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A Second-order Total Variation Metric

on the Space of Immersed Curves

Giacomo Nardi, Gabriel Peyré, François-Xavier Vialard

Ceremade, Université Paris-Dauphine⇤

Abstract

This paper studies the space of BV
2 planar curves endowed with the BV

2 Finsler metric

over its tangent space of displacement vector fields. Such a space is of interest for applications in

image processing and computer vision because it enables piecewise regular curves that undergo

piecewise regular deformations, such as articulations. The main contribution of this paper is the

proof of the existence of a shortest path between any two BV
2 curves for this Finsler metric.

The method of proof relies on the construction of a martingale on a space satisfying the Radon-

Nikodym property and on the invariance under reparametrization of the Finsler metric. This

method applies more generally to similar cases such as the space of curves with H
k metrics

for k > 2 integer. When k > 2 is integer, this space has a strong Riemannian structure and

is geodesically complete. Thus, our result shows that the exponential map is surjective, which

is complementary to geodesic completeness in infinite dimensions. We propose a finite element

discretization of the minimal geodesic problem, and use a gradient descent method to compute a

stationary point of a regularized energy. Numerical illustrations shows the qualitative difference

between BV
2 and H

2 geodesics.
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1 Introduction

This paper addresses the problem of the existence of minimal geodesics in spaces of planar

curves endowed with several metric over the tangent spaces. Given two initial curves we prove

the existence of a minimizing geodesic joining them. Such a result is proved by direct methods of

calculus of variations.

We treat the case of BV 2-curves and Hk-curves (k > 2 integer). Although the proof’s strategy

is the same, the BV 2 and Hk cases are slightly different and the proof in the Hk case is simpler.

This difference is essentially due to the inherent geometric structures (Riemannian or Finslerian) of

each space.

∗{nardi,peyre,vialard}@ceremade.dauphine.fr
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We also propose a finite element discretization of the minimal geodesic problem. We further

relax the problem to obtain a smooth non-convex minimization problem. This enables the use of a

gradient descent algorithm to compute a stationary point of the corresponding functional. Although

these stationary points are not in general global minimizers of the energy, they can be used to explore

numerically the geometry of the corresponding spaces of curves, and to illustrate the differences

between the Sobolev and BV 2 metrics.

1.1 Previous Works

Shape spaces as Riemannian spaces. The mathematical study of spaces of curves has been

largely investigated in the last years, see for instance [37, 20]. The set of curves is naturally mod-

eled over a Riemannian manifold [22]. This corresponds to using a Hilbertian metric on each tangent

plane of the space of curves, i.e. the set of vector fields which deform infinitesimally a given curve.

Several recent works [22, 13, 36, 35] point out that the choice of the metric notably affects the

results of gradient descent algorithms for the numerical minimization of functionals. Carefully de-

signing the metric is thus crucial to reach better local minima of the energy and also to compute

descent flow with particular behavior. These issues are important for application in image process-

ing (e.g. image segmentation) and computer vision (e.g. shape registration). Typical examples of

such a Riemannian metrics are Sobolev-type metrics [29, 27, 31, 30] which lead to smooth curve

evolutions.

Shape spaces as Finslerian spaces. It is possible to extend this Riemannian framework by con-

sidering more general metrics on the tangent planes of the space of curves. Finsler spaces make use

of Banach norms instead of Hilbertian norms [6]. A few recent works [20, 36, 14] have studied the

theoretical properties of Finslerian spaces of curves.

Finsler metrics are used in [14] to perform curve evolution in the space of BV 2-curves. The

authors make use of a generalized gradient which is the steepest descent direction according to

the Finsler metric. The corresponding gradient flow enables piecewise regular evolutions, which is

useful for applications such as registration of articulated shapes. The present work naturally fol-

lows [14]. Instead of considering gradient flows to minimize smooth functionals, we consider the

minimal geodesic problem. The existence of solutions to this problem is important to understand

the underlying space of curves. This problem is also useful to perform registration of two shapes in

computer vision applications.

Geodesics in shape spaces. The computation of geodesics over Riemannian spaces is now rou-

tinely use in many imaging applications. Typical examples of applications include shape registra-

tion [28, 34, 32], tracking [28] and shape deformation [19]. Geodesic computations also serve as the

basis to perform statistics on shape spaces, see for instance [34, 2] and to generalize standard tools

from Euclidean geometry such as averages [3], linear regression [26] and cubic splines [32], to name

a few. However, due to the infinite dimensional nature of shape spaces, not all Riemannian structures

lead to well-posed length-minimizing problems. For instance, a striking result [22, 35, 36] is that

the natural L2-metric on the space of curves is degenerate, despite its widespread use in computer

vision applications. Indeed, the geodesic distance between any pair of curves is equal to zero.

The study of the geodesic distance over shape spaces (modeled as curves, surfaces or diffeomor-

phisms) has been widely developed in the past ten years [23, 9, 8]. We refer the reader to [7] for
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a review of this field of research. These authors typically address the questions of existence of the

exponential map, geodesic completeness (the exponential map is defined for all time) and the com-

putation of the curvature. In some situations of interest, the shape space has a strong Riemannian

metric so that the exponential map is a local diffeomorphism. In [21] the authors describe geodesic

equations for Sobolev metrics. They show in Section 4.3 the local existence and uniqueness of a

geodesic with prescribed initial conditions. This result is improved in [11], where the authors prove

the existence for all time. Both previous results are proved by techniques from ordinary differential

equations. In contrast, local existence (and uniqueness) of minimizing geodesics with prescribed

boundary conditions (i.e. between a pair of curves) is typically obtained using the exponential map.

In finite dimension, existence of minimizing geodesics between any two points (global existence)

is obtained by the Hopf-Rinow theorem [24]. Indeed, if the exponential map is defined for all times

(i.e. the space is geodesically complete) then global existence holds. This however is not true in

infinite dimensions, and a counter example of non-existence of a geodesic between two points over

a manifold is given in see [18]. An even more pathological case is described in [4] where an ex-

ample is given where the exponential map is not surjective although the manifold is geodesically

complete. Some positive results exist for infinite dimensional manifold (see in particular Theorem

B in [15] and Theorem 1.3.36 [20]) but the surjectivity of the exponential map still needs to be

checked directly on a case-by-case basis.

In the case of a Finsler structure on the shape space, the situation is more complicated since the

norm over the tangent plane is often non-differentiable. This non-differentiability is indeed crucial

to deal with curves and evolutions that are not smooth. This implies that geodesic equations need

to be understood in a weak sense. More precisely, the minimal geodesic problem can be seen as

a Bolza problem on the trajectories H1([0, 1], BV 2(S1,R2)). In [25] several necessary conditions

for existence of solutions to Bolza problems in Banach spaces are proved within the framework of

differential inclusions. Unfortunately, these results require some hypotheses on the Banach space

(for instance the Radon-Nikodym property for the dual space) that are not satisfied by the space of

functions with bounded variation we consider in this paper. We thus tackle these issues in the present

work and prove local and global existence of minimal geodesics in the space of BV 2 curves. We

also show how similar techniques can be applied to the case of Sobolev metrics.

1.2 Contributions

Section 2 deals with the Finsler space of BV 2-curves. Our main contribution is Theorems 2.15

proving the existence of a minimizing geodesic between two BV 2-curves. We also explain how this

result can be generalized to the setting of geometric curves (i.e. up to reparameterizations).

Section 3 extends these results to Hk-curves with k > 2 integer, which gives rise to Theorem 3.2

and Theorem 3.5. Our results are complementary to those presented in [21] and [11] where the

authors show the geodesic completeness of curves endowed with theHk-metrics with k > 2 integer.

We indeed show that the exponential map is surjective.

Section 4 proposes a discretized minimal geodesic problem for BV 2 and Sobolev curves. We

show numerical simulations for the calculation of stationary points of a regularized energy, which

is smooth and thus allows one to use gradient descent schemes.
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2 Geodesics in the Space of BV 2-Curves

In this section we define immersed parameterized BV 2-curves and prove useful properties (Sec-

tion 2.1). We also define a geodesic Finsler distance on that space and prove results of existence

(Sections 2.2). Finally, we extend this framework to the case of geometric curves (Section 2.3).

The strategy is as follows: we first prove that the geodesic distance is locally equivalent to the

distance defined by the ambient Banach norm and then prove existence using a convergent martin-

gale to a minimum. Last, existence of geodesics between geometric curves is obtained thanks to a

similar argument on the quotient space.

2.1 The Finsler Space of Parameterized BV 2-curves

Next definition defines the space of immersed parameterized BV 2-curves. This is the obvious

generalization of the space of smooth immersed curves

Imm(S1,R2) =
{
c 2 C1(S1,R2) : c0(x) 6= 0 8 x 2 S

1
 

to the space ofBV 2(S1,R2) curves, which are not necessarily smooth. We remind that f 2 BV 2(S1,R
(we identify S

1 with [0, 1]) if f 2 W 1,1(S1,R2) and its second variation is finite:

|D2f |(S1) = sup

⇢Z

S1

f(s) · g00(s) dγ(s) : g 2 C1
c (S1,R2), kgkL1(S1,R) 6 1

}

<1 .

Then, the BV 2-norm is defined as

kfkBV 2(S1,R2) = kfkW 1,1(S1,R2) + |D2f |(S1) .

We also remind that BV 2(S1,R2) ⇢ W 1,1(S1,R2) and, in particular, BV 2-functions are con-

tinuous.

Definition 2.1 (BV 2 immersed curves). We consider the Banach space BV 2(S1,R2), where S
1 is

the unit circle. For every γ 2 BV 2(S1,R2) we consider the following property

0 /2 Conv(γ0(s+), γ0(s−)) 8 s 2 S
1 (2.1)

where Conv denotes the convex envelope (a line segment) of the right and left limits (γ0(s−), γ0(s+))
of the derivative of γ at s.

In the following we define the space B of immersed BV 2 parameterized curves as the set of

counterclockwise oriented curves belonging to the following set:

{
γ 2 BV 2(S1,R2) : γ satisfies (2.1)

 
. (2.2)

Note that due to the existence of both clockwise and counter-clockwise parametrizations, the

open set (see Proposition 2.5) defined in (2.2) is not connected.
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Remark 2.2 (Unit speed parameterization). Property (2.1) allows one to define the unit speed

parameterization for γ:

sγ : S1 ! S
1

sγ(s) =
1

L (γ)

Z s

s0

|γ0(t)| dt , s0 2 S
1

where L (γ) denotes the length of γ defined as

L (γ) =

Z

S1

|γ0(s)|ds .

Finally we point out that for every curve γ its unit speed parameterization is given by γ ◦ 'γ

where 'γ = s−1
γ .

Remark 2.3 (Reparameterizations). In the following we denotes by Diff(S1) the set of homeo-

morphisms ' 2 BV 2(S1, S1) such that '−1 2 BV 2(S1, S1).
Note that any ' 2 Diff(S1) can be lifted (see [17]) to a diffeomorphism '̃ of R. Therefore,

Diff(S1) can be interpreted as a subset of BV 2(S1, S1). Since the reparametrization can be chosen

up to the choice of a basepoint, we can assume that lifts of reparametrizations can be written as

Id + ('̃ − Id) with '̃ − Id 2 BV 2(S1,R). This implies in particular that the weak topologies on

reparametrizations correspond to the weak topologies on BV 2(S1, S1).

Remark 2.4. By Claim 3 p.218 in [16], we have the continuous embedding of BV in L1(S1,R2):

8 u 2 BV (S1,R2), kukL1(S1,R2) 6 kukBV (S1,R2). (2.3)

We use this continuous embedding to prove in the following proposition that B is an open set of

BV 2(S1,R2).

Proposition 2.5. Let γ0 2 B be parameterized by the unit speed parameterization. We have

⇢

γ 2 BV 2(S1,R2) : kγ − γ0kBV 2(S1,R2) 6
L (γ0)

2

}

⇢ B , (2.4)

which proves that B is an open set of BV 2(S1,R2).

Proof. As γ0 2 B is parameterized by the unit speed parameterization we have |γ00(s)| = L (γ0)
for every s 2 S

1, so that we have

L (γ0) = min
s2S1

|γ00(s)| .

Now, by (2.3), we have kukL1(S1,R2) 6 kukBV (S1,R2) for every u 2 BV (S1,R2), so every curve

γ 2 BV 2(S1,R2) such that

kγ − γ0kBV 2(S1,R2) 6
L (γ0)

2

satisfies (2.1).

Property (2.1) allows to generalize standard properties from the setting of smooth curves to

BV 2-curves. Note also that this condition implies that the support of the curve has no cusp points.

We can now generalize to BV 2 curves the usual properties of smooth curves.
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Proposition 2.6. For every γ 2 B the set [γ] = γ(S1) can be locally represented as the graph

of a BV 2-function. For every γ1, γ2 2 B such that [γ1] = [γ2], there exists a homeomorphism

' 2 BV 2(S1, S1) such that

γ1 = γ2 ◦ ' . (2.5)

Proof. See [14], Proposition 3.7.

Note that the diffeomorphism ' appearing in (2.5) is not unique.

Definition 2.7 (Tangent space). For any γ 2 B, we set TγB = BV 2(γ) the space BV 2(S1,R2)
equipped with the measure dγ(s) = |γ0(s)|ds. In BV 2(γ) , integration and differentiation is done

with respect to dγ(s). Namely, the notation dg
dγ(s)

(s) stands for 1
|γ0(s)|

dg
ds

.

Moreover, for every f 2 BV 2(S1,R2), its first and second variations with respect to the measure

dγ are defined respectively by

TVγ (f) = sup

⇢Z

S1

f(s) ·
dg

dγ(s)
(s) dγ(s) : g 2 C1

c (S1,R2), kgkL1(S1,R2) 6 1

}

(2.6)

and

TV 2
γ (f) = sup

⇢Z

S1

f(s) ·
d2g

dγ(s)2
(s) dγ(s) : g 2 C1

c (S1,R2), kgkL1(S1,R2) 6 1

}

. (2.7)

We also remark that

kf 0kL1(S1,R2) =

∥
∥
∥
∥

df

dγ

∥
∥
∥
∥
L1(γ)

.

Then the BV 2(γ)-norm is defined as it follows

kfkBV 2(γ) =

Z

S1

|f ||γ0| ds+

Z

S1

|f 0| ds+ TV 2
γ (f) 8 f 2 BV 2(γ) .

Finally, we remind that

kfkBV 2(γ) = kf ◦ 'γk
w
BV 2(S1,R) ,

kfkwBV 2(S1,R) = L (γ)kfkL1(S1,R) + kf 0kL1(S1,R) +
1

L (γ)
|Df |(S1) 8f 2 BV 2(S1,R) .

(2.8)

Moreover, analogously to Lemma 2.13 in [11], we have the following Poincaré inequality

kfkL1(S1,R2) 6
1

L (γ)

Z

S1

f dγ + TVγ

✓
df

dγ

◆

8 f 2 BV (γ) . (2.9)

Remark 2.8 (Weighted norms). Similarly to [11], we could consider some weighted BV 2-norms,

defined as

kfkBV 2(S1,R2) = a0kfkL1(S1,R2) + a1kf
0kL1(S1,R2) + a2|D

2f |(S1)

where ai > 0 for i = 1, 2, 3. We can define the norm on the tangent space by the same constants.

One can easily verify that our results can be generalized to such a framework. In fact, previous

norm is equivalent to the classic-one and the positive constants do not affect the bounds and the

convergences properties that we prove in this work.
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Next proposition proves that the tangent space to a given curve in B and BV 2(S1,R2) represent

the same space of functions with equivalent norms.

Proposition 2.9. Let γ 2 B. The following properties hold:

1. The sets BV 2(γ) and BV 2(S1,R2) coincide and their norm are equivalent. More precisely,

there exist two positive constants Mγ,mγ such that, for all f 2 BV 2(S1,R2)

mγkfkBV 2(S1,R2) 6 kfkBV 2(Γ) 6MγkfkBV 2(S1,R2) . (2.10)

2. We have

kfkL1(S1,R2) = kfkL1(γ) . (2.11)

Proof. (Proof of (2.10)) We suppose that f is not equal to zero. In the case of the L1-norm on f ,

the result follows from (2.1) and the compactness of S1. The constants are given respectively by

M0
γ = k|γ0|kL1(S1,R2) m0

γ = min
s2S1

|γ0(s)|.

Moreover by a straightforward calculation one can easily see that the L1(γ) and L1(S1,R2)-norms

of the first derivative coincide. So it is sufficient to obtain the result for the second variation of

f 2 BV 2(γ).
By integration by part, we have

Z

S1

f(s) ·
d2g

dγ2(s)
(s) dγ(s) =

Z

S1

f 0

|γ0|
g0(s) ds

where we used the fact that dg
dγ(s)

= g0

|γ0|
. This implies in particular that

TV 2
γ (f) =

∣
∣
∣
∣
D
f 0

|γ0|

∣
∣
∣
∣
(S1) .

Since 1
|γ0|

2 BV (S1,R2) and BV (S1,R2) is a Banach algebra, we get

|D
f 0

|γ0|
|(S1) 6 |Df 0|(S1)|D

1

|γ0|
|(S1).

Now, as |Df 0|(S1) 6 |D2f |(S1), we get the upper bound taking the constant

M2
γ =

∣
∣
∣
∣
D

1

|γ0|

∣
∣
∣
∣
(S1) .

On the other hand, we have

Z

S1

f 0g0(s) ds =

Z

S1

df

dγ(s)
(s)

dg

dγ(s)
(s) |γ0|dγ(s)

so that

|Df 0|(S1) = TVγ

✓
df

dγ(s)
|γ0|

◆

,
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which implies that

|D2f |(S1) 6 TVγ(|γ
0|)TV 2

γ (f) 6 k|γ0|kBV (S1,R)TV
2
γ (f) . (2.12)

Therefore, the result is proved by taking the constant

m2
γ =

1

k|γ0|kBV (S1,R2)

·

The lemma ensues setting

Mγ = max {M0
γ ,M

2
γ} = max

n

k|γ0|kL1(S1,R2) ,
∣
∣
∣D 1

|γ0|

∣
∣
∣ (S1)

o

,

mγ = min {m0
γ,m

2
γ} = min

⇢

min
s2S1

|γ0(s)| , 1/k|γ0(·)|kBV (S1,R2)

}

.
(2.13)

(Proof of (2.11)) It follows straightforwardly from (2.1) that the two measures are equivalent, i.e.
Z

A

ds = 0 ,

Z

A

dΓ(s) = 0

for every open set A of the circle.

2.2 Existence of Geodesics

In this section, we prove that geodesics for the induced Finsler metric exist for any given couple

of curves in the same homotopy class.

Definition 2.10 (Paths in B). For every γ0, γ1 2 B, we define a path in B joining γ0 and γ1 as a

function

Γ : t 2 [0, 1] 7! Γ(t) 2 B

such that

Γ(0) = γ0 Γ(1) = γ1 . (2.14)

For every γ0, γ1 2 B, we denote P(γ0, γ1) the class of all paths joining γ0, γ1 and belonging to

H1([0, 1],B). It holds in particular

8 a.e. s 2 S
1,

Z 1

0

Γt(t)(s)dt = γ1(s)− γ0(s) (2.15)

where Γt denotes the derivative of Γ with respect to t. In the following Γ0(t) denotes the derivative

of the curves Γ(t) 2 BV 2(S1,R2) with respect to s.

Definition 2.11 (Geodesic paths in B). For every path Γ we consider the following energy

E(Γ) =

Z 1

0

kΓt(t)k
2
BV 2(Γ(t)) dt. (2.16)

The geodesic distance between γ0 and γ1 is denoted by d(γ0, γ1) and defined by

d2(γ0, γ1) = inf {E(Γ) : Γ 2 P(γ0, γ1)} . (2.17)

A geodesic between γ0 and γ1 is a path Γ̃ 2 P(γ0, γ1) such that

E(Γ̃) = d2(γ0, γ1).
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Note that because of the lack of smoothness of the BV 2 norm over the tangent space, it is not

possible to define an exponential map. Geodesics should thus be understood as minimal geodesics,

and are thus homotopies defined using the variational problem 2.17. Recall that the existence of

(minimizing) geodesics is not granted in infinite dimension. When the metric is Riemannian and

even if the manifold is geodesically complete, the existence of minimizers is not guaranteed since

the Hopf-Rinow theorem does not hold in infinite dimension, see Section 1.1.

Remark 2.12 (Time-reparameterization and geodesic energy). We point out that analogously to

Remark 2.2 we can reparameterize every non-trivial homotopy Γ (i.e. satisfying E(Γ) 6= 0) with

respect to the time-unit speed parameterization, defined as the inverse of the following parameter:

tΓ : S1 ! S
1

8 t 2 [0, 1], tΓ(t) =
1

E1(Γ)

Z t

0

kΓ⌧ (⌧)kBV 2(Γ(⌧)) d⌧ ,

where

E1(Γ) =

Z 1

0

kΓ⌧ (⌧)kBV 2(Γ(⌧)) d⌧ .

In particular, if kΓ⌧ (⌧)kBV 2(Γ(⌧)) 6= 0 for every t, by reparameterizing the homotopy with respect to

previous parameter we obtain a parameterization with constant velocity

kΓt(t)kBV 2(Γ(t)) = E1(Γ) 8 t 2 [0, 1] . (2.18)

In the general case, for every " > 0, we can always prove the existence of a time-parameterization

such that

kΓt(t)kBV 2(Γ(t)) 6 E1(Γ) + " 8 t 2 [0, 1] .

This implies in particular that

E1(Γ) = E(Γ ◦ t−1
Γ )

for every path Γ. Then, the minimizers of E1 coincide with the minimizers of E reparameterized

with respect to the parameter tΓ. This justifies the definition of the geodesic energy E by a L2-norm.

We refer to [38] (see Theorem 8.18 and Corollary 8.19, p.175) for more details.

We prove now that constants mΓ(t) and MΓ(t) defined in (2.13) are uniformly bounded on mini-

mizing paths.

To this end we need the following lemma.

Lemma 2.13. Let Γ 2 P(γ0, γ1). Then the following properties hold:

1. The function

t 7! g(t) = kΓ0(t)kL1(S1,R2)

belongs toC([0, 1],B), so in particular it admits a maximum and a positive minimum on [0, 1].
Moreover

min
t2[0,1]

min
s2S1

|Γ0(t)(s)| > 0 .
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2. For every t 2 [0, 1] we have

L (γ0)e
−E(Γ)

6 L (Γ(t)) 6 L (γ0)e
E(Γ) (2.19)

and for all s 2 S
1,

(min
s2S1

|γ00(s)|)e
−E(Γ)

6 |Γ0(t)(s)| 6 kγ00kL1(S1,R2)e
E(Γ) . (2.20)

Proof. 1. By Definition 2.11, every Γ 2 P(γ0, γ1) belongs to H1([0, 1],B) so in particular to

C([0, 1],B). Now, as BV 2(S1,R2) is embedded in L1(S1,R2), we get the continuity of g. More-

over, from (2.1) and the compactness of S1, it follows that

min
s2S1

|Γ0(t)(s)| > 0, 8 t 2 [0, 1]

which implies that min
t2[0,1]

g(t) > 0. The second statement is a straightforward consequence of (2.1)

and the compactness of [0, 1].
This implies in particular that functions t 7! L (Γ(t)) and t 7! |Γ0(t)(s)| (for every s 2 S

1) are

continuous.

2. By Remark 2.12 we can suppose that the time-velocity is constant. We have

@L (Γ(t))

@t
=

Z

S1

h
Γ0
t(t)

|Γ0(t)|
,Γ0(t)i ds 6

∥
∥
∥
∥

dΓt(t)

dΓ(t)

∥
∥
∥
∥
L1(Γ(t))

L (Γ(t)) ,

and, as
dΓt(t)
dΓ(t)

has null average, by (2.9), we have

∥
∥
∥
∥

dΓt(t)

dΓ(t)

∥
∥
∥
∥
L1(S1,R2)

6 E(Γ) .

This implies
@ log(L (Γ(t)))

@t
6 E(Γ) 8 t 2 [0, 1],

and, by integrating in time between 0 and t, we get

L (γ0)e
−E(Γ)

6 L (Γ(t)) 6 L (γ0)e
E(Γ) .

Similarly we have

@|Γ0(t)(s)|

@t
=

⌧
Γ0
t(t)

|Γ0(t)|
,Γ0(t)(s)

〉

6

∥
∥
∥
∥

dΓt(t)(s)

dΓ(t)

∥
∥
∥
∥
L1(S1,R2)

|Γ0(t)(s)|

and, as above, we get

@ log(|Γ0(t)(s)|)

@t
6 E(Γ), 8 s 2 S

1 8 t 2 [0, 1].

The result follows by integrating in time.
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Proposition 2.14. Let γ0 2 B and we consider the geodesic ball

Bd(γ0, r) = {γ 2 B | d(γ0, γ) < r} .

Then constants mγ and Mγ defined in (2.13) verify

C1e
−C0(r+1)2

6 mΓ(t) 6MΓ(t) 6 C2e
C0(r+1)2 8 t 2 [0, 1] (2.21)

where C0, C1, C2 are three positive constants depending on γ0 and E(Γ) (see (2.24) and (2.27)).

Proof. Given γ 2 Bd(γ0, r), we show that

C1e
−C0E(Γ)

6 mΓ(t) 6MΓ(t) 6 C2e
C0E(Γ) 8 t 2 [0, 1]

for every Γ 2 P(γ0, γ). The result follows by considering a path Γ such that E(Γ) 6 (r + 1)2 and

setting t = 1.

Because of (2.20), we have

(min
s2S1

|γ00(s)|)e
−E(Γ) 6 min

s2S1
|Γ0(t)(s)|

k|Γ0(t)|kL1(S1,R2) 6 kγ00kL1(S1,R2)e
E(Γ).

(2.22)

for every t 2 [0, 1]. By setting f(t) = Γ0(t) in (2.12) and by a time-reprameterization, we get

|D2Γ0(t)|(S1) 6 k|Γ0(t)|kBV (S1,R)E(Γ) . (2.23)

Thus

kΓ0(t)− γ00kBV (S1,R) 6

Z t

0

kΓ0
⌧kBV (S1,R)d⌧ =

Z t

0

[kΓ0
⌧kL1(S1,R2) + |D2Γ⌧ |(S

1)]d⌧

and, by (2.23) and (2.18), we have

kΓ0(t)− γ00kBV (S1,R) 6 E(Γ) +

Z t

0

k|Γ0(t)|kBV (S1,R)E(Γ)d⌧ .

In particular, by the chain rule for BV -functions ([1]: Theorem 3.96 p. 189), we have

k|Γ0(t)|kBV (S1,R) 6 C0 kΓ
0(t)kBV (S1,R)

where

C0 = max

8

<

:
1,

1

min
s2S1

|γ00(s)|

9

=

;
. (2.24)

Then

k|Γ0(t)|kBV (S1,R) 6 C0

✓

kγ00kBV (S1,R) + E(Γ) +

Z t

0

k|Γ0(t)|kBV (S1,R)E(Γ)d⌧

◆

and by the Gronwall’s inequality we get

k|Γ0(t)|kBV (S1,R) 6 C0(kγ
0
0kBV (S1,R) + E(Γ))eC0E(Γ) . (2.25)
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From previous relationship implies that

e−C0E(Γ)

C0(kγ00kBV (S1,R) + E(Γ))
6

1

k|Γ0(t)|kBV (S1,R2)
∣
∣
∣
∣
D

1

|Γ0(t)|

∣
∣
∣
∣
(S1) 6

C0(kγ
0
0kBV (S1,R) + E(Γ))

min
s2S1

|γ00(s)|
2

eC0E(Γ)

(2.26)

where we used the chain rule for BV -functions to prove the second inequality. The result follows

from (2.22) and (2.26) by setting

C1 = min

⇢

min
s2S1

|γ00(s)| ,
1

C0(kγ00kBV (S1,R) + E(Γ))

}

,

C2 = max

8

<

:
kγ00kL1(S1,R2) ,

C0(kγ
0
0kBV (S1,R) + E(Γ))

min
s2S1

|γ00(s)|
2

9

=

;
.

(2.27)

We can now prove an existence result for geodesics.

Theorem 2.15 (Existence). Let γ0, γ1 2 B such that d(γ0, γ1) < 1. Then, there exists a geodesic

between γ0 and γ1.

Proof. Let {Γh}h ⇢ P(γ0, γ1) be a minimizing sequence for E. Without loss of generality we can

suppose suph E(Γh) < +1. We also remark that, from previous lemma, it follows

0 < inf
h

inf
t2[0,1]

mΓh(t) < sup
h

sup
t2[0,1]

MΓh(t) < +1 .

Step 1: Definition of a limit path. For every n > 1 we consider the dyadic decomposition of [0, 1]
given by the intervals

In,k = [
k

2n
,
k + 1

2n
[ for k 2 [0, 2n − 1] (2.28)

and, for every t 2 [0, 1] we define

fh
n (t) = 2n

Z

In,k

Γh
⌧ (⌧) d⌧,

where In,k is the interval containing t. Remark that, for every n and h, fh
n : [0, 1] ! BV 2(S1,R2)

is piecewise-constant and

Z 1

0

fh
n (⌧) d⌧ =

Z 1

0

Γh
t (t) dt = Γ(1)− Γ(0) . (2.29)

Now, we have m = inf
h

min
t2[0,1]

mΓh(t) > 0 and, by (2.10), we get

kfh
n (t)k

2
BV 2(S1,R2) 6 2n

Z 1

0

kΓh
t (t)k

2
BV 2(Γ(t))

mΓ(t)

6
2n

m
E(Γh) 8 t 2 [0, 1] . (2.30)



13

So, by a diagonal extraction, we can take a subsequence (not relabeled) and a piecewise-constant

function f1
n : [0, 1] ! BV 2(S1,R2) such that

8 (n, k), fh
n (t)

⇤−BV 2

* f1
n (t), 8 t 2 [0, 1]

and Z 1

0

kf1
n (t)k2BV 2(S1,R2)dt 6 lim inf

h!1

Z 1

0

kfh
n (t)k

2
BV 2(S1,R2)dt .

Moreover we can write In,k = [k2−n, (2k + 1)2−n−1[[[(2k + 1)2−n−1, (k + 1)2−n[ and

fh
n+1(t) = 2n+1

Z

In+1,2k

Γh
t (t)dt 8 t 2 [k2−n, (2k + 1)2−n−1[

fh
n+1(t) = 2n+1

Z

In+1,2k+1

Γh
t (t)dt 8 t 2 [(2k + 1)2−n−1, (k + 1)2−n[

therefore Z

In,k

fh
n+1(t)dt =

Z

In,k

Γh
t (t)dt

fh
n (t) = 2n

Z

In,k

fh
n+1(t)dt 8 t 2 In,k.

Then, by the Dominated Convergence Theorem, we get

f1
n (t) = 2n

Z

In,k

f1
n+1(t)dt (2.31)

and in addition, by Fatou’s Lemma and (2.30), we get

Z 1

0

kf1
n (t)k2BV 2(S1,R2)dt 6 lim inf

h!1

Z 1

0

kfh
n (t)k

2
BV 2(S1,R2)dt

6 lim inf
h!1

E(Γh)

m
.

Now, as BV 2(S1,R2) is embedded in H1(S1,R2), this implies that {f1
n } is a bounded mar-

tingale in L2([0, 1], H1(S1,R2)) so, by the Convergence Theorem for Martingales, f1
n (t) ! f(t)

in H1(S1,R2) for almost every t. Note also that, as f1
n 2 BV 2(S1,R2) and the second varia-

tion is lower semicontinuous with respect to the W 1,1(S1,R2)-convergence, we actually get f 2
L2([0, 1], BV 2(S1,R2)).

We can now define a candidate to be a minimum of E by setting

Γ1(t) =

Z t

0

f(⌧) d⌧ + Γ(0), 8 t 2 [0, 1] . (2.32)

We can easily verify that Γ1 2 H1([0, 1], BV 2(S1,R2)) and that Γ1 verifies (2.15). In fact, by the

Dominated Convergence Theorem and (2.29), we have

Z 1

0

f(⌧) d⌧ = lim
n!1

Z 1

0

f1
n (⌧) d⌧ = lim

n!1
lim
h!1

Z 1

0

fh
n (⌧) d⌧ = Γ(1, ·)− Γ(0, ·) .
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This implies in particular that Γ1 verifies (2.14). So we get Γ1 2 P(γ0, γ1).

Step 2: Γ1 is a geodesic path. We now prove that Γh(t) ! Γ1(t) in W 1,1(S1,R2) for every t. For

that we denote by Γ1
n and Γh

n the paths defined by f1
n and fh

n through (2.32). Now, by definition

of fh
n and a straightforward calculation, we get that kΓh(t) − Γh

n(t)kW 1,1(S1,R2) is small for n large

enough. Moreover, as fh
n (t)

⇤−BV 2

* f1
n (t) for every t and f1

n ! f in L2([0, 1], BV 2(S1,R2)) we

have kΓ1
n (t) − Γh

n(t)kW 1,1(S1,R2) ! 0 , as h ! 1 and that kΓ1
n (t) − Γ1(t)kW 1,1(S1,R2) is small

for n large enough. This implies that

kΓh(t)− Γ1(t)kW 1,1(S1,R2) ! 0 . (2.33)

By the same arguments we can show that

kΓh
t (t)− Γ1

t (t)kW 1,1(S1,R2) ! 0 , 8 t 2 [0, 1] , (2.34)

which implies in particular that {Γh
t (t)}h is bounded in BV 2(S1,R2) for almost every t.

Now, as Γh(t) converges in W 1,1(S1,R2) towards Γ1(t) 2 BV 2(S1,R2), the unit speed param-

eterizations at the time t, denoted respectively by 'h(t) and '1(t), also converge in W 1,1(S1, S1).
Moreover, for a fixed time t, we have kΓh

t (t)k
2
BV2(Γh(t))

= kΓh
t ◦'

h(t)k2BV 2(S1,R2) . Since {Γh
t (t)}h is

bounded in BV 2(S1,R2) and the two terms involved in the composition converge in W 1,1(S1,R2),
we have

kΓh
t ◦ '

h(t)− Γh
t ◦ '

1(t)kW 1,1(S1,R2) 6 kΓh
t kBV 2(S1,R2)k'

h(t)− '1(t)kW 1,1(S1,R2)

kΓh
t ◦ '

1(t)− Γ1
t ◦ '1(t)kW 1,1(S1,R2) 6 CkΓh

t − Γ1
t kW 1,1(S1,R2)

where

C = max {1, k('1−1

)0kL1(S1,R2)} .

This implies in particular that

Γh
t ◦ '

h(t)
W 1,1(S1,R2)

! Γ1
t ◦ '1(t) . (2.35)

Now we remark that, because of the W 1,1-convergence, we have L (Γh(t)) ! L (Γ(t)). Moreover,

the second variation is lower semi-continuous with respect to the W 1,1-convergence.

Then, by (2.8), for every t we get

kΓ1
t (t)kBV 2(Γ1(t)) = kΓ1

t ◦ '1(t)kwBV 2(S1,R2)

6 lim inf
h!1

kΓh
t ◦ '

h(t)kwBV 2(S1,R2) = lim inf
h!1

kΓh
t (t)kBV 2(Γh(t)) .

(2.36)

By integrating the previous inequality and using Fatou’s Lemma we get that Γ1 minimizesE, which

ends the proof.

Remark 2.16. In order to get the semicontinuity’s inequality (2.36), we actually just would need the

convergence in (2.35) with respect to the BV 2-weak topology. We point out that it is very difficult

to characterize such a topology, which explains the choice of the weak-* topology (i.e. we look at

BV 2(S1,R2) as a dual Banach space) in the previous proof.

Moreover, the martingale approach allows one to get strong convergence in W 1,1 without apply-

ing any strong-compactness criterion for Sobolev spaces. This is a key point of the proof because

the BV 2-norm is semicontinuous with respect to the strong W 1,1-topology.
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Inspired by the previous proof we can define the following topology on H1([0, 1],B):

Definition 2.17 (σ-topology). Let {Γh}h ⇢ H1([0, 1],B) and Γ 2 H1([0, 1],B). We say that Γh

converges to Γ with respect to the σ-topology (denoted by Γh σ
! Γ) if there exists a sequence of

piecewise constant functions {f1
n } such that:

(i) (BV 2-* weak convergence). Let {In,k}n,k the collection of the intervals giving the dyadic

decomposition of [0, 1] defined in (2.28), then the sequence

fh
n (t) = 2n

Z

In,k

Γh
⌧ (⌧) d⌧

verifies

8 (n, k) fh
n (t)

⇤−BV 2

* f1
n (t) 8 t 2 [0, 1]

as h! 1;

(ii) (Martingale convergence). We have

lim
n!1

kf1
n − ΓtkL2([0,1],H1(S1,R2)) = 0 .

Then, the proof of Theorem 2.15 proves actually the following result:

Theorem 2.18. The following properties hold:

(i) Every bounded set ofH1([0, 1],B) is sequentially compact with respect to σ-topology and the

σ-convergence implies the strong convergence in H1([0, 1],W 1,1(S1,R2));

(ii) The energy E is lower semicontinuous with respect to the σ-topology.

Remark 2.19. The proof of Theorem 2.15 can now be presented as it follows. We can suppose that

{Γh} ⇢ H1([0, 1],B) with sup
h

E(Γh) <1.

Then {Γh} is uniformly bounded inH1([0, 1],B) and, by points (i) and (ii) of previous theorem,

energy E reaches its minimum on H1([0, 1],B).

2.3 Geodesic Distance Between Geometric Curves

Theorem 2.15 shows the existence of a geodesic between any two parameterized curves in B.

We are interested now in defining a geometric distance between geometric curves (i.e., up to param-

eterization).

The space of geometric curves is defined as B/Diff(S1). For every γ 2 B its equivalence class

(called also geometric curve) is denoted by [γ].
Next proposition defines a distance on the set of curves belonging to B up to reparameterization.

Proposition 2.20. The Procrustean dissimilarity measure defined by

D([γ0], [γ1]) = inf {d(γ0 ◦ ', γ1 ◦  ) : ',  2 Diff(S1)} (2.37)

is a distance on the set of B-curves up to reparameterization.
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Proof. The function D is symmetric, non-negative and it is equal to zero if [γ0] = [γ1].
Remark also that, the distance d is invariant under reparameterization, so that

d(γ0, γ1) = d(γ0 ◦ ', γ1 ◦ '), 8' 2 Diff(S1) . (2.38)

Then from the invariance (2.38) it follows that for every '1, '2, '3 2 Diff(S1) and γ1, γ2, γ3 2 B
we have

d(γ1 ◦ '1, γ2 ◦ '2) 6 d(γ1 ◦ '1, γ3 ◦ '3) + d(γ3 ◦ '3, γ2 ◦ '2)
= d(γ1 ◦ '1 ◦ '

−1
3 , γ3) + d(γ3, γ2 ◦ '2 ◦ '

−1
3 )

which implies that the triangle inequality is satisfied for D.

We prove now that D([γ0], [γ1]) = 0 implies that [γ0] = [γ1]. We assume that γ0 is parame-

terized by the unit speed parameterization (this is possible because of the invariance of d under

reparameterization). So there exists a sequence 'h of reparameterizations such that

d(γ0, γ1 ◦ 'h) 6
1

h
.

By Lemma 2.14, minimal energies E(Γh) are uniformly bounded and C = infh inftmΓh(t) > 0.

Then, similarly to (2.30), we get

kγ0 − γ1 ◦ 'hk
2
BV 2(S1,R2) 6

1

Ch2

for h large enough. Thus, the support of γ0 and γ1 coincide which implies, by Proposition 2.6, that

there exists ' 2 Diff(S1) such that γ0 = γ1 ◦ '.

Next theorem proves a existence result for geodesics.

Theorem 2.21 (Geometric existence). Let γ0 γ1 2 B such that D([γ0], [γ1]) 6 ". Then there exists

a minimizer of D([γ0], [γ1]).

Proof. In the following we denoted by γ0 and γ1 the parameterizations by the unit speed parame-

terization. Because of the invariance (2.38) we can write

D([γ0], [γ1]) = inf {d(γ0, γ1 ◦  ) :  2 Diff(S1)}.

We consider a sequence { h}h ⇢ Diff(S1) such that d(γ0, γ1 ◦  h) ! D([γ0], [γ1]) and we suppose

that suph d(γ0, γ1 ◦  h) < 1. By Theorem 2.15, for every h, there exists a geodesic Γh between

γ0 and γ1 ◦  h and d2(γ0, γ1 ◦  h) = E(Γh). We show that there exists  1 2 Diff(S1) such that

D([γ0], [γ1]) = d(γ0, γ1 ◦  1).
By the same arguments used in the proof of Theorem 2.15, we can define (see Step 1) a path

Γ1 2 H1([0, 1], BV 2(S1,R2)) such that

Z 1

0

Γh
t (t)(s)dt!

Z 1

0

Γ1
t (t)(s)dt , (2.39)

and (see Step 2)

Γh(t)
W 1,1(S1,R2)

−! Γ1(t), 8 t 2 [0, 1] (2.40)
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Γh
t (t)

W 1,1(S1,R2)
−! Γ1

t (t), 8 t 2 [0, 1]. (2.41)

Now, because of (2.15), we have

Z 1

0

Γh
t (t)(s)dt = γ1 ◦  h(s)− γ0(s) 8 s 2 S

1 . (2.42)

As {γ1 ◦  h} is bounded in BV 2(S1,R2) there exists a subsequence (not relabeled) converging

BV 2-* weakly towards some curve having the same support that γ1. So, by Proposition 2.6, there

exists  1 2 Diff(S1) such that

γ1 ◦  h

⇤−BV 2(S1,R2)
* γ1 ◦  1 .

Now, as Γh(0) = γ0 and Γh(1) = γ1 ◦  h, from (2.40), it follows

Γ1(0) = γ0 Γ1(1) = γ1 ◦  1

which implies that Γ1 2 P(γ0, γ1 ◦  1). Moreover, denoting by 'h and '1 the unit speed param-

eterization of Γh(t) and Γ1(t) respectively, by (2.40) we have 'h ! '1 in W 1,1(S1,R2). Then,

similarly to (2.36), we get

kΓ1
t (t)kBV 2(Γ1(t)) 6 lim inf

h!1
kΓh

t (t)kBV 2(Γh(t)) .

By integrating the previous inequality and using Fatou’s Lemma we get

E(Γ1) 6 lim
h!1

E(Γh) = lim
h!1

d2(γ0, γ1 ◦  h) = D2([γ0], [γ1]) ,

which implies that D2([γ0], [γ1]) = d2(γ0, γ1 ◦  1) = E(Γ1).

3 Geodesics in the Space of Sobolev Curves

In this section, we study the geodesic boundary value problem in the class of curves belonging

to Hk(S1,R2) with k > 2 integer.

We remind that

Hk(S1,R2) ⇢ C1(S1,R2), 8 k > 2 . (3.1)

In this framework, the proof of existence of geodesics is simpler, since Hk(S1,R2) being a

Hilbert space, the weak topology can be used instead of the BV 2-*weak one.

We define the class of the parameterized Hk-curves as follows.

Definition 3.1 (Hk-curves). We define Hk as the class of counterclockwise oriented curves belong-

ing to Hk(S1,R2) (k > 2 integer) and verifying (2.1).

For every γ 2 Hk the unit speed parameterization 'γ can be defined as in Remark 2.2.
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From (3.1) it follows that there exists a constant C such that

kγ0kL1(S1,R2) 6 CkγkHk(S1,R2), 8 γ 2 Hk . (3.2)

Moreover, it is easy to verify that Hk is an open set of Hk(S1,R2). In fact, similarly to the BV 2-

case, for every γ0 2 Hk, which is parameterized by the unit speed parameterization, (3.2) implies

that ⇢

γ 2 Hk : kγ − γ0kHk(S1,R2) 6
L (γ0)

2C

}

⇢ Hk . (3.3)

We point out that local properties of reparameterization proved in Proposition 2.6 can be easily

generalized to Hk-curves.

As in the previous section we define the space Hk(γ) as the space Hk(S1,R2), where integration

and derivation are performed with respect to the measure dγ = |γ0|ds. Concerning the tangent

space, for any γ 2 Hk, we set TγHk = Hk(γ).
As in the previous section, for every γ0, γ1 2 Hk we consider the class of path Γ 2 H1([0, 1],Hk)

such that Γ(0) = γ0 and Γ(1) = γ1. The energy of a path is defined as

E(Γ) =

Z 1

0

kΓt(t)k
2
Hk(Γ(t)) dt

and the geodesic distance d(γ0, γ1) is defined accordingly (see Definition 2.11).

Moreover, Lemma 5.1 in [11] proves the equivalence of the norms of Hk(S1,R2) and Hk(γ).
Such a result states that, for every γ0 2 Hk, there exists a constant C = C(γ0, D) > 0 such that

1

C
kfkHk(S1,R2) 6 kfkHk(γ) 6 CkfkHk(S1,R2) (3.4)

for every γ 2 Hk such that d(γ0, γ) < D. This proves in particular that the constant C is uniformly

bounded on every geodesic ball.

Finally, in order to compare the Hk-norm after reparameterization, we remark that

kfkHk(γ) = kf ◦ 'γk
w
Hk(S1,R2)

(kfkwHk(S1,R2))
2 = L (γ)2kfk2L2(S1,R2) + L (γ)2(1−k)kf (k)k2L2(S1,R2) 8 f 2 Hk(S1,R2)

(3.5)

We prove now an existence result for geodesics in the Sobolev framework.

Theorem 3.2 (Existence). Let γ0, γ1 2 Hk such that d(γ0, γ1) < 1. Then, there exists a geodesic

between γ0 and γ1.

Proof. Because of (3.4) there exists a constant M > 0 such that

Z 1

0

kΓh
t (t)k

2
Hk(S1,R2) dt 6

Z 1

0

MkΓh
t (t)k

2
Hk(Γ(t)) dt 6ME(Γ) . (3.6)

This implies that Γh
t is uniformly bounded in L2([0, 1], Hk(S1,R2)) and, because of the boundary

conditions, that Γh is uniformly bounded in H1([0, 1], Hk(S1,R2)).
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Therefore there exists a subsequence of Γh that weakly converges in H1([0, 1], Hk(S1,R2)).
Since the embedding

H1([0, 1], Hk(S1,R2)) ⇢ C([0, 1], Hk−1(S1,R2))

is compact, this subsequence (not relabeled) converges to a path Γ1 2 L2([0, 1], C(S1,R2)),

Γh ! Γ1 in C([0, 1], Hk−1(S1,R2)) .

This proves in particular that

Γh(t)
W 1,1(S1,R2)

! Γ1(t), 8 t 2 [0, 1] and Γh
t (t)

Hk(S1,R2)
* Γ1

t (t), 8 t 2 [0, 1] .

Now, as Γh(t) converges in W 1,1(S1,R2) towards Γ1(t), the unit speed parameterizations at the

time t, denoted respectively by 'h(t) and '1(t), also converge in W 1,1(S1, S1).
Thus, by the same arguments used for (2.35) (Γh

t ◦'
h(t) being bounded in Hs(S1,R2)), we have

Γh
t ◦ '

h(t)
Hk(S1,R2)
* Γ1

t ◦ '1(t), 8 t 2 [0, 1] .

Now, because of (3.5), we have kΓh
t (t)kHk(Γ(t)) = kΓh

t ◦ 'h(t)kw
Hk(S1,R2)

. Moreover, because

of the strong convergence of the unit speed parameterizations we get L (Γh(t)) ! L (Γ1(t)) for

every t. Then, for every t, we get

kΓ1
t (t)kw

Hk(Γ(t))
= kΓ1

t ◦ '1(t)kw
Hk(S1,R2)

6 lim inf
h!1

kΓh
t ◦ '

h(t)kw
Hk(S1,R2)

= lim inf
h!1

kΓh
t (t)kHk(Γ(t)) .

By integrating the previous inequality and using Fatou’s Lemma we get that Γ1 minimizes E
and the theorem ensues.

In [11], the authors prove (Theorem 1.1) that the space of immersed curves is geodesically com-

plete with respect to the Hk-metrics (k > 2 integer). Since Hk-metrics (k > 2 integer) are smooth

Riemannian metrics, minimizing geodesics are given locally by the exponential map. Moreover,

from Theorem 3.2, we have the existence of minimal geodesics (in our variational sense) between

any two points. Therefore, the minimizing curve found by our variational approach coincides with

an exponential ray. Thus, we have the following corollary.

Corollary 3.3 (Surjectivity of the exponential map). The exponential map on Hk for k > 2
integer is defined for all time and is surjective.

The so-called Fréchet or Kärcher means often used in imaging are a particular case of minimizers

of the distance to a closed subset. The surjectivity of the exponential map enables the use of [5,

Theorem 3.5] which proves that the projection onto a closed subset is unique on a dense subset. A

direct theoretical consequence of this surjectivity result is the following result.

Proposition 3.4. Let k > 2 be an integer. For any integer n > 1, there exists a dense subset

D ⇢ Hn
k , such that the Kärcher mean associated with any (γ1, . . . , γn) 2 D, defined as a minimizer

of

min
γ2Hk

nX

i=1

d(γ, γi)
2 , (3.7)

is unique.
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Proof. Let S be the diagonal in Hn
k . The set S is a closed subset of Hk ⇥ . . .⇥Hk

| {z }

n times

. In [5, Theorem

3.5] the authors prove that the set of minimizers of argminy2S d(x, y) is a singleton for a dense

subset in Hn
k .

Analogously to the BV 2-case we can define a distance D between two geometric curves (see

Proposition 2.20). By the same arguments used to prove Theorem 2.21 (it suffices to use the Hk-

weak convergence instead of the BV 2-weak* one) we obtain the following result:

Theorem 3.5 (Geometric existence). Let γ0 γ1 2 Hk such that D([γ0], [γ1]) 6 ". Then there exists

a minimizer of D([γ0], [γ1]).

4 Numerical computations of Geodesics

In this section we discretize and relax Problem (2.17) in order to approximate numerically

geodesic paths. Note that since we use a gradient descent to minimize a discretized and relaxed

energy, the resulting optimal discrete homotopy aims at approximating stationary points of the

geodesic energy, and that these homotopies cannot be guaranteed to be globally minimizing geodesics.

4.1 Penalized Boundary Condition at t = 1

To obtain a simple numerical scheme, we first relax the constraint Γ(1) = γ1 by adding at the

energy E a data fidelity term H(Γ(1), γ1) taking into account the deviation between Γ(1) and γ1. In

the following we make use of the H functional defined in [14] (equation 5.4).

Such a functional is defined as the following distance between two curves

H(γ, λ)2 = T (γ, γ) + T (λ, λ)− 2T (γ, λ) , 8γ, λ 2 B

where

T (γ, λ) =

Z

S1

Z

S1

nγ(s) · nλ(t) k (γ(s), λ(t)) dγ(s)dλ(t)

with

k(v, w) = e−
kv−wk2

2σ2 + e−
kv−wk2

2δ2 , 8v, w 2 R
2 .

This functional H was initially proposed in [33] as a norm on a reproducing Hilbert space of

currents. It can be shown to be a metric on the space of geometric curves, which explains why it is

a good candidate to enforce approximately the boundary constraint at time t = 1. We remind that

H is continuous with respect to strong topology of W 1,1(S1,R2). We refer to [14] for its properties

and its discretization using finite elements.

Then, given two curves γ0, γ1 2 B, we consider the following problem

min {F (Γ) : Γ 2 H1([0, 1],B) , Γ(0) = γ0}

F (Γ) = H(Γ(1), γ1) + E(Γ).
(4.1)

To allows for more flexibility in the numerical experiments, we introduce a weighted BV 2 norm

in the definition (2.16) of the energy E. Given some positive weights (λ0, λ1, λ2) 2 (R+)3, we
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consider in this section

E(Γ) =

Z 1

0

kΓtkBV 2(Γ(t))dt , (4.2)

where, for all γ 2 B and v 2 TγB,

kvkBV 2(γ) =

Z

S1

✓

λ0|v(s)|+ λ1

∣
∣
∣
∣

dv

dγ
(s)

∣
∣
∣
∣
+ λ2

∣
∣
∣
∣

d2v

dγ2
(s)

∣
∣
∣
∣

◆

dγ(s).

4.2 Regularized Problem and Γ-convergence

The energy minimized in (4.1) is both non-smooth and non-convex. In order to compute sta-

tionary points using a gradient descent scheme, we further relax this problem by smoothing the

R
2-norm used to caclulate the BV 2-norm. This approach is justified by a Γ-convergence result in

Theorem 4.1.

The energy E is regularized as

E"(Γ) =

Z 1

0

kΓtk
"
BV 2(Γ(t))dt . (4.3)

where " > 0 controls the amount of smoothing, and the smoothed BV 2-norm is defined, for γ 2 B
and v 2 TγB, as

kvk"BV 2(γ) =

Z

S1

✓

λ0|v(s)|" + λ1

∣
∣
∣
∣

dv

dγ
(s)

∣
∣
∣
∣
"

◆

|γ0(s)|"ds+ λ2TV
2
γ (v),

where

8x 2 R
2, |x|" =

p

|x|2 + "2.

The initial problem (4.1) is then replaced by

min {F"(Γ) : Γ 2 H1([0, 1],B) , Γ(0) = γ0}

F"(Γ) = H(Γ(1), γ1) + E"(Γ)
(4.4)

This smoothing approach is justified by the following theorem

Theorem 4.1. Let γ0 2 B and X = {Γ 2 H1([0, 1],B \ Br(γ0)) : Γ(0) = γ0}, where Br(γ0) is

defined as in the point (iii) of Theorem 2.18. Then

lim
"!0

min
Γ2X

F"(Γ) = min
Γ2X

F (Γ) .

Moreover if {Γ"}" is a sequence of minimizers of F" then there exists a subsequence (not relabelled)

such that Γ"
σ
! Γ as "! 0 (see Definition 2.17) and Γ is a minimizer of F .

Proof. Remark that F anf F" are not equal to infinity. Then, by Theorem 2.18 (iii), F and F" reach

their minima on X .

As {F"}" is a decreasing sequence converging to F pointwise, we get

lim
"!0

min
Γ2X

F"(Γ) = inf
">0

min
Γ2X

F"(Γ) = min
Γ2X

inf
">0

F"(Γ) = min
Γ2X

F (Γ) . (4.5)

Thus, if {Γ"} is a sequence of minimizers of F" we have F (Γ") 6 F"(Γ") so that {Γ"} is a

minimizing sequence for F . Then, by Theorem 2.18, there exists Γ 2 X and a subsequence (not

relabelled) such that Γ"
σ
! Γ as " ! 0. As F is lower semicontinuous with respect to the σ

convergence, from (4.5), it follows that Γ is a minimizer of F .
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4.3 Finite Element Space

In the following, to ease the notation, we identify R
2 with C and S

1 with [0, 1] using periodic

boundary conditions.

To approximate numerically stationary points of (4.4), we discretize this problem by using fi-

nite element approximations of the homotopies, which are piecewise linear along the s variable and

piecewise constant along the t variable. This choice of elements is justified by the fact that the eval-

uation of the energy requires the use of two derivatives along the s variable, and a single derivative

along the t variable.

Finite elements curves. A piecewise affine curve with n node is defined as

8 s 2 [0, 1], γ(s) =
nX

j=1

γ̃j⇠j(s)

where we used piecewise affine finite elements

⇠j(s) = max

⇢

0, 1− n

∣
∣
∣
∣
s−

j

n

∣
∣
∣
∣

}

s 2 [0, 1], 8 j = 1, . . . , n− 1

⇠n(s) = max {0, 1− n |s|}+ max {0, 1− n |s− 1|} , s 2 [0, 1].

Here, γ̃ 2 C
n denotes the coordinates of γ and we denote γ = P1(γ̃) the corresponding bijection.

Finite elements homotopies. We consider the finite dimensional space of homotopies of the form

8(t, s) 2 [0, 1]2, Γ(t)(s) =
NX

i=1

nX

j=1

Γ̃i,j⇣i(t)⇠j(s) (4.6)

where we used piecewise constant finite elements

⇣i(t) = I[ i
N
, i+1

N
](t) 8 i = 1, ..., N − 1 , ⇣N(t) = I[0, 1

N
](t) ,

Here, Γ̃ 2 C
N⇥n denotes the coordinates of Γ and we denote Γ = P0,1(Γ̃) the corresponding

bijection.

4.4 Discretized Energies

The initial infinite dimensional optimization problem (4.4) is discretized by restricting the mini-

mization to the finite element space described by (4.6) as follow

min
n

F"(Γ̃) : Γ̃ 2 C
N⇥n, Γ̃1,· = γ̃0

o

where F"(Γ̃) = F"(Γ) (4.7)

where Γ = P0,1(Γ̃) and where the input boundary curves are γ0 = P1(γ̃0), γ1 = P1(γ̃1), which are

assumed to be piecewise affine finite elements. We have denoted here Γi,· = (Γi,j)
n
j=1 2 R

n.
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In order to ease the computation of gradients, we note that the energy F" can be decomposed as

F"(Γ̃) = H(P1(Γ̃N,·), γ1) + E"(Γ̃) where E"(Γ̃) =
1

N − 1

N−1X

i=1

J(Γ̃i,·, ṽi) (4.8)

where we denoted the discrete time derivative vector field as

ṽi =
Γ̃i+1,· − Γ̃i,·

N − 1
2 C

n.

For γ̃ 2 C
n and ṽ 2 C

n, we used the notation

J(γ̃, ṽ) =
2X

`=0

λ`J`(γ̃, ṽ).

and we define bellow the explicit computation of the terms J`(γ̃, ṽ) for ` = 0, 1, 2.

Zero order energy term (` = 0). The L1 norm of a piecewise affine field v = P1(ṽ) tangent to a

piecewise affine curve γ = P1(γ̃) can be computed as

Z

S1

|v(s)|"|γ
0(s)|"ds =

nX

i=1

n|∆+(γ̃)i| ε
n

Z i+1

n

i
n

|ṽi⇠i(s) + ṽi+1⇠i+1(s)|"ds.

This quantity cannot be evaluated in closed form. For numerical simplicity, we thus approximate

the integral by the trapezoidal rule. With a slight abuse of notation (this is only an approximate

equality), we define the discrete L1-norm as

J0(γ̃, ṽ) =
1

2

nX

i=1

|∆+(γ̃)i| ε
n

⇣

|ṽi|" + |ṽi+1|"

⌘

,

where we used the following forward finite difference operator

∆+ : Cn ! C
n , ∆+(γ̃)i = γ̃i+1 − γ̃i .

First order energy term (` = 1). We point out that

dv

dγ
=

nX

i=1

∆+(ṽ)i
|∆+(γ̃)i| ε

n

⇣i (4.9)

which implies that

Z

S1

∣
∣
∣
∣

dv

dγ(s)

∣
∣
∣
∣
"

|γ0(s)|"ds =
nX

i=1

Z i+1

n

i
n

n|∆+(ṽ)i| ε
n
ds.

Then the discretized L1-norm of the first derivative is defined by

J1(γ̃, ṽ) =
nX

i=1

|∆+(ṽ)i| ε
n
.
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Second order energy term (` = 2). As the first derivative is piecewise constant the second vari-

ation coincides with the sum of the jumps of the first derivative. In fact, for every g 2 C1
c (S

1,R2),
we have

Z

S1

h
dv

dγ(s)
,

dg

dγ(s)
idγ(s) =

nX

i=1

Z i+1

n

i
n

h
dv

dγ(s)
, g0(s)ids =

=
nX

i=1

h
dv

dγ

✓
i− 1

n

◆

−
dv

dγ

✓
i

n

◆

, g

✓
i

n

◆

i .

Then, by (4.9), the second variation TV 2
γ (v) can be defined as

J2(γ̃, ṽ) =
nX

i=1

∣
∣
∣
∣
∣

∆+(ṽ)i+1

|∆+(γ̃)i+1| ε
n

−
∆+(ṽ)i

|∆+(γ̃)i| ε
n

∣
∣
∣
∣
∣
"

.

4.5 Minimization with Gradient Descent

The finite problem (4.7) is an unconstrained optimization on the variable (Γ̃2,·, . . . , Γ̃N,·), since

Γ̃1,· = γ̃0 is fixed. The function F" being minimized is C1 with a Lipschitz gradient, and we thus

make use of a gradient descent method. In the following, we compute gradient for the canonical

inner product in C
N⇥n.

Starting from some Γ̃(0) 2 C
N⇥n, we iterate

Γ̃(k+1) = Γ̃(k) − ⌧krF"(Γ̃
(k)) (4.10)

where ⌧k > 0 is the descent step. A small enough gradient step size (or an adaptive line search

strategy) ensures that the iterates converge toward a stationary point Γ(1) of F".

The gradient rF"(Γ̃) is given by its partial derivatives as, for i = 2, . . . , N − 1,

@Γ̃i
F"(Γ̃) =

1

N − 1

⇣

@1J(Γ̃i, ṽi)−
1

N − 1
@2J(Γ̃i+1, ṽi+1) +

1

N − 1
@2J(Γ̃i−1, ṽi−1)

⌘

where @1J (reap. @2J) is the derivative of J with respect to the first (resp. second) variable and

@Γ̃N
F" = δ +

1

(N − 1)2
@1J(Γ̃N−1, ṽN−1) .

where δ is the gradient of the map γ̃ 7! H(P1(γ̃), γ1) at γ̃ = Γ̃N,·. This gradient can be computed

as detailed in [14].

4.6 Numerical Results

In this section we show some numerical examples of computations of a stationary points Γ̃(1)

of the problem (4.7) that is intended to approximate geodesics for the BV 2 metric. We use a similar

approach to approximate geodesic for the Hs metric, for s = 2, by replacing E in (4.2) by

E(Γ) =

Z 1

0

kΓtkHs(Γ(t))dt . (4.11)
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where, for all γ 2 Hs(S1,R2) and v 2 Hs(γ),

kvkHs(γ) =

Z

S1

 

µ0|v(s)|
2 + µ1

∣
∣
∣
∣

dv

dγ
(s)

∣
∣
∣
∣

2

+ µ2

∣
∣
∣
∣

d2v

dγ2
(s)

∣
∣
∣
∣

2
!

dγ(s),

where the parameter (µ0, µ1, µ2) 2 (R+)3 can be tuned for each particular application. Note that,

on contrast to the BV 2 case, this Sobolev energy is a smooth functional, and one thus does not

need to perform a regularization (4.3), or equivalently, one can use " = 0 in this case. We do not

detail the computation of the gradient of the discretized version of the functional (4.11), since these

computations are very similar to the BV 2 case.

In the following experiments, we use a discretization grid of size (N, n) = (10, 256). The

weights are set to (λ0,λ1,λ2) = (1, 0, 1) and (µ0, µ1, µ2) = (1, 0, 1) (the curves are normalized

to fit in [0, 1]2). These experiments can be seen as toy models illustrations for the shape registration

problem, were one seeks for a meaningful bijection between two geometric curves parameterized by

γ0 and γ1. Note that the energies being minimized are highly non-convex, so that the initialization

Γ(0) of the gradient descent (4.10) plays a crucial role.

BV 2 Sobolev

Figure 1: Homotopies Γ(1) obtained for BV 2-Finsler energy (left) and Sobolev metric (right). Each

image displays the initial curve γ0 (black one) and γ1 (dash line) and the optimal {Γ̃i,·}i where the

index 1 6 i 6 N is indicated by color variations between blue (i = 1) and red (i = N ).

Figure 1, top row, shows a simple test case, for which using a trivial constant initialization
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Γ̃
(0)
i = γ̃0, for both BV 2 and H2 metric, produces a valid homotopy Γ(1) between γ0 and γ1.

One can observe that while both homotopies are similar, the Sobolev metric produces a slightly

smoother regular evolution of curves. This is to be expected, since piecewise affine curves are not

in the Sobolev space H2(S1,R2).
Figure 1, bottom row, shows a more complicated case, where using a trivial initialization Γ̃(0)

fails to give a correct result Γ̃(1), because the gradient descent is trapped in a poor local minimum.

We thus use as initialization the natural bijection Γ̃(0) which is piecewise affine and correctly links

the singular points of the curves γ0 and γ1. It turns out that this homotopy is a stationary point of

the energy (4.7), which can be checked on the numerical results obtained by the gradient descent.

On the contrary, the Sobolev metric finds a slightly different homotopy, which leads to smoother

intermediate curves.

5 Conclusion

The variational approach defined in this work represents a general strategy to prove existence

of minimal geodesics with respect to Finslerian metrics. The uniqueness is at the moment an open

question.

In order to generalize previous results to more general Banach spaces, we point out the main

properties which must be satisfied by the Banach topology:

(i) the two constants mγ,Mγ appearing in Proposition 2.9 must be bounded on geodesic balls;

(ii) the topology of the space must imply a suitable convergence of the reparameterizations in

order to get semi-continuity of the norm of {Γh
t ◦ '

h(t)}h; in the BV 2-case such a topology

is the W 1,1-strong topology.

For the BV 2 metric, the major difficulty concerns the characterization of the weak topology of

the space of the paths. The usual characterization of the dual of Boncher spaces H1([0, 1], B) (B
is a Banach space) requires that the dual of B verifies the Radon-Nikodym property ([10], [12]).

We point out that the martingale argument used to prove Theorem 2.15 avoids this problem and

allows one to define a suitable topology in such a space guaranteeing the lower semi-continuity of

the geodesic energy.

Moreover, as pointed out in the introduction, the necessary conditions proved in [25] are not

valid in our case. This represents an interesting direction of research because optimality conditions

allow one to study regularity properties of minimal geodesics. It is an open question if the gener-

alized Euler-Lagrange equations in [25] can be generalized to our case and give the Hamiltonian

geodesic equations. Strongly linked to this question is the issue of convergence of the numerical

method. Indeed, the convergence of the sequence of discretized problems would imply the exis-

tence of geodesic equations.

From a numerical point of view, as we pointed out, the minimal geodesic energy suffers from

many poor local minima. To avoid some of these poor local minima, it is possible to modify the

metric to take into account some prior on the set of deformations. For instance, in the spirit of [14],

a Finsler metric can be designed to favor piecewise rigid motions.
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