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Abstract – Making decisions on the base of uncertain forecasts is one of the key 

challenges for efficient Supply Chain Management. This article suggests the use of the 

theory of possibility for building a procurement plan on the base of ill-known 

requirements. These requirements, expressed in quantities by date, may come from 

various sources: forecasts or orders for instance. The possible types of imperfection 

pervading requirement are analysed and a unified representation model is suggested. A 

method is then described for calculating a plausible demand by period without loss of 

information; it is illustrated on an example in the last section.  
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1 INTRODUCTION  

 
Today’s industrial context is characterised by an increased uncertainty on the final customer’s demand. 

In many supply chains, and especially in the aeronautical industry, the supply times are much longer 

than the manufacturing times. In this context, an important challenge is to manage the procurement 

process in spite of the uncertainty on the demand.  

Collaborative processes aim at reducing this supply risk. Vendor Management Inventory (VMI
®

) 

(Marques et al., 2008) and Collaborative Planning, Forecasting and Replenishment (CPFR
®

) (Ireland 

and Crum, 2005) are for instance widely used in an industrial context. These techniques aim at creating 

short and reactive decision loops between customers and suppliers in order to cope with the growing 

uncertainty on demand forecasting, due to the shortening of the product life cycle and to customers’ 

versatility. Nevertheless, they can only deal with quite standard requirements, which is for instance the 

case in the automotive industry. Taking into account the uncertainty of the demand in the planning 

processes can be an alternative solution for more specific requirements, e.g. in the spatial and 

aeronautical industry for which the problem is still critical.  



In this study is considered a dyadic elementary link of a supply chain, involving two actors 

(customer/supplier). Within these two partners, it will be shown that an uncertain demand can be 

considered in order to build a “fuzzy” procurement plan, firstly internally processed then transmitted to 

the upstream suppliers. Like a classical one, this procurement plan is expressed in quantities per 

periods, but does not only describe one (most plausible) situation, but a set of situations, with a 

quantification of their possibility of occurrence. It should then allow to make more informed decisions 

concerning the risk taken by ordering a given quantity. 

The article is organized as follows: section 2 presents a state of the art on the application of possibility 

theory to production planning problems. The basis of possibility theory and the problem of 

representation of imperfect information are introduced in the following section, whereas a way to 

represent “imperfection” (uncertainty, imprecision…) on the requirements is proposed in section 3. The 

integration in the Material Requirement Planning of imperfect requirements, using the suggested 

method, is described in section 4. The approach is illustrated on an example in section 5. 

 

2 LITERATURE REVIEW 

 

In a manufacturing context, production planning aims at optimizing the use of the resources to fulfil the 

customers’ demand. Usually, forecasts are estimated on the base of historical data, and allow to build a 

Sales and Operation Plan, implicitly considered as certain but periodically revised (SOP step of the 

MRP (Manufacturing Resource Planning) method). A Master Production Schedule then details the 

SOP, listing quantities of required products per periods of time. Using the bill of materials, these 

“independent” requirements are then used to generate requirements on components, also by periods. In 

an uncertain context, the problem is to build a feasible requirement plan on the base of an ill-known 

demand. 

In that purpose, a large part of the literature focuses on rolling horizon planning methods: an initial 

planning is periodically updated in order to take into account the most recent knowledge on the 

demand. Strategies like adjusting the re-planning horizon size (Galasso et al., 2009), or freezing a part 

of the plan (Zhao and Xie, 1998) may be used in that purpose. On the other hand, production planning 

under uncertainty aims at modelling this uncertainty in order to provide the decision maker with a 

richer view on the various possible situations which may arise. Within this strategy, stochastic and 

possibilistic models have been mainly used to represent imperfect data. Stochastic models need a huge 



amount of historical data, and require that the context in which the data have been collected remains 

still valid in the future. Since this is more and more rare, we focus here on the case when it is difficult 

to use such methods. In that case, uncertainty may often be modelled on the base of the human 

expertise. Fuzzy logic and theory of possibility have shown their interest for representing subjective 

information and some works have already been performed on the representation of a subjectively 

assessed uncertainty on the demand.  

Within these works, it is important to distinguish production planning under flexible constraints from 

production planning with ill-known parameters (Dubois et al., 2003). In the literature on production 

planning under flexible constraints (Mula et al., 2007, Jamalnia and Soukhakian, 2009), fuzziness 

models a level of satisfaction of constraints expressed by imprecise terms (often in natural language), 

or a degree of tolerance (Bellman and Zadeh, 1970). Several surveys (Kacprzyk and Orlovski, 1987, 

Delgado et al., 1994, Baykasoglu and Göçken, 2008) show how fuzziness can in that case be 

accommodated with linear programming.  

In the literature on production planning under uncertainty, fuzziness is used for modelling the level of 

possibility that an event may occur. Both approaches refer to the possibility theory (Zadeh, 1978, 

Dubois and Prade, 1988) and to decision under fuzzy uncertainty (Dubois et al., 2001).  

 

Production planning under uncertainty based on possibility theory may allow to compute a supply plan 

considering an uncertain demand, modelled by possibility distributions. Some authors suggest to make 

decisions on the base of a fuzzy plan, while others use defuzzification techniques for obtaining a crisp 

plan. In the first category can be found (Fargier and Thierry, 2000), in which the MPS (Master 

Production Schedule) considers an uncertain demand. A method is proposed to support subcontracting 

decisions or negotiation with the customer. In the same way, in (Grabot et al., 2005), the imperfection 

on the customer’s demand is taken into account in the Manufacturing Resource Planning through a 

method called F-MRP (Fuzzy-MRP), resulting in a “fuzzy plan”.  

Another solution is to model first the uncertain plan, then to defuzzify in order to obtain a crisp 

equivalent demand (demand after defuzzification) (Niu and Dartnall, 2008, Liang, 2008, Peidro et al., 

2009).  

An alternative is to build a plan which takes into account a level of possibility, necessity or credibility 

in order to guarantee or optimise a “level of chance” that the plan is feasible. In (Lan et al., 2009), the 

chance that the inventories will be superior to zero is guaranteed by the constraints while in (Sun and 



Liu, 2008), the objective to minimize is the chance than the cost function is inferior to a given 

threshold. In (Aliev et al., 2007), the objective function to minimize is the chance that the demand will 

not be satisfied, combined with the profit. 

(Liu, 2009) presents a set of other models for optimisation under uncertainty with fuzzy parameters, 

which could be used in supply chain planning. 

When dates related to precise orders and durations of tasks are considered, scheduling under 

uncertainty may result in a fuzzy schedule (Chen and Huang, 2006, Balasubramanian and Grossmann, 

2003). These references are summarised in Table 1. 

Table 1. Classification of previous works 

References Use of fuzziness type of model 

(Mula et al., 2007) 

(Jamalnia and Soukhakian, 

2009) 

Flexible constraints planning 

(Fargier and Thierry, 2000) 

(Grabot et al., 2005) 

Integration of uncertainty planning 

(Niu and Dartnall, 2008) 

(Liang, 2008) 

(Peidro et al., 2009) 

Defuzzification 

then optimisation 

planning 

(Lan et al., 2009) 

(Sun and Liu, 2008) 

(Aliev et al., 2007) 

Optimisation 

under uncertainty 

planning 

(Chen and Huang, 2006) 

(Balasubramanian and 

Grossmann, 2003) 

Optimisation 

under uncertainty 

scheduling 

 

 

Even if possibility theory has been intensively used for modelling uncertainty in planning processes, it 

is interesting to notice that none of these methods addresses the basic industrial problem in its more 

generic form: if the imperfection of the demand concerns both the quantities (i.e. the level of a 

requirement may change) and the dates (the requirement may be advanced or postponed), finding how 

many components may be required in a given period in order to fulfil this demand becomes a complex 

task. In order to address this problem, this article first suggests a method aiming at characterising and 

representing “uncertainty” (imperfection, uncertainty and imprecision) on the independent 

requirements, then shows how to turn these “imperfectly known” requirements into dependent 

requirements (a supply plan composed of required quantities of components by periods), in a way 

which stays as close as possible to industrial practices. This supply plan will be considered for deciding 

the quantities ordered to the upstream partners of the supply chain. 

 

 

 



3 BASIC FRAMEWORK 

 
The objective of this section is to position the various concepts covering the vague notion of “imperfect 

information”, and to present some models allowing to represent them. Besides are introduced the main 

results of the theory of possibility which will be used afterwards. 

3.1 Definition of imperfection 

 
Even if the word “uncertainty” is commonly used, a distinction has to be made between several 

concepts: uncertainty, imprecision and incompleteness. The term “imperfection” will be used to gather 

these three concepts, as suggested in (Bouchon-Meunier, 1995). 

- Uncertainty occurs when it is not possible to state whether a particular statement is definitely true or 

false.  

- Imprecision denotes the impossibility to enounce a piece of knowledge including crisp values in a 

sure manner. 

- Incompleteness means in most cases that an information source does not contain full information 

about the values of the attributes of the real-world it describes (some properties may be missing from 

the description). 

As stated above, two types of mathematic models can represent imperfect data: stochastic and 

possibilistic models (Dubois and Prade, 2006). Because of the highly dynamic context of today’s 

manufacturing, we consider in this article the case when no previous observation is available for 

building a stochastic model. In that case, possibility theory has shown its interest for modelling 

uncertainty on the base of expert knowledge. 

3.2 Representation of imperfection 

3.2.1Representation of uncertainty 

 
For each event A from a subset S, the uncertainty may be evaluated through two levels: the possibility 

П(A), denoting to what extent the occurrence of event A if possible, and the certainty N(A), denoting to 

what extend the occurrence of event A is certain, with: 

)()(, AASA ∏≤Ν⊆∀   (1) 

and 

)(1)(, AASA Π−=Ν⊆∀   (2) 

 



If the occurrence of A is certain П (A)=1 and N(A)=1; if the occurrence of A is impossible: П (A)=0 and 

N(A)=0. If there is no knowledge available: П (A)=1 and N(A)=0 (the event is fully possible but not 

necessary at all). 

3.2.2 Representation of imprecision 

 
An imprecise information may be defined as v∈A where A is a subset of S which contains more than 

one element. The imprecision may be expressed by a disjunction of values (Dubois and Prade, 2006) 

defined by a possibility distribution on S. v∈A means that all values from v outside A are supposed to 

be impossible.  

A possibility distribution πv of v quantifies the plausibility of the information v. πv is a function of S in L 

such as 1)(,,)(, =∃∈∈∀ ssandLsSs vv ππ  with v denoting an ill-known value in S, and L the scale of 

plausibility ([0,1] for the theory of possibility). 

3.2.3 Representation of uncertainty and imprecision 

 
Information can be pervaded with both uncertainty and imprecision. Uncertainty and imprecision is 

denoted by v∈AUB  where A and B are two disjoints subset of S, one expressing the possibility that the 

event does not occur, the other defining the (possibly imprecise) content of the event if it occurs. The 

possibility distribution associated to the information v∈AUB is noted π(v) with: 
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These two events being mutually exclusive, they are characterised by relation (4): 
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3.3 Basic Operations 

 

In order to describe the events by possibility distributions, trapezoidal distributions (cf. Figure 1), 

denoted (a, b, c, d, h), can be used without an important loss of generality. Indeed, these sets intend to 

model an expertise which suggests a global shape rather than a precise function. 

For performing a Material Requirement Planning, we need first to define an operator of addition, which 

is made according to (Zadeh, 1978) and (Dubois and Prade, 1988). 



 
Figure 1. Trapezoidal distribution of possibility 

 

 

A possibility distribution πx is defined as the membership function µA of A, A being defined as a fuzzy 

set, i.e. a set of elements x which belong to A with a degree µA(x). 

The sum of two trapezoidal distributions Ai and Aj defined by the quintuplets Ai (ai, bi, ci, di, hi) and Aj 

(aj, bj, cj, dj, hj) is defined by (Dubois and Prade, 1988):  

Ai ⊕  Aj = (a, b, c, d, h) (5) 

with: 
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If nAAAA ∪∪= ...21  and pBBBB ∪∪= ...21  with Ai and Bj defined by the quintuplets (ai, bi, ci, di, 

hi) and (aj, bj, cj, dj, hj) 
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Calculating gross requirements consists in allocating quantities of components to periods. If the 

quantity is imprecise or uncertain, we need to compute the possibility and the necessity that a set 

belongs to an interval. 

 

The possibility of the event “x∈F ”, denoted Π(x∈F),  is the degree of intersection between A and F , 

defined by equation (7). The dual measure of necessity of “x∈F ”, denoted N(x∈F), evaluates to what 

extent “x∈F ” is certainly true. It is defined by equation (8). 

)))(),((min(sup)( uuFx FA
u

µµ=∈Π  (7) 

))(1))(),(1(max(inf)( c

FA
u

FxuuFx ∈Π−=−=∈Ν µµ (8) 

where F
c
 denotes the fuzzy complement of F )1( CFF µµ −=  

Quantity 

Possibility 

a 

h=1 

b 

c d 



If x is a real variable and A a fuzzy interval, tmin and tmax represent respectively the minimum and the 

maximum limit of the interval (see Figure 2). The possibility that x is between the limits of the interval 

is given by equation (9): 

))((sup)(max)min(
maxmin

utxtxt A
tut

µ
≤≤

=∈Π=≤≤Π  (9) 

On the opposite, the possibility that x does not belong to the interval is given by equation (10): 

 

)))((sup)),((supmax())max,[(min]),,((max()(
maxmin

Autxtxtx
ut
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=+∞∈Π−∞∈Π=∉Π  (10) 

The necessity that x belongs to the interval is given by (11): 

 

)(1)(max)min( txtxtxt ∉Π−=∈Ν=≤≤Ν  (11) 

The results of equations (9) to (11) are illustrated in Figure 2. 

 

 
Figure 2. Computation of possibility and necessity levels that an element belongs to an interval 

 

It will be shown in next section how these basic operations allow to build a possible gross requirement 

plan. 

 

 

4 CALCULATION OF THE GROSS REQUIREMENTS 

 
Figure 3 illustrates the process allowing to compute the gross requirements. Ill-known requirements 

(coming from forecasts or orders) are firstly considered as input of the process ((1) in Figure 3). These 

requirements are modelled through possibility distributions (step (2)). The result of this step is that 

each requirement is now modelled by a fuzzy quantity on a fuzzy date (3). The possibility and 

necessity that each quantity belongs to a period of the plan is then computed (4). Since a quantity may 

have non null possibilities to belong to several periods, it is then possible to define various scenarios 

for each requirement (depending on the period on which its occurrence is considered) (5). The decision 

maker will then suggest criteria for extracting one or several scenarios (most possible, optimistic, 

pessimistic, etc.) (6). These criteria are used to filter the possible scenarios (7). The decision maker can 

then make a decision on the base of the provided information. 
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Figure 3. Flowchart of the computation of gross requirements 

 

These steps will now be explained with more details. 

 

4.1 Representation of ill-known requirements  

 
A requirement o is characterised by a quantity Qo and a date (due date) τo. 

4.1.1 Types of imperfections 

 
The imperfection on the requirements may be on the requirement itself, i.e. the requirement can be 

uncertain. For example, if the requirement comes from forecasts, it can be confirmed or cancelled 

through time. The imperfection may also affect the attributes of the requirement: the quantity or the 
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date. For each attribute, the two different types of imperfections defined above (imprecision and 

uncertainty) can be considered.  

4.1.2 General model of imprecision on the requirements 

 

It is possible to define the imprecision of a quantity by two intervals: one defining the most possible 

values, and the second all the possible values (Grabot et al., 2005) or to infer a possibility distribution 

from very few measurements (Mauris, 2008), then to compute the trapezoidal fuzzy number which 

approximates this possibility distribution (Grzegorzewski, 2008). In order to be consistent with the 

expert knowledge available in the companies, we suggest to represent the imperfection (uncertainty and 

imprecision) on the requirements using two fuzzy sets: 

- the first fuzzy set represents the imperfection (uncertainty and imprecision) on the required quantity, 

and the uncertainty of the occurrence of the requirement itself (possibility that the required quantity is 

0),  

- the second fuzzy set represents the imperfection on the due date.  

The considered fuzzy sets are so defined as unions of trapezoidal fuzzy sets, which preserves the 

generality of the representation. In the following figures are introduced the various types of elementary 

sets used to represent the requirement pervaded by different types of imperfection. 

Figure 4 represents a precise value (a), of possibility h. Figure 5 shows an imprecise quantity with a 

maximum possibility equal to h. Figure 6 represents the uncertainty on the occurrence of a 

requirement; the value zero (which means that the requirement is cancelled) has a possibility level 

equal to h’.  

 
Figure 4. Representation of (a; a; 0; 0; h) 

 

Quantity or Date 

Possibility 

a 

h 



 
Figure 5. Representation of (a; b; c; d; h) 

 
Figure 6. Representation of (0; 0; 0; 0; h’) 

 
These figures do not yet define consistent requirements, since the definition of a possibility distribution 

sets the constraint that max(π(A))=1 (at least one event has to be completely possible), which is not the 

case for these sets if h and h’ ≠1. In order to define an imprecise requirement which cancellation is 

more plausible than its confirmation, the union of the fuzzy sets of Figure 5 and 6 has to be defined, 

with (for instance) h=0.8 and h’=1. 

Table 2. Representation a of quantity 

Certain quantity Uncertain Quantity 
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Table 2 summarises the way the different models can be combined in order to define the imperfections 

on the quantities, qa, qb... being the values allowing to define the fuzzy number which represents the 

quantities.  

Table 3 summarises the combinations of models which may represent the various imperfections on the 

dates. The values allowing to represent the fuzzy numbers modelling a date are denoted τa, τb...  
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Table 3. Representation of the requirement date 

Certain requirement date Uncertain requirement date 

 Precise date Imprecise date Precise date Imprecise date 

Certain 

requirement  

(τa; τa; 0; 0; 1) (τa; τb; τc; τd; 1) 
∪

n

i

iii haa
1

);0;0;;(
=

τττ  

1)(
1

max =
=

jh
n

j
τ  

∪
n

i

iiiii hdcba
1

);;;;(
=

τττττ

 

1)(
1

max =
=

jh
n

j
τ  

Uncertain 

requirement 

(τa; τa; 0; 0; τh) 

max(h’;τh)=1 

(τa; τb; τc; τd; τh) 

max(h’; τh)=1 ∪
n

i

iii haa
1

);0;0;;(
=

τττ

 

1)(
1

max =
=

jh
n

j
τ  

∪
n

i

iiiii hdcba
1

);;;;(
=

τττττ
 

1)(
1

max =
=

jh
n

j
τ  

 

 

4.2 Material requirement planning 

 
Models of requirements based on unions of two sets have been introduced. One of the sets represents 

the imperfection on the quantity and the uncertainty on the requirement, whereas the other represents 

the imperfection on the date. The problem is now to compute a gross requirement, which is a set of 

quantities expressed for each period of the horizon.  

Different scenarios can be deduced from the elementary requirements expressed as in Tables 2 and 3, 

since a requirement may belong to different periods (according to the imprecision on its date) and may 

be composed of different quantities (according to its uncertainty and imprecision).  

To compute the gross requirements, let us define the following notations: 

Index 

o: requirement with o∈[1,O] 

t: period with t ∈[1,T] 

jo: index of fuzzy set of requirement o with jo∈[1,Jo] 

uo: period in which the requirement o could exist with uo∈[ Uao ,Uzo] 

c: number of combination with c∈[1,C] 

Variables 

Qo: possible required quantity of requirement o, 

τo: possible date of requirement o, 

 
tujo oo

E ,,,
: quantity for period t of the fuzzy set jo of requirement o which belongs to period uo  

oo ujoS ,,
: scenario in which the fuzzy set indexed by jo of the requirement o belongs to period 

    uo  

Dc,t: gross requirement quantity for combination c for period t. 

 

 



4.2.1 Design of requirement scenarios 

 
For each requirement, the number of elementary scenarios is equal to the number of periods to which 

the requirement may belong. As a first step, the possibility for each requirement o to belong to each 

period t is calculated (equation 12). This means that the requirement exists in a given period t with a 

given level of possibility: 

))(max()( tt ooo ∈=∈Π ττπτ  (12) 

 

As a second step, for each requirement o, the set oT of the periods on which the requirement may occur 

is selected (equation 13): 

0)(/ ∈Π∈ ooooo uifu τTT  with uo ∈[ Uao ,Uzo] (13)  

 

Example: let us consider a requirement A on )1;2;1;6;6(=Aτ  and period  1= 

[0;7[, period 2= [7;14[ and period 3= [14;21[. 

 

Figure 7. Representation of Aτ  
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( ) 0[21;14[)(max)3( =∈=∈Π AAA ττπτ
 

So { }2;1=AT  

The requirement belongs to period 1 with a degree of possibility 1, and to period 

2 with a degree of possibility 0.5 (see Figure 7). 

 

In the third step, the required quantity of the different scenarios is calculated. It can be noticed that the 

possibility degree that a requirement o belongs to period t ( )( oo u∈Π τ ) expresses than the 

requirement can exist in this period, but also that it cannot exist in other periods of 
oT .  
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dates 

Period 3 



Let us denote ∪
o

o

J

j

joo AQ
1

, 0

=

= the quantity of the requirement, with jo the index of the fuzzy set 

(imprecise value); jo∈[1,Jo]. The different scenarios ow  of requirement o can be defined 

by );( ooo ujw = .  

Table 4 represents the values of the required quantities for each period, by taking into account that the 

requirement can exist in one and only one period of the horizon.  

Uo being the number of periods of oT , we have ooo JUS ×=  scenarios for each requirements o.  

Let us denote ∪
o

ooo

Tt

tujoujo ES
∈

= ,,,,, 0  
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Example: let us consider the same requirement A 

)8.0;4;4;24;20()1;2;2;12;10( ∪=AQ  We have: 

)1;2;2;12;10(1, =AA and )8.0;4;4;24;20(2, =AA  { }2;1=AT  

The set of scenarios is { } { })2;2();1;2();2;1();1;1(=Aw  

We compute for each scenario wA the quantity 
ujAB ,,

which belongs to the period u 

and the quantity
uvAB ,,

which belongs to period v knowing that A belongs to u. The 

resulting scenarios are summarized in Table 5.  



 

Table 5. Results for the requirement A 
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4.2.2 Computation of the gross requirements 

 

From the various scenarios, a set of gross requirements, which is a set of required quantities for each 

period on a planning horizon, can be computed.  

From Table 4, we generate all the combinations of the requirement scenarios. We have 

∏
=

=
O

o

oxSC
1

combinations. Let C be the set of these C combinations.  

 

For a combination c of the requirement scenarios, the total required quantity Dc,t for a period t is the 

sum of the required quantities 
tujo oo

E ,,,
 (equation 14) concerning all the scenarios of requirements wo 

of this combination belonging to this period t (equation 16).  

Thus, for each scenario wo and each period t in oT  we first compute 
tujo oo

E ,,,
. If the requirement o 

belongs to the considered period t, the quantity is equal to 
oo ujoB ,,

. Else, the quantity is equal to  

outoB ,,
. 

oo ujoB ,,
 is the quantity indexed by jo of requirement o weighted by the possibility to exist in 

the period uo, and 
outoB ,,
 denotes that requirement o belongs to another period than t (quantity=0, 

possibility denoting that the requirement belong to another period uo). 
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In order to manage the combinatory explosion of elementary scenarios, the decision maker may select a 

plausible set of combinations and thus may only consider the combinations for which the possibility is 

higher than a given value p.  

The set of combination is then reduced to Cp (see equation (15)). 
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Each combination is characterised by a level of possibility (equation 17). The combinations computed 

are thus classified according to their degree of possibility ccombPos _ .  

We compute the gross requirement of the combination c and the total required quantities for the period 

t of this combination: 

ctED tujo

O

Aujwo

tc coco

ccococo

∀∀= ⊕
∈=

,)( ,,,

);(/

, ,,

,,,

 (16) 

))((min_ ,tc
t

c DcombPos Π= (17) 

 

The combinatory is directly linked to the level of imperfection of the requirements, and to the threshold 

introduced by the decision maker.  

Example: let us consider the same requirement A 

The set of scenarios is { } { })2;2();1;2();2;1();1;1(=Aw  

We compute the quantity for period {1; 2}of the scenario quantity wA (in this case 

EA,j,u,1 and EA,j,u,2) 

2,2,2,2,2,;2,1,2,2,1,1,2,1,1,2,1,1,1,1,1, ;; AAAAAAAA BEBEBEBE ====  

2,1,1,2,2,;2,1,1,2,1,1,2,2,1,2,1,2,2,1,1, ;; AAAAAAAA BEBEBEBE ====  

Then, we compute the gross requirements: 

)1;0;0;0;0();1;2;2;12;10( 2,1,1,2,11,1,1,1,1 ==== AA EDED   

)5.0;2;2;12;10(;)5.0;0;0;0;0( 2,2,1,2,21,2,1,1,2 ==== AA EDED  

)8.0;0;0;0;0(;)8.0;4;4;24;20( 2,1,2,2,31,1,2,1,3 ==== AA EDED  



)4.0;4;4;24;20();4.0;0;0;0;0( 2,2,2,2,41,2,2,1,4 ==== AA EDED  

 
 

5 ILLUSTRATIVE EXAMPLE 

 

In this example, we consider four requirements concerning material C. Each requirement has its origin 

in four different products P1, P2, P3 and P4, C being one of their components. These requirements are 

imperfectly known. The time horizon is 28 days and starts at day 0. Each period is composed of 7 days. 

The gross requirements of material C has to be computed. 

The following qualitative information on each requirement is available (depending for instance on the 

schedule of assembly): 

Requirement 1: 

- Two quantities are possible 300 (very possible) and 600 (could be possible). These 

quantities are given at ± 20 units 

- The requirement date is 20. This date is given at ± 2 days 

Requirement 2: 

- The most possible quantity is between 400 and 450, but the requirement is not totally 

sure. This quantity is given at ± 10 units 

- The requirement date is between 14 and 16 and this date is given at ±2 days 

Requirement 3: 

- The most possible quantity required is between 350 and 360. This quantity is given at 

± 10 units 

- Two dates are possible:  

o The most possible: around 5 (given at ±1 days)  

o The less possible: around 15 (given at ±3 days) 

Requirement 4: 

- The most possible requirement quantity is between 600 and 620. This quantity is 

given at ± 20 units 

- The most possible date is between 25 and 26; it is possible to need this quantity up to 

two days before, but not later than the most possible date.  

These pieces of information are represented in Figures 8 and 9. 

 



 
Figure 8. Information on quantities from the expert 

 

 

 
Figure 9. Information on dates from the expert 

 

5.1 Possibilistic model of the ill-known requirements 

 

The first step of the method is to build the possibilistic models describing each requirement, on the 

base of their “expert” description. The result, obtained according to the principles described in section 

4, are given for Requirements 1 and 2 in Table 6 and 7 (requirements 3 and 4 are similar). 
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Table 6. Model for Requirement 1 

Expression Model Representation 

Two values are possible for 

the required quantities. 
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Table 7. Model for Requirement 2 

Expression Model Representation 
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Table 8 summarizes the model whereas Figures 10 and 11 represent graphically the models of the 

required quantities. Figure 12 summarizes the models of the requirements dates (black lines represent 

the periods). 

 

Table 8. Requirements 

 Quantity Requirement date 

r1 (300; 300; 20; 20; 1)U (600; 600; 20; 20; 0.5) (20; 20; 2; 2; 1) 

r2 (400; 450; 10; 10; 1)U (0; 0; 0; 0; 0.5) (14; 16; 2; 2; 1) 

r3 (350; 360; 10; 10;1)  (5; 5; 1; 1; 1)U 

(15; 15; 3; 3; 0.5) 

r4 (600; 620; 20; 20; 1) (25; 26; 2; 0; 1) 

 



Requirement 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 100 200 300 400 500 600 700

quantity

P
o

s
s

ib
il
it

y

 

Requirement 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200 250 300 350 400 450 500

quantity

P
o

s
s

ib
il
it

y

 
Figure 10. Representation of the quantities for requirements 1 and 2 
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Figure 11. Representation of the quantities for requirements 3 and 4 
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Figure 12. Representation of the dates of requirement 

 

5.2 Material Requirement Planning  

5.2.1 Design of requirement scenarios 

 

 

The next step consists in building the scenarios according to the requirements belonging to the different 

time periods of the gross requirement horizon. oT  being the set of the possible periods for requirement 

o, the level of possibility that each requirement belongs to the different periods has to be computed 

(Table 9).  

 

 



 

 

Table 9. Possibility than the requirements belong to the different periods 

 Requirement 1 Requirement 2 Requirement 3 Requirement 4 

Period 1 0)1( 1 =∈Π τ  0)1( 2 =∈Π τ  1 0  

Period 2 0)2( 1 =∈Π τ  1 33.0  0  

Period 3 1 1 5.0  0  

Period 4 5.0  0  0  1 

 

From Table 9, we determine the set of possible periods for each requirement { }4;31 =T , { }3;22 =T , 

{ }3;2;13 =T  and { }44 =T . 

Then, we can build the different scenarios for each requirement (Tables 10 to 13): 
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Table 11. Results for the requirement 2 
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Table 12. Results for the requirement 3 
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Table 13. Results for the requirement 4 
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5.2.2 Computation of the gross requirements 

 

From Tables 10 to 13, the different gross requirements are obtained for some combinations of the 

requirement scenarios (Figure 13). There are 48 possible gross requirements, but only the gross 

requirements with level of possibility 1 are computed, so that the less possible gross requirement which 

could happen in the worst case: possibility = 0.25 (Table 14 and Table 15).  

Table 14. Combinations 

 Requirement 1 Requirement 2 Requirement 3 Requirement 4 

Gross 

requirements 

combination 1 

11 &3 Ar ⊆  
12 &2 Ar ⊆  

13 &1 Ar ⊆  
14 &4 Ar ⊆  

)1;20;20;300;300(  )1;10;10;450;400(  )1;10;10;360;350(  )1;20;20;620;600(  

Gross 

requirements 

combination 2 

11 &3 Ar ⊆  
12 &3 Ar ⊆  

13 &1 Ar ⊆  
14 &4 Ar ⊆  

)1;20;20;300;300(  )1;10;10;450;400(  )1;10;10;360;350(  )1;20;20;620;600(  

Gross 

requirements 

combination 3 

21 &4 Ar ⊆  
22 &2 Ar ⊆  

13 &2 Ar ⊆  
14 &4 Ar ⊆  

)25.0;20;20;400;400(  )5.0;0;0;0;0(  )33.0;10;10;360;350(  )1;20;20;620;600(  

 

Table 15. Gross requirement for a combination 

 Period 1 Period 2 Period 3 Period 4 

1_ 1 =combPos   )1;10;10;360;350(  )1;10;10;450;400(  )1;20;20;300;300(  )1;20;20;620;600(  

1_ 2 =combPos  )1;10;10;360;350(  )1;0;0;0;0(  )1;30;30;750;700(  )1;20;20;620;600(  

25.0_ 3 =combPos  )33.0;0;0;0;0(  )33.0;10;10;360;350(  )33.0;0;0;0;0(  )25.0;25;25;1035;985(  

 
Figure 13. Fuzzy gross requirements 
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Now, let us consider that the four requirements have been considered as crisp for making possible a 

“classical” gross requirement calculation. In that case, the four requirements will be certainly 

considered as follows (see summary in Table 16): 

Requirement 1: quantity 300, date 20; Requirement 2: quantity 425, date 15; Requirement 3: 355, date 

5; Requirement 4: 610, date 25. Thus the crisp gross requirement is given in Table 16. 

Table 16. “Crisp” gross requirement 

period 1 2 3 4 

quantity 355 0 725 610 

 

It can be seen that the “crisp” scenario of Table 16, obtained by neglecting any knowledge on the 

imprecision of the input information, is close to combination 2. Therefore, a first result is that our 

method is consistent with a “good sense” defuzzification obtained by considering only the most 

plausible cases. What is more important is that another scenario, obtained with combination 1, has the 

same possibility (=1): as a matter of fact, there is a possibility equal to one that some requirements are 

also present in period 2, and as a consequence that the gross requirements are relatively balanced on the 

four considered periods. In addition, it can be seen that there are slight possibilities (0.33 and 0.25) that 

the gross requirements are completely unbalanced, with a quantity around 350 during period 2 and a 

huge quantity, around 1000, during period 4. 

It is so clear that the method may allow to obtain a much more informative set of possible situations, 

together with an estimation of their possibility of occurrence. On that base, the decision maker is able 

to make a really “informed” decision, considering not only the most plausible case but also an 

estimation of the risk taken regarding to the possibility of occurrence of other situations.  

 

6 CONCLUSION 

 

Through a literature review, we have shown that the idea to model an imprecise demand on final 

products using possibility theory has sometimes been considered, but that the practical way for dealing 

with such a demand in the first steps of the MRP method (Material Requirement Planning) has not yet 

been fully explored. However, this step is the base for generating a supply plan for the upstream 

partners of the supply chain, which should take benefit from more precise information.  

In this paper, uncertainty and imprecision on the requirements have been analysed and a model 

allowing to take them into account has been proposed. Based on this model, a method has been 



suggested for modelling uncertain gross requirements (describing plausible quantities by period). The 

result stresses that the resulting uncertain quantity which is required is not a simple fuzzy set, but 

describes a set of situations, which is much more informative than the result obtained by considering 

only the most plausible requirements. Indeed, this model does not lose any information on the relation 

between period and quantity.  

As a following step, two different options are possible: the decision maker may choose a supply plan 

after assessing its feasibility, and may compute the risk taken (shortage or excess of inventories) if 

other situations occur. In order to do this, he can defuzzify the gross requirement before sending it to 

his supplier. The second solution is to transmit the set of the most plausible supply plans to the supplier 

as an element for negotiation. Indeed, the described situations are a good starting point for assessing 

how the risk taken by preparing a situation more than another can be shared between the two partners.  

In this article, the incompleteness of the requirements has not been considered. Considering this other 

type of imperfection is an interesting perspective for the study, since the knowledge on the 

requirements may be incomplete for far periods. In that case, any evaluation of the required quantity 

linked to forecasts could be false. An incompleteness factor could be added to the requirements already 

known through long term contracts in order to address this problem. 

Finally, fuzzy demands can be considered in other cases, such as economic production quantity models 

(Lee and Yao, 1997), inventory control (Petrovic et al., 2008) or optimal inventory (Chiang and Wen-

kai, 2000), also requiring a demand defined by quantities by period. As a perspective, the integration of 

our model in those methods could be another interesting issue.  
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