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Abstract

This paper points out the generic matrix approach to design Pulse Width Modulation strategies of three-
phase Voltage Source Inverters. This well-known problem has infinitely many solutions, and many mod-
ulation methods already exist. This mathematical approach deserves to be explored by its rigor and must
identify known but also new solutions.

Introduction

The static converters are electrical components that can be found in many different applications. In
high power devices, such as railway applications, air-planes but also automotives one can find DC to
AC converters (named inverters). Such a device allows to connect, in Voltage Source Inverter (VSI)
configurations, DC voltage sources to AC current sources. Current sources are mainly constituted of
electrical machines or resistive - inductive loads, (Fig. 1).
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Figure 1: Direct static converter.
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Figure 2: PWM scheme.

Beside the control strategy box, which ensures the closed loop control, a specific stage is distinguished. It
is situated between the power converter device and the control board. Indeed this specific stage translates
the continuous reference given by the closed loop feedback in binary signals. Finally, they are applied
to the power device as illustrated in Fig. 2. In most cases this stage is based on Pulse Width Modulation
(PWM) technique. The PWM uses the average value of the voltage applied to the load in order to check
the output desired voltage. In most applications, this output voltage will ideally be a sine wave.



In power electronics, the PWM goal is to modulate the magnitude, the frequency and the phase of volt-
ages or currents. These informations are contained in the reference signal issued from the control stage.
In the original PWM technique applied to VSI, a sinusoidal reference voltage is compared to a triangle
carrier. The output is ON/OFF order applied to the switches. K. B. Bose made an overview of several
PWM techniques following, the current or voltage controller, the feed-forward or feedback methods,
carrier or non-carrier based ones, etc. [1]. Some of them are considered as continuous: the modulation
waves are always within the triangle peak boundaries. In such a case, for each carrier period, triangle
and modulation waves intersect to produce ON/OFF switching orders. Others PWM methods are said
discontinuous: for instance one leg is clamped at the DC voltage value for more than one switching pe-
riod. In some studies, graphical tools are displayed in order to aid the design, the performance evaluation
etc. [2]. Other studies detail how to increase the PWM efficiency [3], or what are the link between
different PWM methods [4], [5]. Some authors also work on the interaction between the control and the
PWM technique in order to improve motor efficiencies [6]. Nowadays the trend is to apply usual PWM
to multilevel converters, [7] [8]. It appears to our knowledge that, a generic link between the used VSI
model and a formal mathematical approach leading to the PWM solution set has never been described.
Let us consider now the carrier based PWM technique. It consists in the comparison of reference wave-
form α, linked to the duty cycle, and one triangle carrier. It is assumed that the reference voltage, Vre f ,

is issued from regulators and that the control strategy is already done. The ON/OFF orders, ci, c′i, are
applied to power switches of the three-phase VSI leg, as illustrated in Fig. 2. The goal of this study
is to provide a new and generic mathematical solution of PWM - triangle based carrier. From the VSI
model, a specific inversion will lead to the PWM solution set. Finally, the study checks that some of the
well known PWM strategies are obtained by fixing some free parameters. The boundaries of the freedom
parameters are detailed. Moreover, some simulation results are provided.

Model of 3ϕ Voltage Source Inverter

VSI average model

Let us consider a three-phase VSI as described in Fig. 3. E, is a DC voltage. Each ideal switch,
denoted Ki or K′i , with i ∈ {1,2,3} is considered to be assigned an ON/OFF control signal ci c′i ∈ {0,1}
respectively. Let us remind that
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Figure 3: Three-phase voltage source inverter.







ci =
−
c′i = 1⇒ Ki is ON, K′i is OFF,

ci =
−
c′i = 0⇒ Ki is OFF, K′i is ON.

(1)

For each ideal switch, the duty cycle applied on a switching period Ts, is defined as

αi =
tiON

Ts

with i ∈ {1,2,3}. (2)

where tiON
is the time when Ki is switched on. Then the mean value of the line voltages VaO(t),VbO(t),VcO(t)

is expressed as

<ViO(t)>Ts
=

1

Ts

∫ Ts

0
Vi0(t)dt = αiE. (3)

For simplicity sake, we assume that the 3ϕ R−L load is balanced, Z = Z1 = Z2 = Z3 with Z the complex
impedance, and star-connected. An average model of the inverter is considered and each average voltage



<ViO(t)>Ts
is denoted as ViO = αiE. The load neutral voltage is given by

VNO(t) =
1

3
(VaO(t)+VbO(t)+VcO(t)) =

1

3
[1 1 1]VlO(t) (4)

with VlO(t) = [VaO(t) VbO(t) VcO(t)]
T . Using the average expression ViN = ViO−VNO, the load volt-

ages are expressed as

VlN = [VaN VbN VcN ]
T =VlO− [1 1 1]T VNO. (5)

Taking into account (3), in equations (4) and (5), leads to

VlN =
E

3





2 −1 −1

−1 2 −1

−1 −1 2



α. (6)

Eq. (6) relates the load voltage average and the duty cycle α, if

α = [α1 α2 α3]
T . (7)

Consequently,

VlN =
E

3
Mα with M =





2 −1 −1

−1 2 −1

−1 −1 2



 . (8)

VSI simplified model

Because of

VaN +VbN +VcN = 0, (9)

thus,

rank(M) = rank([MVlN ]) = 2. (10)

Following usual results on linear system [9], the expression (8) is reduced to

W = Nα, (11)

where W =

[

VaN

VbN

]

and N =
E

3

[

2 −1 −1

−1 2 −1

]

. This expression is a compatible system with an

infinite number of solutions. Indeed, the VSI simplified model is finally obtained. It links the load
voltages and the duty cycles with the non square matrix N.

The regulation strategy provides the load voltage reference vector, Vre f = [Vre faN
Vre fbN

Vre fcN
]T . So that,

Wre f is expressed by

Wre f =

[

Vre faN

Vre fbN

]

. (12)

Due to singularity of the N matrix, we cannot obtain the reference duty cycle by applying the usual
inverse. Effectively, it does not exist. The purpose of the next section is to overcome this drawback.

Generalized Inverse theory, applied to VSI

Short survey of Generalized Inverse theory

It is well known that each square and non-singular matrix A has a unique inverse, named A−1, which
satisfies

AA−1A = A. (13)



At the beginning of the XX th century, needs for some kind of generalized inverse were pointed out for

differential operator [10]. For every matrix, a generalized inverse, A[1], is defined such as

AA[1]A = A. (14)

Some features of the generalized inverse are mentioned [9]: it exists for every matrices; it has some of

the properties of the usual inverse; when A is non-singular, A[1] = A−1; it is not unique.
To overcome the last point, based on work of Moore [11], [12] and Penrose [13], the Moore-Penrose in-

verse or pseudo-inverse of every matrix A, denoted, A† is defined. A† satisfies the four Penrose equations

AA†A = A A†AA† = A† (15)

(AA†)∗ = A†A (A†A)∗ = A†A (16)

where A∗ denotes the conjugate transpose of A. The main property of A† is that for every matrix A, A† is

unique. It is obvious that A† is a particular generalized inverse of A. The main application of generalized
inverse theory is to get the solution set of linear systems [14]. Let us consider a linear system described
by

AX = B (17)

where A is a [n∗m] matrix and B is a [n∗ p] matrix. Then, if (17) is compatible, the general solution of
(17) is

X = A[1]B+(Im−A[1]A)Y (18)

where Y is an arbitrary (m∗ p) matrix and A[1] is a generalized inverse of A. It is obvious that Y can be

chosen in order to satisfy at the outset, some fixed constraints. The A[1]B part in (18) stands for the basis

solution, namely obtained with Y = 0. It depends on the particular choice for A[1]. As A† is a particular
generalized inverse, the solution set (18) is generated as

X = A†B+(Im−A†A)Z (19)

where Z is an arbitrary (m∗ p) matrix. Despite the fact that the basis solution in (18) and (19) is distinct,

the solution sets (18) and (19) are identical. The interest of considering A† is to benefit of stable numeric
algorithms to obtain this unique matrix [15]. We must insist here that the dimension of the solution space
is given by

dim(KerA) = rank(I−A[1]A) = rank(I−A+A) (20)

Generalized inverse applied to 3ϕ VSI model

By using the results of the previous part, the solution set of the duty cycle waveforms is obtained. Thanks
to (19), the solution set is expressed as

α = N†W +(I3−N†N)z (21)

where W = [Vre faN
Vre fbN

]T is the output reference voltages given by regulators as illustrated in Fig. 2.

Firstly a global z such as z = [z1 z2 z3]
T is considered. Then, as rank(N) = 2, N† is given by [9]:

N† = NT (NNT )−1 =
3

E
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Finally, this leads to express the duty cycle vector α as

α =
1

E





1 0

0 1

−1 −1





[

Vre faN

Vre fbN

]

+
1

3





1 1 1

1 1 1

1 1 1









z1

z2

z3



=
1

E





Vre faN

Vre fbN

Vre fcN



+





1

1

1



λ (22)



where

λ =
z1 + z2 + z3

3
. (23)

Finally, with U = [1 1 1]T ,

α =
Vre f

E
+λU (24)

where λ is the scalar degree of freedom leading to the solution set. It has to be defined by using the
compatibility expression given in (9). Then λ is

λ =
α1 +α2 +α3

3
. (25)

Moreover, for each i ∈ {1,2,3}, the duty cycle is included within 0≤ αi ≤ 1. Then, Eq. (24) implies

−min(Vre f )

E
≤ λ≤ 1− max(Vre f )

E
. (26)

Nevertheless, the solution obtained in (24) is not completely satisfying because it is not directly linked
with most of classical carrier based PWM in use. In next section a method is developed to recover
classical solutions.

Translation of the basis solution

Starting with (24), two new variables µ and λb are introduced such as

λ = λb +µ. (27)

Then the general solution is given by

α =
Vre f

E
+λbU +µU = αb +µU (28)

with αb the basis solution defined as

αb =
Vre f

E
+λbU. (29)

In the following section is detailed that fixing λb and µ allows to express some well known PWM solu-
tions. According to the given reference voltages Vre f , the values or boundaries of the freedom parameters

µ and λb are expressed.

Simulation results

Simulation context

Scilab, which is an open source software for matrix calculus and system simulations, is used [16]. The
system described in Fig. 3 is simulated using a 3ϕ RL load. A state space model is introduced in order
to obtain the line currents

˙I(t) = AI(t)+BVlN(t) ⇔ ˙I(t) =−R

L
I(t)+

1

L
VlN(t) (30)

with R = 15Ω and L = 1mH. The line potential +E or 0 is applied to the {a,b,c} line points such as

VlN(t) = [VaN VbN VcN ]
T . It is deduced from the switching binary order applied to each ideal switch. In

order to obtain these switching signals, the regular PWM is implemented, as given in Fig. 2. In such a
scheme, a 3ϕ load reference voltage is applied,

Vre f (t) =

[

Vmaxcos(2π f ∗ t) Vmaxcos

(

2π f ∗ t− 2π

3

)

Vmaxcos

(

2π f ∗ t− 4π

3

)]T

. (31)

Their frequencies are fixed, f = 50Hz, whereas their peak values can be changed, Vmax ∈ [0;325], with
E = 562V . Then the reference voltage is sampled by a zero-order hold. It is noted as Vre f ,k. Obviously
the PWM solution set is obtained by (28). Finally, the duty cycles to apply are compared to a triangle
carrier. In this study the carrier frequency is fixed at 10kHz. Consequently, the duty cycle values are
constant during each switching period Ts = 0.1ms.



Sinusoidal PWM

To check the accuracy of our model, this basic PWM is simulated. It is obtained with

λb =
1

2
and µ = 0 (32)

in the main duty cycle expression given in equation (28). Finally the duty cycle is expressed as

α =
Vre f ,k

E
+

1

2
U. (33)

The sampled duty cycle α illustrated in Fig. 4, is compared to the triangle carrier. In such example, two
Vmax values are applied:

Vmax =











E

3
if 0≤ Time < 0.03s,

E

2
if 0.03s≤ Time≤ 0.06s,

(34)

The obtained 3ϕ currents are given in Fig. 5.

 ✠
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Figure 4: Sampled duty cycle α.
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Figure 5: Sinusoidal PWM - 3ϕ currents.

A zoom view of the comparison of the triangle carrier and the sampled duty cycle is provided in Fig. 6.

It is noted that for Vre f ,k values higher than E
2

, the voltage linearity zone is not ensured. The maximal

possible value is obtained for Vmax =
E
2

. Indeed, each duty cycle achieves his maximum αi = 1, for
appropriate time, as illustrated in Fig. 4.

Zero Sequence Signal PWM

This technique is used in order to extend the linearity zone of PWM, [17]. Some studies such as [18]
reveals that the linearity zone of PWM is linked to the modulation index value. This index allows to
quantify the fundamental of the load voltage, and is expressed as

mi =
Vmax

Vsix−step

. (35)

Vsix−step is the maximum fundamental value of a square wave.

To obtain the Zero Sequence Signal PWM, a zero sequence voltage VNO

E
is added to the duty cycle

obtained in a SPWM, Eq. (33). It leads to a new expression of duty cycles

α =
Vre f ,k

E
+

1

2
U +

VNO

E
U. (36)

Considering (28) and (36), it is obvious that

λb =
1

2
and µ =

VNO

E
(37)
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Figure 6: Zoom view - comparison of α triangle carrier,

followed by the 3ϕ currents.

fulfill the degrees of freedom of the solution set to obtain (36). The most common case encountered is

VNO =
Vmed

2
, (38)

with Vmed the medium value of the load voltage VlN . For instance, if VaN 6VbN 6VcN , then Vmed =VbN .
This is expressed as

Vmed

2
=−max(Vre f ,k)+min(Vre f ,k)

2
=VNO. (39)

Then, Vmax can reach the maximal line voltage value, E√
3
. In Fig. 7 the duty cycles applied are illus-

trated. The µ term, which corresponds to VNO

E
is also displayed. The resulted currents point out the good

behaviour of the model.

αa αb αcp.u

µp.u

Ia Ib Ic
A

Time(s)
Figure 7: For µ = Vmed/(2E) - Applied duty cycles and

obtained currents.

µ optimisation

The linearity voltage zone

To analyze the µ optimisation, the linearity voltage zone is defined as the main criterion. It is monitored
thanks to the modulation ratio expressed in (35). On the one hand, using a Sinusoidal PWM this ratio is



known to reach mi =
π
4
≈ 0.785. This modulation ratio is reached for Vmax =

E
2

. Whereas Vsix−step =
2E
π

is the maximum fundamental value of a square wave. Each output voltage allowed ∈ {−2E
3

−E
3

E
3

2E
3
},

is maintained during a time period of 1
6 f

. On the other hand, using a Zero Sequence Signal PWM

leads to consider a maximal voltage value Vmax =
E√

3
. Consequently, the modulation index is increased:

mi = 0.907.
Following this, the sweeping range for µ is established using (28) and (26). Indeed the degree of freedom

is expressed. Considering λb =
1
2

implies

−min(Vre f ,k)

E
− 1

2
≤ µ≤ 1

2
− max(Vre f ,k)

E
. (40)

Thanks Eq. (40), the high and low margins, µhigh, µlow, are expressed

µlow ≤ µ≤ µhigh. (41)

Each margin is dependent on the maximal or the minimal values of the desired voltage. It is obvious that
(40) is true only if

µlow ≤ µhigh ⇔ max(Vre f ,k)−min(Vre f ,k)≤ E. (42)

Moreover, max(Vre f ,k)−min(Vre f ,k) is the maximal value of the line voltages Vab Vbc and Vca. It is
established by

max(Vre f ,k)−min(Vre f ,k) = max(Vll) =
√

3Vmax, (43)

with Vll = [VabVbcVca]
T . It is conluded that, for a three-phase VSI as illustrated in Fig. 3, the maximal

linearity voltage zone is ensured while the phase voltage involved in the PWM process is

Vmax ≤
E√

3
. (44)

To illustrate such degree of freedom, a first obvious way to ensure (40), is to consider the average point
between the two margins such as

µ =
µhigh +µlow

2
. (45)

This leads to express

µ =−
1

2E

(

max(Vre f ,k)+min(Vre f ,k)
)

(46)

which is exactly the VNO

E
expression given in Eq. (38) and Eq. (39).

Let us now consider the Sinusoidal PWM (cf. section ) and the Zero Sequence Signal PWM (cf. section )
simulations. Following (31), the µ values, µS and µZSS respectively, are computed. They are related to the

3 reference peak voltages: Vmax ∈
{

E
3

E
2

E√
3

}

. The result is presented in Fig. 8. This figure is obtained

thanks to

Vmax =























E

3
if 0≤ Time < 0.03s,

E

2
if 0.03s≤ Time < 0.06s,

E√
3

if 0.06s≤ Time≤ 0.1s.

(47)

The last case corresponds to the maximal value allowed in order to reach the maximal value of the
modulation index. As illustrated in Fig. 8, it becomes obvious that the Sinusoidal PWM do not match

anymore the linearity assessment (40) when Vmax >
E

2
. As a consequence, the duty cycles for each PWM

reach their maximal value when Vmax =
E
2

, Vmax =
E√

3
respectively, as shown in Fig. 9.

Fig. 8 also highlights that within the µhigh µlow margins, the maximal linearity ratio mi is ensured. It is
concluded that all the PWM carrier based solutions are included within the solution set (28). Moreover
it is observed that the µ waveform is not unique. This means that other possible solutions which fulfill
other criterions, can be highlight.
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Figure 8: µ margins and µ waveforms expressed for Si-

nusoidal PWM - µS and Zero Sequence Signal PWM -

µZSS.
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Figure 9: Duty cycle waveforms of the first VSI leg,

expressed for Sinusoidal PWM - αS and Zero Sequence

Signal PWM - αZSS.

Switching losses

For instance, while the linearity ratio is ensured, µ is now set in order to reduce the switching losses.
Effectively, when the duty cycle α is set to 1 or 0, the correponding VSI leg is not switched throughout
a switching period Ts. Then the losses are naturally decreasing. Let us consider µ arbitrary fixed as

µ = µhigh. (48)

As illustrated in Fig. 10, the duty cylce waveforms change. For some switching period they are clamped
to 1. It is demonstrated in Fig. 11 that the general shape of the currents is still correct, whereas the leg

✻
αa

✻
αb

✻
αc

✻
µ

Time(s)

p.u

p.u

Figure 10: µ and duty cycle waveforms, taken for reduc-

ing switching losses.

✻Ia
✻Ib
✻Ic

VaO

Time(s)

V

A

Figure 11: First leg voltage and three-phase currents ob-

tained with µ taken for reducing switching losses.

voltage is clamped to E for more than one switching period. Of course it is linked with αi = 1.
In such example, if µ satisfies,

µlow ≤ µ = µhigh, (49)

an optimized functionning is ensured as far as the linearity voltage zone and the switching losses are
concerned.

Conclusion

In this paper a mathematical solution set for duty cycles used in carrier based PWM technique applied
to Voltage Source Inverters is established. Using the generalized inverse theory, the solution set for the
duty cycle is expressed. Two degrees of freedom that allows to describe some PWM published before are



pointed out. Using matrix calculus and simulation software, it is demonstrated that each usual solution
is included within admissible margins. This approach permits today to recover the known solutions but
our works continue to explore new mathematical solutions that have interesting features as regards to the
conversion of energy.
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