pertinence of codes lists produced by an encoding support
system is  conventionally estimated by  comparing suggested
codes, with a  reference encoding done by  an expert coder.
Nevertheless, this approach does not provide any clues  about
the lists’  value for medical encoding. Information retrieval

performance measurements  have been also used to estimate
accuracy as quality indicator. These  measurements  do  not  give
either the value of  codes  lists in the sense of  their  adequacy
to encoding practices, and cannot be  used to  globally compare
the quality  of multiple codes  lists. This  paper thus addresses
the problem of how to  measure the  appropriateness of an
automatically generated codes list, in  terms  of fitness for  use.
We define and  validate  a  new  information quality measure
that copes with  limitations of previously applied  measures.
It is  based on how  expert coders and  physicians make use of
computer-assisted medical encoding. The proposed measure,
named ADN,  evaluates codes  Accuracy, Dispersion, and Noise
in the whole  generated list, independently of its content and
length. According to the ADN  measure,  the  information  qual-
ity of  a codes  list is fully represented by  a single  point within a
normalized triangular space,  partitioned by  iso-quality lines.
Moreover, our approach is  reliable to  examine and  compare,
using a  unique scheme, the  information quality  of hundreds
of codes lists, showing  their  practical value for encoding.

1.1.  Background

In general, data quality analyses have been  focused  on  well-
known issues (wrong,  missing or unusable  data) produced by
both humans and systems, at  any stage of the  data  existence
cycle. These  issues accumulate generating  varied complex
functional problems [16,17].  Even if  multiple approaches have
been proposed  to systematically identify, characterize, and
correct inconsistencies produced by  deficient data [18–22],
information quality assessment remains a central and  unex-
plored challenge [23–26]. Furthermore, encoding information
quality measurement is particularly  necessary when a regular
audit of  the associated  HIS applications  cannot be  done, due
to functional constraints.

Examined documents to produce  medical codes vary  from
the whole patient  record to discharge summaries.  Included
data and  information are expected to be  accurate, i.e. truly
represent the element each value was intended for. As  a  con-
sequence, only accuracy has been commonly considered  as
analogous to quality in  the  medical domain. For more  than  30
years precision (Pr)  and recall (Rc) have been the  main applied
information retrieval measures [27,28],  along with comple-
mentary related  evaluations [29,30].  For  any retrieval system,
its overall performance is comparatively determined using a
set of precision-recall curves  [31]. Rank measures of relevant
documents can  be calculated considering  average weighed
precision, by means of R-Measure and Q-measure [32,33].
Additionally, to handle  incomplete information, binary rele-
vance judgment  defines globally a  preference relation with
respect to relevant documents [34]. Until now,  only  measure-
ments used for  information  retrieval  performance  evaluation
have been  applied to  estimate medical data and informa-
tion quality. Based  on  some  of  these approaches, accuracy of
computer-based patient  records  data  was  estimated applying
two complementary  measures [35]:  Cr  –  correctness (propor-
tion of  correct data) and  Cm –  completeness (proportion of
rightly recorded data),  defined as:

Cr = tp

tp  +  fp
=  Pr  = PPV (1)



Cm  = tp

tp + fn
= Rc =  Ss  (2)

where  tp  represents the correct recorded data  (true  posi-
tives),  fp  the  wrongly recorded data (false  positives)  and  fn
the  missing information  (false negatives).  These two  measure-
ments  are  equivalent, respectively, to Pr and Rc, or the positive
predicted  value (PPV) and sensitivity (Ss)  criteria  applied in
information  retrieval performance evaluation.  Alternatively,
the  so-called F-measure (Fm)  calculates the  harmonic mean
of  precision  and recall:

Fm  = 2(Pr · Rc)
Pr  +  Rc

(3)

Otherwise,  specific information quality measures for  med-
ical  encoding lists have  not been proposed in the  literature.
For  that reason  existing studies  aiming at  measuring the
information  quality  of medical codes basically  rely  on the
information  retrieval concept of data accuracy.  For  instance,
precision–recall was  applied  with  limited results, to esti-
mate  the  pertinence  of  encoding  support compared to human
coders  [23].  Encoding quality of obstetric discharge data was
evaluated  applying correctness and completeness,  to com-
pare  coded hospital complications with recoding of  the same
elements  done  by  experts [36]. Individual and combined cor-
rectness  and  completeness indicators  were used to assess
human  coders  output with and without encoding support,
applying  the F-measure [37].  Manual encoding accuracy  of
causes-of-death was estimated  taking into account,  besides
accuracy,  the amount  of required  codes that  were not  orig-
inally  included [38]. Morbidity encoding  quality  in general
practice  was  assessed  combining  correctness and complete-
ness  evaluation to  validate the construction  of computerized
medical  records [39]. Other  attempts have been made  to
estimate  medical encoding information quality,  intended to
extend  the accuracy notion,  by: integrating prevalence,  sen-
sitivity,  positive  predictive value, and kappa statistic [40];
measuring  the accuracy  of automatically extracted diag-
noses  codes  using a semantic distance [41];  determining the
credibility  of precision-recall [42];  and using  the percentage
of  encoding errors combined  to the assessment  of codes
sensitivity-specificity to  detect encoding problems [14,43].
However,  accuracy does  not  measure codes lists  suitability
for  practical encoding.  Moreover, none of these studies dealt
with  information quality of  encoding support lists in terms of
usability  appropriateness.

1.2. Limitations  to measure medical  encoding  quality

Information  quality measurements based  on precision-recall
encompass  two  considerable limitations, when applied to
similar  lists  of  computer-assisted medical  encoding  systems:

•  Unless  obtained precision-recall curves are clearly sepa-
rated  by diverging trends and have the same  length, it  is
not  possible to assert which one  has better encoding qual-
ity.  For  instance,  when  curves  intersect each other in cases
1–2  and  3–4  of  Fig. 1.

•  Similarly,  when lists have  the same amount of  proper codes
but  ordered differently, it  is unclear which  one fits  better
human  coders’ activity, like in cases 3–4  and  5–6  of  Fig.  1.

As  a result, these limitations  impede to  determine quanti-
tatively,  or visually on  the 2D  curves of the  diagram, which  of
the  codes  lists in each pair is more  appropriate under practi-
cal  encoding conditions. Hence,  usability pertinence remains
unachievable  from  that  perspective. Furthermore, this prob-
lem  becomes extremely complex when hundreds of codes lists
are  compared to evaluate  an encoding support  system, con-
firming  the  impossibility  to  determine  the  usability pertinence
of  each  list.

This  paper  has been divided  in  four other sections. Sec-
tion  2 describes the encoding support system  and data, the
elements  of  the  usability  study  on  which is  based this work,
and  defines the  proposed ADN encoding  information quality
model.  Section 3 first demonstrates  the theoretical features  of
the  ADN quality measure  using simulated  codes lists. It  then
looks  at how the  dominant approaches of  the literature com-
pare  to  the  ADN  measure,  and  presents  the  validation using
simulated  and real  data. Results  are discussed in Section 4.
Section  5 outlines the contribution  and  perspectives of our
work.

2.  Materials and methods

Medical  codes lists used  in this  work  were automatically
generated  by an encoding support system developed and
deployed  at the university hospital  CHRU Brest, France  (Sec-
tion  2.1). Since encoding information quality measurement
greatly  depends on how coders  make use of encoding  sup-
port  lists, a  usability study was first conducted (Section 2.2).
A  group of 6 coders  (3 specialized expert  coders and 3  expe-
rienced  physicians) was  requested to use during 5 months
the  previously indicated encoding support system, and then
explain  sequentially how they made use of it. The most sig-
nificant  findings of  the system  usability study  serve to  define
the  ADN  quality measure model (Section 2.3).

2.1. Encoding support system  and  data

To  generate medical codes lists  the  encoding support sys-
tem  processes the outputs  of six  HIS applications. Depending
on  these  information sources, three information processing
tools  (Fig. 2) are  used  to generate either: semantic labels,
estimation  of  pertinent codes, or probabilities. These  results
are  aggregated considering their relative significance,  to  gen-
erate  a  unique  list of ranked codes for a  specific  inpatient
stay.  This  encoding  support  list  is  then  examined by  the
physician  to select appropriate  codes. The three  informa-
tion  processing  tools  which  process  documents stored in
the  HIS to  produce medical codes are based  on: the link
between  laboratory results and potential diagnoses  by  means
of  linguistic labels  [44]; the  evaluation of  previously assigned
codes  to  identify  frequency  patterns [45]; and  the  study
of  probabilistic relations between diagnoses codes  and pro-
cedural  parts of discharge  summaries  [46]. Results fusion
integrates  the  partial heterogeneous information  extracted



Fig. 1 – Compared evolution examples of precision-recall for  different pairs of comparable codes  lists,  depending on their
length.

by each method,  generating one list of codes per inpatient
stay [47]. Because of the heterogeneous nature  and  qual-
ity of  exploited  information, the  encoding support output
is affected in  various manners: inappropriate code  ranking,
missing codes, dispersion  of correct  codes among incorrect
ones, and noise induced  by  long sequences of incorrect codes.
Certainly, expert coders and physicians may  be able  to rule
out autonomously most  of input information  heterogeneity,
applying learned  heuristics and/or having access to  additional
patient documents.  Encoding-support systems cannot solve
those problems in  an equivalent  manner, making necessary
to measure the  information quality of each generated codes
list.

Codes lists  were  generated using  information collected
from the  HIS during  1 year.  Information processed  by the
encoding system  consisted  of laboratory results, discharge
summaries, administrative documents,  and  encoding  refer-
ence (International Statistical Classification of  Diseases and

Related Health  Problems, compiled by  the World Health
Organization [48]). Generated  codes lists  correspond to 502
anonymized discharge summaries of different inpatient stays,
at four clinical departments (traumatology – 198  lists,  obstet-
rics –  141 lists, urology  – 105  lists, and cardiology  – 58  lists).
Generated coding  information represents  varying: length of
stay (2–144 days),  quantity  of  diagnoses per inpatient stay
(1–21), and types  of diagnosis  codes (a total  of 416  codes).
Ground truth  to verify  the pertinence of encoding support
quality was  provided by consensus of  the  three expert coders
who coded manually  the same information  processed by the
encoding system. Whereas the encoding system generated
automatically the corresponding  lists of  plausible codes in
few seconds,  several weeks of  analysis were  necessary for the
expert coders.  Otherwise, simulated sets  of  codes lists were
used to evaluate  the  representation space boundaries, as well
as the influence  of variable size dispersion  and noise windows
of the quality measure  model.

Fig. 2 –  Main  components  of  the used medical  encoding  support  system, and example of  a  generated ranked codes list  of  an
inpatient stay  at  the  endocrinology clinical department. Symbols  ‘*’ indicate the evaluated degree  of  pertinence, and codes
in bold were chosen  by  the  physician.



Fig.  3 –  Structure  of a  codes list  based on the  example of  Fig. 2,  on which  the physician expected  to identify  10 proper codes
and  8  were  found (selected codes appear in  bold).

2.2. Usability  study of the encoding  support  system

Expert  coders and  physicians first  review the  available inpa-
tient  stay  documents.  Next,  they  study  the  corresponding
codes  list generated by  the  encoding support system,  know-
ing  from the documentation review how many diagnoses and
procedures  should  be  coded.  Since the proposed codes list is
formed  by correct  and incorrect codes, a strategy  is applied  to
exploit  it.  The  whole  list  is  implicitly  divided in  three observa-
tion  windows  of  varied  lengths.  Required correct codes should
ideally  be  found in the first window, but  if  some  or  all  expected
correct  codes are not in that window, the  second  window is
inspected.  The third window  is partially or  fully examined
when  correct codes are  obviously still  missing after the  sec-
ond  window inspection. These  three observation windows  are
called  respectively, compactness, dispersion,  and noise  win-
dows  in  the ADN quality measure model.  Details  of the coders’
usability  strategy are  given in  Fig. 3  and Table  1, indicating how
coders’  explanations were modeled in  the  ADN  measure.

Conforming  to  the  usability  study,  observation  windows
and  their  contents  follow  an  implicit  hierarchical structure.
The  first window (CW) is the  most  convenient, and is not
affected  by  either  dispersion or  noise.  Conversely, the sec-
ond  observation window  (DW)  is affected  by dispersion  and
determines  the length of  the third window (NW), which  begins
after  the last proper  code found. Finally,  when dispersion  and
noise  are  evaluated  respectively in the second and third win-
dows,  resulting values add up  to give  a negative component
that  penalizes quality  after the  CW. These  elements suggest
that  the global  encoding information quality based on  usabil-
ity  (IQL) has  two distinct complementary components: quality
in  the  compactness window  (IQ1),  and  in a combination of  the
dispersion  and noise windows (IQ2).

2.3. Proposed  ADN quality model  for  medical  encoding
information

The  information  quality measure of a  complete codes list
was  formalized  interpreting the previous usability study, as

expressed  in  the  second  column of  Table 1  (ADN  quality mea-
sure  modeling).

2.3.1. Quality component of the  compactness  window
The  number of correct codes  (PCW)  found  in the CW  window
defines  the first component of  the encoding information  qual-
ity  measurement (IQ1). This accuracy  value (ACW), is  defined
as  the ratio  of proper  codes to the total amount  of necessary
correct  codes  (PT):

IQ1 = ACW = PCW

PT
(4)

Neither  expert  coders nor physicians consider  the  exist-
ence  of incorrect codes  in this first  window disadvantageous
for  the  exploitation of encoding  support, because its  full
inspection  is  obvious.

2.3.2. Quality components of  the  dispersion  and  noise
windows
In  an  equivalent manner, appropriate codes  identified in  the
DW  (PDW) define the  ADW accuracy value, with  respect to the
total  amount  of necessary correct codes (PT),  as:

ADW = PDW

PT
(5)

Contrarily  to  IQ1, the second component of  the  encoding
information  quality  measurement (IQ2) is  altered by disper-
sion  and  noise  according to usability, and  can  be  defined by:

IQ2 = (ADW − D)︸ ︷︷  ︸
DW

−  N︸︷︷︸
NW

(6)

where  ADW is  the  accuracy value of the DW observation  win-
dow,  D is  the dispersion in  that window, and  N  the noise  in the
NW  window.

In  order to represent  the  impact on information quality
of  dispersion and noise,  two separate  models were defined.
Although  on a practical  basis  the DW is  examined before the
NW,  the next two  sections describe  first the noise and then  the



Table 1 –  Usability  framework  (abbreviations are defined  in  Fig.  3).

Usability description  ADN quality measure  modeling

The total amount of expected proper  codes  to  be  identified  is
variable from one stay to another

PT is  a  variable quantity

Depending on medical procedures and  diagnoses  the  physician
evaluates how many codes are  required  to  code  a  given
inpatient stay

The  model  parameter PT is defined by the coder for  the  current
inpatient  stay

Any list generated by the encoding  support  system  is  expected to
contain a number of proposed codes,  greater  or  equal  to  the
total of necessary proper codes  to  code  a  given  inpatient  stay

Expected  length of a generated list LT ≥  PT

A codes list is examined from left  to  right  (or  top  to  bottom)  to
look for correct codes, initially expecting  to  find  all  of  them in
the first places, and if that is  not  the  case,  in  the  rest  of  the  list

The  complete  list is structured in three search windows, or
sub-lists,  characterized by quality factors: first, compactness
window  (CW),  followed by dispersion window (DW), and  noise
window  (NW)

The list of codes begins with the  compactness  window  in  which it
is straightforward for the physician  to  look  for  the  all  the
necessary codes; this window is  considered  as  the  most
convenient

In  the  favorable  case on which LT ≥  PT: the length of the CW is
LCW = PT

The presence of only part of  the  necessary  correct  codes  in the
compactness window, is not  considered  by  physicians  as  being
penalized by either dispersion or  noise

Dispersion  and  noise in the CW are equal to zero; quality in  CW  is
a  positive  value

If all expected proper codes are  not  found  in  the  first  part  of  the
list, remaining proper  codes can be  found  in the rest  of it, except
when the list length is inferior or  equal  to  the  amount  of
necessary proper codes

If  LT ≤ PT then:
the  DW  and  NW  cannot be defined,
else:
proper  codes  remaining to be found will be searched in  the  DW

The amount of proper codes expected  to  be  found  in  the
dispersion window, is at maximum  equal  to  the  difference
between the total amount of  necessary  proper  codes  and  the
total amount of proper codes found  in  the  compactness  window

The  number  of  expected correct codes PDW in  the  DW, depends on
the  amount  of  proper codes PCW found in the CW, so:
PDW ≤  PT–PCW; and raw quality in DW is  a  positive  value

The dispersion window length  is  defined  by  the  last  correct code
found after the end of the compactness  window

The  length  LDW of the  DW  is  variable;  dispersion  has a negative
effect  on  quality

Codes remaining in the list after  the  dispersion  window  are
incorrect and considered as  noise,  because  the  physician will
look for additional correct codes  without  success,  using  more
time unnecessarily

The  length  LNW of  the  NW  is  variable;  noise has a negative effect
on  quality

dispersion models,  because the second one is mathematically
based on the  first.

2.3.2.1.  Noise model.  The  subtraction  term N in Eq. (6)  acts  as  a
penalization variable to information quality. Noise is produced
by one or more  incorrect codes positioned after the  last  cor-
rect code  found at the end  of  the DW. It  represents the user’s
unsuccessful search for omitted  correct codes,  from the end
of the DW  to  the end of  the  list. Several constraints and  spec-
ification elements,  resulting from the  usability analysis, were
taken into account  to  build  the noise model:

i. N must be an increasing function  of  the  length LNW of the
NW.

ii. Quality reduction in  the NW  is proportional to  the distance
to the beginning of  the  window.

iii. N must be bounded  for  any  length of the NW.
iv. N must increase proportionally to  the amount of  remaining

codes expected to  be  found.

To satisfy  condition (ii), the  individual effect  of  an incor-
rect code  (with index k  in  NW)  is modeled  as the value  f(xk)
of an increasing  function f. The variable xk =  ˛k,  ̨ ∈  R

+, mod-
els the code position on the support interval  [0,u],  u  ∈ R

+,  of  f,
associated to  the  whole  NW.  f(x) can be defined as:

f (x) =  aebx (7)

To fulfill requirement (i),  the noise penalization is  defined
as the sum of  contributions assigned by f  to  each  incorrect
code in  the NW.  Determining parameters b  and u  was thus
carried out by dealing with requirement (iii) through normal-
ization conditions:

f (u) =  1,  IN =
∫ u

0

aebxdx =  1  (8)

Given the  analytical constraints applied  to  f, both param-
eters a and b are  defined  within  [0,1].  The  resulting  shape  of
function f  makes individual additions to noise  relatively small
at the beginning of the NW, and very significant for incorrect
codes located afar  in  the  NW.

Summing individual contributions is equivalent  to perform
a numerical approximation of  IN in Eq. (8),  ensuring  con-
vergence to  1 when  LNW increases. This  sum of  individual
contributions is finally weighted by  a value  � ∈ R,  namely the
noise factor, representing the  remaining proportion of correct
codes to be found  after  the  DW. The noise factor value was  set
to �  = 1−ACW−ADW, satisfying the  proportionality relationship
of condition (iv).  N  is  determined as:

N =  �  ·
LNW∑
k=1

f  (xk)  · �N (9)



where  �N = xk+1−xk =  u/LNW is the width of rectangles in  the
numerical  integration formula.

2.3.2.2. Dispersion  model.  Contrary to the  NW, the  DW may
contain  a  set of correct  codes  that corresponds to all  or  only a
part  of  the  remaining  proper codes to be found after the end of
the  first  observation window. However, if  the DW also contains
incorrect  codes, dispersion of proper codes reduces the  qual-
ity  calculated in Eq.  (5). For that  reason, the term  D in Eq.  (6)
penalizes  directly the second information quality  component
depending  on proper codes scattering in  the  DW.  Dispersion
of  proper codes  in DW was  estimated, applying a weighting
function  g, defined on  a support interval [0,v],  v ∈  R

+, under
equivalent  mathematical constraints assumed to  characterize
noise.  In particular, codes contribution to  quality must dimin-
ish  as the search  point  moves away from the  beginning of the
DW.  g(x)  is  represented in the model by:

g(x)  = 1 − cedx (10)

Parameter  c  was  also chosen within [0,1]  and  the  value  d
deduced  from analytical constraints on  g.

The  total information quality of  the DW,  defined  by term
(ADW – D) in  Eq. (6), should decrease  to  0 when dispersion
increases  significantly, and according to the size of DW. Given
that  the sum of individual codes  contribution  in  D is con-
strained  inside [0,1], a dispersion factor  ı ∈ R, equal  to  the  ratio
ADW was  applied.  As  a  result,  when  the  number  of  incorrect
codes  in  the DW increases,  the sum of individual contributions
tends  to 1  and D  converges  to ı  = ADW,  as inferred  from the
usability  study. Hence, D is calculated as:

D  =  ı ·
LDW∑
k=1

�k ·  {g(xk)�D} (11)

where  the binary coefficient  �k = 1 if  the  code at position  k
is  incorrect, �k = 0  otherwise (to account  only the presence  of
incorrect  codes),  and  �D =  xk+1–xk = v/LDW can be different than
�N in Eq. (9).

2.3.3. Representation  of the ADN information  quality
measurement  model
Elements  IQ1 and IQ2 are two distinct but complementary
components  of  the quality measurement,  suggesting  that a
2D  point should depict their respective  contribution  at  a rep-
resentation  level. According to  Eq. (4),  information quality IQ1

varies  in  the  interval  [0,1].  Likewise,  Eq.  (6)  specifies  informa-
tion  quality IQ2 is  within [−1,1], due  to the combined influence
of  noise  and  dispersion.  Usability indicates that it is possible
to  have a global quality IQL /=  0 even  when  one of the quality
components, either  IQ1 or  IQ2,  is  zero. For that  reason, the com-
bination  of  IQ1 and IQ2 cannot be multiplicative, and clearly
appears  to be  additive. Therefore, the global  quality model
(IQL)  can be built adding IQ1 and IQ2 as  follows:

IQL = IQ1 +  IQ2 = ACW +  (ADW − D) −  N  (12)

Fig.  4  –  Representation space of the ADN information
quality  measure model.

IQL = PCW

PT
+
(

PDW

PT
− ı ·

LDW∑
k=1

�k ·  {g(xk) · �D}
)

−
LNW∑
k=1

f (xk)  ·  �N

(13)

Usability  implies  that  the  user  should  be  able  to  simul-
taneously  quantify the global quality and  identify  each
component  IQ1 and IQ2.  Both  conditions  are  satisfied  when
drawing  quality points associated  to values IQL in the  2D rep-
resentation  space  associated  to  the valid intervals of each
quality  component.  For  ease of visualization, it was decided
to  assign the  second component  (IQ2 in [−1,1])  to abscises,
and  the  first  one (IQ1 in  [0,1])  to  ordinates.  Due  to  constraints
resulting  from models of  quality  components, the representa-
tion  space is limited by  three numerical boundaries that define
a  triangular  space (Fig. 4):

•  If  y =  IQ1 =  1, then  IQ2 = 0  with D  + N =  0, hence  x =  0, defining
point  Q1 =  (0, 1).

•  If  y =  IQ1 =  0 and IQ2 =  1,  then  ADW =  1 and  D +  N =  0,  defining
point  Q2 =  (1, 0).

•  If  y = IQ1 =  0 and IQ2 =  −1, then  ADW = 0,  D =  0  and N  = −1,
defining  point  Q3 =  (−1, 0).

The  best information quality is found  at Q1, when all
expected  correct  codes are identified in the  CW.  This value is
equal  to  producing the same  list  as the expert coder.  Equiva-
lent  results are to  find all  expected  codes distributed between
the  CW  and  the  beginning  of  the  DW,  or  only  at  the  beginning
of  the DW (point  Q2). Nevertheless, if  for  instance all expected
correct  codes are found  in the generated  list, with variable
combinations  of  dispersion and  noise,  different values of  IQL

inferior  to  1 result. All  these  values are properly represented
in  the  defined measurement space. Furthermore, the  worst
quality  measure is  the  point Q3 when the  list only contains
incorrect  codes.



Fig. 5  – Quality measurement diagram: (a)  quality values  of 10,000  simulated codes list  and examples of iso-quality lines;  (b)
pre-defined reference  iso-quality lines.

3.  Results

The ADN  information quality measure  was  tested using simu-
lated and  real data sets in  order to verify  the theoretical model
and show its  usefulness,  respectively.

3.1.  Information  quality  of  simulated  medical codes
lists

Correct and incorrect codes were  selected  randomly  from
a reference  database, making parameters change inde-
pendently. Except  for  the  next sub-section, simulations
correspond to average values of  100 generated lists, represent-
ing each particular  test  context.

3.1.1.  Validation  of  the  quality  representation  spatial
boundaries
Quality measurements of 10,000  simulated codes  lists were
visualized on the  same diagram.  Results clearly show  that the
ADN measures representation fitted  the inferred triangular
space, defined  by Q1,  Q2,  and Q3 in Fig. 4.  Obtained information
quality values covered the range  of  possible measurements.
When represented proportionally  to  gray  levels,  these  values
made emerge iso-quality lines  (slightly  irregular  in  Fig.  5(a)  due
to simulation discontinuities). These iso-quality lines  appear
oriented in  parallel to the  line that connects  the maximum
quality points  (Q1 and Q2).

The isosceles triangle  is  defined on the right by the
maximum iso-quality line,  which only represents accuracy
components. The  line  of  maximum noise  effect  defines  the  left
edge of the  triangle.  This  boundary line connects the points of
maximum (Q1)  and minimum (Q3) information quality. Among
countless possibilities, five examples of quality  zones were
defined in Fig. 5(b), delimited by  iso-quality lines  at  0.8,  0.5,
0.2, and 0.  From right to left,  these five arbitrarily defined zones
represent decreasing information  quality,  with  gradually  aug-
mented impact  of dispersion and noise. Below  iso-quality line
0, dispersion and  noise deteriorate completely  the accuracy of
the DW.

3.1.2.  Variable  size  of  the  dispersion  and noise windows
The CW  size was  defined by  parameter PT, and  the size  of the
DW by  the  position of the last correct  code identified in the
list. The simulations were carried  out  supposing that out of  12
expected correct codes, PCW =  1  was  found  in  the  CW  to  empha-
size the effect of dispersion, and  PDW = 10 in the DW, without
noise (Fig.  6(a)). LDW size  was modified gradually augmenting
dispersion, by  adding  up  to  100 incorrect codes.

Dispersion simulation started  with  value  0  and converged
to the dispersion factor ı =  ADW, corresponding to the pro-
portion of  proper codes  found in the  DW. As  a consequence,
quality in  the DW  tends to  0, confirming the expected theo-
retical behavior. Augmenting dispersion by decreasing  correct
codes in the DW, keeping the window size constant, has  the
same effect on  quality.

The impact  of noise was  evaluated changing the length of
the NW  from 0 to 100  incorrect codes (Fig.  6(b)). To under-
line the  representation of noise, the  quantities of  correct
codes found in  the  CW and the  DW  were  1 in both  cases,
among 12 expected codes, without dispersion. Values  evolu-
tion was again consistent with the theoretical assumptions,
since noise  measurement started from  0 and  converged to
� =  1−ACW−ADW.  Quality measurement points were  displaced
to the  left  of the  diagram describing a horizontal  trajectory,
following the  increase  of  improper codes in the NW.

3.2.  Compared  information  quality  of simulated lists

To illustrate simple  cases of  comparative evaluation, the ADN
information quality measure was  applied  to  the simulated
lists of the  six  examples illustrated in Fig. 1, for  which  con-
ventional precision-recall based approaches  do not respond
to fitness for use questions. Results in Fig. 7  show  that:  case  2
has better  information quality than case 1  although both qual-
ity values are in the same zone; case  4  has  lower  quality  than
case 3  as  a consequence of  dispersion and noise;  case 5 has
lower quality than  case  6  for  the same reason.

Additionally, two sets of ten  simulated  codes  lists,  over
separate quality zones, were also evaluated comparatively
with respect to  a  precision-recall analysis. The ADN quality



Fig.  6  –  Effect  of variable size windows on:  (a)  dispersion and (b) noise (points are  identified  by the variable length of DW  or
NW  respectively).

Fig.  7  –  Compared information quality evaluation  by pairs
using  the  ADN model, of the six lists represented  as  gray
and  dashed  black lines using precision-recall in  Fig.  1:
cases  1  and  2  (points); cases 3 and 4 (triangles);  cases  5 and
6  (squares).

measure  of the  20 codes lists  (Fig. 8(a)) provides a clear
individual  usability evaluation, even when  quality values
are  in  neighbor  zones. Conversely, the two  precision-recall
diagrams  (Fig.  8(b and c))  cannot  be clearly analyzed giving
the  superposition of lines, and  the lack of  other evaluation cri-
teria.  Moreover, the variable  behavior of each  curve impedes
to  compare curves sets when recall  is less than  0.5. Using  the
ADN  measure within a  quality zone appears more suitable  to
represent  and  compare sets of quality values.

3.3. Information quality of  real  medical  encoding
support lists

Since  coded inpatient stays were  randomly selected, lengths
of  stay, quantity of  diagnoses per  stay, and  types of diag-
noses  codes  were  not uniformly distributed. Nevertheless,
this  set of codes lists  was  considered by expert coders as
representative of  each clinic department activity. Addition-
ally,  experts’ information quality  assessment corresponds  to
the  best possible, given  that it is  equivalent to find  all the
expected  codes in the first  observation window (CW).  In  order
to  determine  the  degree  of  ranking  coherence  between  the
ADN  measure  and  five  commonly  used  information retrieval
measures,  the  Spearman’s rank coherence coefficient [49]
was  calculated between  order indexes  of codes  lists by  pairs,

Fig.  8  –  Compared information quality representation of twenty different codes  lists,  using  the ADN model (a), and applying
precision-recall (b and c).



Table 2 –  Compared  Spearman’s rank coherence coefficients  between list orders obtained with  ADN  and  five information
retrieval measures,  corresponding to four clinic departments.

Traumatology Obstetrics  Urology Cardiology

Mean precision 0.55  0.59  0.53  0.7
Mean recall 0.55  0.64  0.76  0.69
Final precision 0.67  0.61  0.45  0.62
Final recall 0.61  0.72  0.73  0.71
Mean Fm 0.72 0.71 0.61 0.73

evaluated by  ADN  measure, and by five commonly used  infor-
mation retrieval measures. This  coefficient does  not depend
on the  assumption of  a given  underlying statistical distribu-
tion. In  our case, the  Spearman’s rank coherence coefficient
determines to which  extent there  are pairwise agreements,
between a  ranked set of  ADN  measures and  a ranked set
of information retrieval measure values. These  information
retrieval measures are the:  mean precision and recall  along
Pr–Rc curves,  precision and recall  at the end  of  Pr–Rc curves
(final precision and final  recall), and mean Fm-measure val-
ues (Table 2). The codes lists for this test were automatically
generated by  the  coding  support system (Section 2.1).

Results in  Table 2 are  categorized according to  three seg-
ments determined  from the values  distribution in the interval
[0,1], being the  most  important in our case: [0.45, 0.55), [0.55,
0.65) and [0.65, 0.75]. These values show a  variable pos-
itive compared  ranking coherence, but  the  ADN measure
is not perfectly  monotonically related to the  information
retrieval measures, in  agreement with  its expected behav-
ior. The rows of Table 2  show  that  ADN  is  globally somehow
more compatible with recall than with precision. This  can
be explained  considering that  the measure has  been built
to be especially  severe  with wrong codes (dispersion  and
noise), in  accordance with  the usability study. Additionally,
it is  likely to  have a more classical behavior  with respect to
missing codes. The ADN  measure is  nevertheless relatively
consistent with the F-measure, indicating  its  capability  to
express quality as a  compromise between  the correctness
and the completeness of a  codes list. It is  also  interest-
ing to note  that the  coherence  result varies depending on
the clinic department.  These results show that the ADN
measure represents  information quality in an alternative con-
sistent way. However,  the  particular differences with respect
to other  measures cannot be  meaningfully explained for
each clinic  department by  the compared Spearman’s coeffi-
cient.

To illustrate the  usefulness  of our approach, lists of  plau-
sible codes  automatically generated by the  coding support
system described in Section 2.1  were  processed applying
the ADN  measure. Values  were visualized using the ADN
triangular quality diagram, and  compared  to  an  equivalent
information retrieval diagram  based on  classical measures.
Fig. 9  depicts the results  for the four  clinic departments.
Each dot represents  the information quality  of one com-
plete codes  list evaluated with  the ADN measure (Fig. 9(a,c,e
and g)) and  the  corresponding  final  precision-recall value
(Fig. 9(b,d,f and  h)).  Level curves of  points’  concentration
on the plane were  also  defined to identify the main infor-
mation quality trends  in a  simple manner. This  enables
distinguishing regions with  isolated points (light-gray/white)

from regions  with clusters of superposed  points (dark-
gray).

Results indicate that  the ADN  information quality of codes
lists generated  by the  encoding support  system is  spread to
some extent,  depending on  the clinic department. Information
quality points for  a significant amount  of  the generated codes
lists appear on the left side of  the  diagram,  due  to  the  presence
of dispersion and  noise.  Nevertheless, depending on the clinic
department, dots  concentrated on different  quality zones, pro-
viding a global evaluation  of  quality measurement trends by
clinic department. This  illustrates  the  fact  that  inputs  to  the
encoding system were comparatively heterogeneous  for  each
clinic department.

In the case of  the  traumatology department (Fig. 9(a)), a
considerable amount of information quality measurements
appeared below the  iso-quality line 0.2, being  the main cluster
below 0.  In  agreement with usability, such  quality values are
not exploitable  for encoding  support, given their low  levels. For
the obstetrics department, most points  are located between
the 0 and  0.5  iso-quality  lines,  and a set of points  above  0.5
(Fig. 9(c)), with reduced dispersion and  noise  if  compared to
traumatology and urology.  Information quality of  the urol-
ogy department codes  lists (Fig.  9(e)), concentrated between
the 0.2 and 0.5  iso-quality lines,  having  a  secondary clus-
ter between  0 and  0.2, but  with more  codes in the CW than
for other clinic  departments. Information quality of the lists
produced for  the cardiology department (Fig.  9(g)), also con-
centrated in  a  main  cluster  between the 0.2 and 0.5 iso-quality
lines, showing although  the most reduced  impact of disper-
sion and noise compared to  other  clinic  departments. These
results show how the notions of codes dispersion and  noise
are appropriately represented by  the ADN quality measure.
From a  global  perspective, lists of  the  obstetrics department
can be considered  as of intermediate quality compared to
urology and  cardiology. Lists from the cardiology and urology
departments appear over  the  same iso-quality  zones,  but  with
different characteristics. Results for the urology department
could be considered as  more reliable than for the  cardiology
department, mainly because  of the  superior proportions of
correct codes in  the  CW.  Nevertheless, evaluating overall effi-
ciency, results for  the  cardiology department could be  faster
to process by  human coders given  the reduced dispersion and
noise.

Final precision-recall representations confirm  all  previous
indications of  information retrieval  performance measures
limitations to evaluate coding lists  quality based  on  usabil-
ity. Considering the  four representations (Fig. 9(b,d,f  and h)), it
is unclear how  to identify coherent trends in  the  sense of fit-
ness for  use, except an  appreciation of the  points sets position
to the  left  of the  right of the  diagram. Measure points in these



Fig.  9 – Information quality points of  codes  lists generated by the  encoding-support system  and  corresponding density-level
curves,  for  the traumatology (a,b) obstetrics  (c,d)  urology (e,f) and cardiology (g,h)  clinic  departments of the same hospital,
calculated  with the ADN (a,c,e,g) and the  final  precision-recall (b,d,f,h) measures.



figures are  highly  concentrated without  a  structure of quality
components dimensions and zones. Additionally, codes list
with equal amounts of correct and incorrect codes  but  dis-
tributed differently, also appear as superposed or very  close
points in  the diagrams. These results provide complementary
indices about  the suitability of the  ADN measure  to represent
information quality  of medical coding  support lists, based on
their usability.

4.  Discussion

Conformingly to the  usability study,  the ADN  information
quality measure was  designed  to match, as  close as possi-
ble, the  stated  facts and understanding. The ADN measure
components are determined in three observation windows of
size adapted  to analyzed  data, instead  of one fix  length win-
dow applied by  information retrieval measures. Otherwise,  the
ADN quality measure properly  represents two components of
information quality  evaluation, as a  unique  point in a con-
strained numerical  space,  rather than a precision-recall curve.
A significant finding of this  quality model is the definition of
iso-quality lines,  which represent  all the points  having the
same IQL value,  with different  quality components contrib-
utions.

This representation is  quite revealing  in  several  ways.  First,
it depicts clearly the  fact  that  a given quality value can  result
from countless combinations of the quality  factors.  Second,
unlike 2D accuracy diagrams, the  quality variation between
two lists  with the same  correct codes, but  organized differ-
ently, can  be detected in  a  simple manner  along the iso-quality
lines. Third, these  iso-quality lines define flexible information
quality zones.  The interpretation  of the  diagram iso-quality
lines is  of  particular interest. When  two  different points of  the
same iso-quality  line were proposed, the  one with more proper
codes in the  CW is preferred  by  the users.  That  point is placed
at a  higher position on  the iso-quality line,  although global
quality values are  equal. The  diagram could be further detailed
depending on how  encoding information quality evaluation is
carried out, for  instance  narrowing and incrementing quality
zones, and/or subdividing the existing zones. It is  also note-
worthy to observe that the information quality of  hundreds of
codes lists can  be  easily  compared using only one diagram.

Analysis of  the  clusters formed by  measured information
quality points  enables to  perform an assessment  of encod-
ing support  system efficiency.  An implication of  these results
is the possible conception of complementary representations,
according to  other  usability factors. Even if for this study  the
four information quality terms of Eq.  (12) were  analyzed, some
others could be  integrated. For example: an  estimation of the
maximum number of examined codes, dispersion and noise in
the first  observation window,  the added  dispersion of  the first
two observation windows, or  noise-dispersion  ratios. As  a  con-
sequence, additional usability dependent quality  dimensions
can be examined accordingly.

Functions used  in the models characterize inferred
constraints associated to the independent progressions of
dispersion and noise. Therefore the  impact  of  each  cor-
rect or  incorrect code to  information quality is  considered
within an  observation window. Both  dispersion and noise

are interpreted as  different degrees of  uncertainty that have
variable impact on the encoding support usefulness of a  list.
Dispersion and noise  produce cumulative information quality
diminution, interpreted as  factual for  dispersion and condi-
tional for noise. In  the  case  of  noise, the true value will depend
on the  length  of the  list that the  expert coder or  physician
decides to  inspect. At  a practical level,  a human  coder will
certainly experience the hesitation  and delay produced by
dispersion, but  not  necessarily the estimated noise setback.
When the  coder thinks that it is not worth to look for more
correct codes, the inspection can be halted at  any  point  in
the list.  Estimated noise represents  nevertheless how severe
could be  information quality loss  if the coder  examines the
third observation window completely. Not knowing how  far
each coder will  go  on practical conditions, an estimated  value
could be added to the  model,  proportionally to the  amount  of
missing correct  codes. For instance it should  be  relatively weak
when nearly all  codes are identified in  the CW, and  stronger
when most of  the  correct  codes were not found in the DW.

Simulation tests demonstrated that the  ADN  information
quality model behaved  coherently within the  bounds of the
triangular representation diagram, according to the  theoret-
ical definition. Conversely, results of  the  validation with real
data suggest that  the  noise  penalization model may be  severe,
given that it  displaced to the  left  of the  triangular  diagram
a considerable quantity of points.  Some modifications could
be envisaged, like the application of  weighting  functions  to
adjust the  proposed representation of  dispersion and noise,
with adapted bounding  conditions.

5.  Conclusion

Medical encoding support is an emerging technology  based on
complementarities of  information sources, for which adapted
information quality  measures are required, independently
of the sources heterogeneous nature. This work  set  out  to
determine a usability-based information quality measure of
medical encoding support  lists.  A  study of encoding sup-
port systems usability was analyzed  to define,  characterize,
and validate  a relevant encoding information quality model.
Usability relayed on  the coder strategy  to  find the  expected
amount of  correct codes  in the  generated list,  using three
observation windows. Four  usability factors compose the
defined information quality measure: proportions  of correct
codes found  in the  first and  second observation windows,
dispersion of  correct codes  in the  second window,  and noise
resulting from incorrect codes in the third  window.  The  infor-
mation quality measure  was  consistently bounded to  enable
comparing codes lists of different lengths, containing variable
quantities and  distributions  of correct and incorrect codes.
This model enhances  the  understanding of medical encoding
information quality  measurement and  considerably improves
analysis based on 2D precision-recall curves.  The  most  signif-
icant findings  to emerge  from this  study are  the information
quality components and  the original  triangular space rep-
resentation of the information quality measure.  All  these
elements enable to  analyze medical encoding support sys-
tems reliability, for instance considering the  clusters  of  quality
points associated to different quality zones. On  the other



hand,  this work  only  examined a  type of functions  for disper-
sion  and  noise. Several other  functions could also  be  examined
for  that purpose, even  making use of  a  different type of  func-
tion  for each  factor. Further research will  be undertaken to
investigate  automated comparative  indexes to  dynamically
adapt  costs of  penalizations, and  include advanced clustering
approaches  to  identify encoding performance patterns. More-
over,  the  fitness for use is constrained to  medical  encoding
support  systems. For this  reason  its applicability to  other  infor-
mation  quality problems would  require the  identification of
distinctive  usability factors, associated to the given particular
application.
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