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Abstract. Precipitation is the key factor controlling the high-
frequency hydrological response in catchments, and stream-
flow simulation is thus dependent on the way rainfall is rep-
resented in a hydrological model. A characteristic that distin-
guishes distributed from lumped models is the ability to ex-
plicitly represent the spatial variability of precipitation. Al-
though the literature on this topic is abundant, the results
are contrasting and sometimes contradictory. This paper in-
vestigates the impact of spatial rainfall on runoff generation
to better understand the conditions where higher-resolution
rainfall information improves streamflow simulations. In this
study, we used the rainfall reanalysis developed by Météo-
France over the whole country of France at 1 km and 1 h
resolution over a 10 yr period. A hydrological model was
applied in the lumped mode (a single spatial unit) and in
the semidistributed mode using three unit sizes of subcatch-
ments. The model was evaluated against observed stream-
flow data using split-sample tests on a large set of French
catchments (181) representing a variety of sizes and climate
conditions. The results were analyzed by catchment classes
and types of rainfall events based on the spatial variability of
precipitation. The evaluation clearly showed different behav-
iors. The lumped model performed as well as the semidis-
tributed model in western France, where catchments are un-
der oceanic climate conditions with quite spatially uniform
precipitation fields. By contrast, higher resolution in precip-
itation inputs significantly improved the simulated stream-
flow dynamics and accuracy in southern France (Cévennes
and Mediterranean regions) for catchments in which precipi-
tation fields were identified to be highly variable in space. In
all regions, natural variability allows for contradictory exam-
ples to be found, showing that analyzing a large number of
events over varied catchments is warranted.

1 Introduction

A review of the hydrologic literature shows that there is no
consensus on the impact of spatial resolution on the per-
formance of hydrological models (e.g., Reed et al., 2004;
Smith et al., 2012). There are several reasons for this. First,
most previous studies have been limited to a single catch-
ment or only a few catchments (Ajami et al., 2004; Bell
and Moore, 2000; Das et al., 2008; Finnerty et al., 1997;
Lindström et al., 1997; Reed et al., 2004; Smith et al., 2004,
2012; Winchell et al., 1998; Zhang et al., 2004), which makes
conclusions highly dependent on the characteristics of the
catchments studied. Interestingly, their contradictory conclu-
sions show that the impact of the rainfall spatial distribution
on runoff depends on catchment and event characteristics
(Segond et al., 2007; Singh, 1997; Tetzlaff and Uhlenbrook,
2005; Viglione et al., 2010; Woods and Sivapalan, 1999;
Zoccatelli et al., 2011). Second, many studies are virtual ex-
periments based on synthetic flows, in which model simu-
lations are compared to other simulations chosen as refer-
ences. This makes it difficult to reach conclusions transpos-
able to actual case studies (Andréassian et al., 2004; Das et
al., 2008). Lastly, the parameterization strategies used may
introduce a bias in the evaluation of modeling approaches
with different resolutions if parameters are not recalibrated
or rescaled at each spatial resolution investigated (Kampf and
Burges, 2007; Koren et al., 1999; Kumar et al., 2013; Morin
et al., 2001; Samaniego et al., 2010).

That being said, the sensitivity of hydrological simulations
to the spatial variability of precipitation inputs has been an
active research area over the last three decades. There are
at least two origins for this sensitivity: (1) the density of
the precipitation measurement network, which more or less
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finely samples the actual precipitation field, and (2) the in-
adequacy of the rainfall–runoff models’ structure and spatial
discretization. This review will not examine the first point,
which has already been widely studied. All authors who have
written on this subject agree that spatial rainfall measurement
is important on all scales, and that its importance increases
as catchment size decreases (Beven and Hornberger, 1982;
Ogden and Julien, 1993; Michaud and Sorooshian, 1994;
Obled et al., 1994; Faures et al., 1995; Shah et al., 1996;
Winchell et al., 1998; Sun et al., 2000; Carpenter et al., 2001;
Andréassian et al., 2001; Berne et al., 2004; Arnaud et al.,
2011; Vaze et al., 2011; Emmanuel et al., 2012).

Let us here focus on the relationship between spatial rain-
fall representation and runoff response. Results presented in
the literature are contrasting and sometimes contradictory.
Several studies concluded that including more detailed in-
formation on rainfall spatial distribution improves discharge
simulation, whereas other studies, surprisingly, have shown
a lack of significant improvement in simulations. A vari-
ety of studies have shown little (or no) impact of explic-
itly accounting for rainfall variability, and several authors
have suggested that a correct assessment of the rainfall in-
put volume is more important than the rainfall spatial pattern
itself (even in a highly spatially variable pattern) for sim-
ulating streamflow hydrographs (Andréassian et al., 2001;
Beven and Hornberger, 1982; Naden, 1992; Obled et al.,
1994; Woods and Sivapalan, 1999). Other studies have tested
different modeling configurations, from lumped to (semi-)
distributed, in order to investigate the impact of spatial pre-
cipitation inputs on streamflow simulations. Many of them
reported that increased resolution in space had little ef-
fect on the model’s performance and that distributed mod-
eling approaches may not always provide improved outlet
simulations compared to lumped approaches (Ajami et al.,
2004; Apip et al., 2012; Bell and Moore, 2000; Das et al.,
2008; Lindström et al., 1997; Liu et al., 2012; Naden, 1992;
Nicòtina et al., 2008; Obled et al., 1994; Reed et al., 2004;
Refsgaard and Knudsen, 1996; Smith et al., 2004; Zhang et
al., 2004).

However, other studies have found that runoff predic-
tion errors were considerably higher when spatially aver-
aged rainfall was used, and that including explicit infor-
mation on rainfall spatial distribution improved the quality
of predicted streamflow (Bonnifait et al., 2009; Carpenter
and Georgakakos, 2006; Cole and Moore, 2008; Dodov and
Foufoula-Georgiou, 2005; Krajewski et al., 1991; Ogden
and Julien, 1994; Saulnier and Le Lay, 2009; Singh, 1997;
Tramblay et al., 2011; Winchell et al., 1998; Yu et al., 2012).
Of these studies, some have underlined that the improve-
ments in streamflow modeling were not systematic (Arnaud
et al., 2011; Koren et al., 2004; Nicòtina et al., 2008; Segond
et al., 2007; Tetzlaff and Uhlenbrook, 2005; Viglione et al.,
2010; Winchell et al., 1998). They argued that improve-
ments were only significant in catchments with significant
spatial rainfall variability (Arnaud et al., 2002, 2011; Koren

et al., 2004) and for large catchments, due to the greater
need for considering the distribution of spatial rainfall gra-
dients (Nicòtina et al., 2008; Vaze et al., 2011). Others
have attempted to explain the differences by different runoff-
generating processes, strongly dependent on soil characteris-
tics and soil moisture, which interact with rainfall character-
istics (Merz and Blöschl, 2009; Merz et al., 2006; Nicòtina et
al., 2008; Norbiato et al., 2009; Penna et al., 2011; Viglione
et al., 2010). These points of view suggest that rainfall–runoff
processes are strongly variable between catchments and rain-
fall events.

It is our opinion that the previous studies have investi-
gated too few catchments and too few flood events to draw
any definitive conclusions. To reach general conclusions on
the link between rainfall spatial variability and hydrologi-
cal model performance, this paper presents tests made on a
large set of events showing various spatial patterns of precip-
itation fields in different types of hydroclimatic conditions:
this study uses a large set of flood events (3620) observed in
181 catchments in France that represent a variety of condi-
tions. A common model setup, calibration and testing frame-
work was applied for the various modeling options tested.

The catchment set and hydrological model are presented
in Sect. 2. Section 3 details model implementation and the
methods used to evaluate the streamflow simulations. Then
the results are discussed in Sect. 4, starting with the analysis
of the entire data set and then distinguishing different behav-
iors. The conclusions are summarized in Sect. 6.

2 Data and study area

2.1 A high-resolution precipitation data set

Weather radar provides rainfall estimates with high tem-
poral and spatial resolution, but unfortunately, despite the
major progress that has been made over the past decades
on understanding and correcting radar errors, radar quanti-
tative precipitation estimation products may still occasion-
ally suffer from biases that may significantly affect rainfall–
runoff simulations. Consequently, the benefit that could be
gained from the improved spatial resolution of rainfall es-
timates has often been limited in hydrological applications
(Biggs and Atkinson, 2011; Borga, 2002; Delrieu et al.,
2009; Emmanuel et al., 2011; Krajewski et al., 2010).

Météo-France, the French national weather service, has
recently produced a 10 yr (1997–2006) quantitative precip-
itation reanalysis at the hourly time step and 1 km2 spatial
resolution (Tabary et al., 2012). This reference data set com-
bines all the information available in the operational archives
(manual and automatic rain gauges as well as weather radars)
in order to obtain the best precipitation estimation over
France (550 000 km2). Figure 1 presents the location of avail-
able weather radar and rain gauge data in operation between
1997 and 2006. The French operational network was based
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Fig. 1. Structures of the operational measurement network for precipitation estimates between 1997 and 2006.(a) Automatic hourly rain
gauge network;(b) daily manual rain gauge network;(c) theoretical coverage of the weather radar (location name and year of installation are
indicated).

on 13 radars in 1997, and 10 additional radars have been
deployed over the 1997–2006 period, increasing the total
number of operational radars to 23 in 2006. The ground mea-
surement network consists of 1400 automatic and 2500 man-
ual rain gauges (from which hourly and daily time series,
respectively, can be derived).

We give a short description of the procedure followed by
Météo-France to establish the reanalysis, but further detail
can be found in Tabary et al. (2012). These data treatments
are based on the operational experience of radar data pro-
cessing at Météo-France. The precipitation data from the rain
gauge network are routinely checked and corrected by ex-
pert systems. The radar network provides reflectivity images
every 5 min, which are pre-processed before being merged
with rain gauge data. The reflectivity images are corrected
for residual ground-clutter, clear air echoes (affected by in-
sects, dusts, etc.), partial beam blocking, and undersampling
effects before being converted into rainfall rates using the
Marshall PalmerZ–R relationship. Daily calibration factors
are computed for every 1 km2 pixel by comparing 24 h accu-
mulated radar rainfall rates and daily rain gauge estimates
computed from hourly and daily gauge measurements by
kriging with external drift. Hourly radar rainfall accumula-
tions are then corrected using the daily calibration factors. Fi-
nally, hourly precipitation accumulation fields are computed
from the available hourly (calibrated) radar and rain gauge
data using kriging with external drift. For the time steps when
no radar data are available or in cases for which no calibra-
tion factor can be computed, the composite map is filled by
ordinary kriging of hourly rain gauge data.

The final composite 1 km2 hourly rainfall estimates have
been successfully validated against independent hourly rain
gauge data (not used for the whole reanalysis process) over
1 yr in southeastern France (Tabary et al., 2012). Hence, the
reanalysis can be considered to provide reliable hourly pre-
cipitation estimations with high spatial resolution suitable for

Fig. 2.Locations of the 181 French catchments used in this study.

the investigation of the impact of rainfall spatial variability
on the catchment response.

2.2 Catchment data set

A large set (181) of French catchments (see Fig. 2) was
selected to run semidistributed rainfall–runoff simulations.
Hourly discharge data at the basin outlets were obtained from
the HYDRO national archive (www.hydro.eaufrance.fr) for
the 10 yr period of the rainfall reanalysis (1997–2006). Since
weather radar measurements are considered accurate within
a 100 km radius, the catchments were selected within this
distance.

www.hydrol-earth-syst-sci.net/18/575/2014/ Hydrol. Earth Syst. Sci., 18, 575–594, 2014
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Table 1. Summary of physiographical and hydrometeorological
characteristics of the catchment set. The rainfall intensity coefficient
is the ratio between the 99th percentileP99 and the mean hourly
precipitationPm.

Basin characteristics Min Median Max

Drainage area (km2) 16 264 6834
Mean elevation (m) 41 250 1276
Mean slope (−) 0.01 0.06 0.37
Annual runoff,Q (mm) 57 307 1228
Annual precipitation,P (mm) 489 913 1841
Annual potential evapotranspiration, PE (mm) 556 696 892
Runoff coefficient,Q/P (−) 0.10 0.33 0.80
Aridity index, P/PE (−) 0.55 1.33 2.85
Rainfall intensity coefficient,P99/Pm (−) 14 19 28
Streamflow 6 h autocorrelation (−) 0.52 0.97 1.00

The catchment data set represents a wide variety of phys-
iographical and hydroclimatic conditions (Fig. 2), ranging
from oceanic to Mediterranean. This catchment set con-
sists of small to medium-sized catchments, with 32 catch-
ments smaller than 100 km2 and 27 catchments larger than
1000 km2. The largest catchment is the Moselle at Custines
(6834 km2) in northeastern France. The characteristics of
rainfall events on these catchments also vary, with both strat-
iform and convective events with a wide range of intensities.
Higher values of the rainfall intensity coefficient (calculated
as the ratio between the 99th percentile and the mean hourly
precipitation) and lower values of the streamflow 6 h auto-
correlation coefficient (Table 1) are found in basins located
in southeastern France in the Cévennes region and Mediter-
ranean area where strong convective storms and flash floods
are frequent (Berne et al., 2009; Delrieu et al., 2005; Javelle
et al., 2010; Saulnier and Le Lay, 2009). Note that mountain-
ous catchments were intentionally not selected here due to
large uncertainties in radar measurements. Hence, there is no
significant snow influence in the catchments studied.

3 Methodology

3.1 The semidistributed rainfall–runoff model

We used a semidistributed model derived from the work
of Lerat (2009). It is based on the GR5H hourly lumped
rainfall–runoff model proposed by Le Moine (2008) (Fig. 3).
The GR5H model only has five free parameters (see Fig. 3
and Table 2).

In the semidistributed model, the catchment is divided into
hydrologic units (i.e., subcatchments) following the drainage
network. A digital elevation model was used to build the sub-
catchments (O’Callaghan and Mark, 1984). We chose to use
subcatchments of roughly the same size (Fig. 4). Mean rain-
fall is calculated for each subcatchment (Fig. 5) and used as
input to the GR5H model applied in lumped mode to simulate
the outflow of each hydrological unit. Then a channel-routing

Table 2. List of the parameters for the semidistributed version of
the conceptual rainfall–runoff GR5H model.

Model Description
parameter

X1 Production (soil moisture accounting) store capacity (mm)
X2 Groundwater exchange coefficient (−)
X3 Time base of the unit hydrograph (h)
X4 Routing store capacity (mm)
X5 Threshold for groundwater exchange (−)
C Average celerity in the river network (m s−1)

Fig. 3. Schematic representation of the semidistributed version of
the GR5H rainfall–runoff model.

method is used to route the subcatchment flows to the down-
stream catchment outlet through the river network. Given the
steep mean slope (greater than 0.01) for all the catchments
(Table 1), the kinematic wave approximation can be consid-
ered valid to route natural flow in the river network (Hen-
derson, 1966; Morris and Woolhiser, 1980). In this study,
the linear lag propagation model (Bentura and Michel, 1997)
was found to provide a satisfactory level of efficiency com-
pared to more sophisticated channel routing methods. This is
in agreement with the results of Lerat et al. (2012). This func-
tion has a single free parameter: average river flow celerityC

(m s−1).
The sensitivity of streamflow simulations to the spatial

resolution of rainfall estimates was investigated by testing
the semidistributed rainfall–runoff model for three sizes of
subcatchments: 64 km2 (SD64), 16 km2 (SD16), and 4 km2

(SD04) (Fig. 4). The number of subcatchments per catchment
ranges between 2 and 108 for SD64, 2 and 432 for SD16, and
between 4 and 1733 for SD04. In each case, the subcatch-
ment rainfall–runoff models were fed with rainfall inputs av-
eraged over the subcatchment, as illustrated in Fig. 5. The
lumped configuration was also tested so that it could serve
as a reference, using precipitation averaged over the whole
catchment as input.

Hydrol. Earth Syst. Sci., 18, 575–594, 2014 www.hydrol-earth-syst-sci.net/18/575/2014/
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Fig. 4.Examples of lumped and semidistributed catchment discretizations (with unit sizes of 64, 16 and 4 km2) for the Hérault catchment at
Gignac (1430 km2).

 

Fig. 5. Distributed precipitation forcing (10 yr average) for the catchment discretizations of the Hérault catchment at Gignac (1430 km2)
shown in Fig. 4.

3.2 Model parameterization and calibration

The calibration of a distributed or semidistributed model is
a complex task (Carpenter and Georgakakos, 2006; Lerat
et al., 2012; Pechlivanidis et al., 2010; Pokhrel and Gupta,
2011) since the number of unknown parameters is magni-
fied; there are higher risks of overparameterization, equifinal-
ity, and nonidentifiability issues (Beven, 1993, 1996, 2001;
Götzinger and Bárdossy, 2007; Kirchner, 2006). Pokhrel and
Gupta (2011) even argued that calibration of spatially dis-
tributed parameter fields is impossible, since errors in model
structure and data remain larger than the effect of spatial
variability.

Here, we deliberately chose to let only the precipitation in-
put vary spatially, while keeping model parameters uniform,
in order to focus on the sole impact of spatial variability
of precipitation on catchment response. This option is sup-
ported by the results of previous studies that reported more
improvements in model performance related to the spatial
distribution of the rainfall input than the distribution of model
parameters (Ajami et al., 2004; Andréassian et al., 2004;
Boyle et al., 2001). Thus, the parameters of the semidis-
tributed model were constrained to be the same on all sub-
catchments. Therefore, only six parameters have to be esti-
mated: the five parameters of the GR5H model and the celer-
ity parameter of the channel-routing method (Table 2). They
are calibrated against flow measurements at the outlet of the
catchment (no internal information is used). Calibration is re-
newed for each spatial resolution (lumped, SD64, SD16 and
SD04) to overcome the scale-sensitivity of model parameters

(Bárdossy and Das, 2008; Finnerty et al., 1997; Kumar et al.,
2013; Samaniego et al., 2010). Investigating the impact of
flow simulation at internal points within the catchment was
not within the scope of this study and the reader may refer to
Lerat et al. (2012) for a detailed discussion on this issue.

Given the small number of model parameters, the steepest-
descent local-search procedure used by Editjano et al. (1999)
was deemed sufficiently robust to optimize the parameters. It
was applied with the Kling–Gupta efficiency (KGE) objec-
tive function (Gupta et al., 2009). The initial parameter set
to start optimization is determined by a gross pre-sampling
of the parameter space using the discrete sampling method
proposed by Perrin et al. (2008). This further limits the risk
of the procedure being trapped in local optima.

3.3 Method and criteria for the evaluation of
streamflow simulations

We performed split-sample calibration-validation tests
(Klemeš, 1986). The 10 yr study period (1997–2006) was di-
vided into two independent 5 yr subperiods (1997–2001 and
2002–2006). Model parameters were calibrated on the first
subperiod and model performance was validated on the sec-
ond one, and vice versa.

Although the model was continuously run for the periods
tested, model performance was evaluated by comparing sim-
ulated and observed flow at the outlet of the catchment only
for flood events, in order to focus on the periods when rain-
fall variability has the greatest influence. For each catchment,
the 20 largest floods were selected; this lead to a complete
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Table 3.Evaluation criteria used in this study, wherer is the Pearson correlation coefficient between the simulated and observed flow,β is
the ratio between the mean simulated and mean observed flow,α is the ratio between the simulated and observed flow variance,Qsim

j
and

Qobs
j

are, respectively, the simulated and observed discharge at the time stepsj , j1 andj2 the beginning and the end of the flood event.Qsim
p

andQobs
p are the simulated and observed peak flow amplitude.t (Qsim

p ) andt (Qobs
p ) are the time to the simulated and observed peak flow

amplitude, withtbegandtend the beginning and the end of the flood event.

Criteria Formula Range Error is
null when

Kling–Gupta efficiency KGE = 1−
√

(r − 1)2 + (α − 1)2 + (β − 1)2 [−∞; 1] KGE = 1

Peak flow error 1Qp =

∣

∣

∣
Qsim

p −Qobs
p

∣

∣

∣

Qobs
p

[0; +∞] 1Qp = 0

Time to peak error 1tp =

∣

∣

∣
t
(

Qobs
p

)

− t
(

Qsim
p

)∣

∣

∣

tend− tbeg
[0; +∞] 1tp = 0

Volume error 1V =

j2
∑

j=j1

∣

∣

∣
Qsim

j −Qobs
j

∣

∣

∣

j2
∑

j=j1

Qobs
j

[0; +∞] 1V = 0

set of 3620 events (181 catchments× 20 events) represent-
ing a wide variety of floods. The flood events were automat-
ically selected using the following procedure: (1) the maxi-
mum discharge is found, (2) the beginning (end) of the event
is defined when the previous (next) discharge is lower than
a threshold discharge and (3) if the precipitation is not null
at the beginning of the event previously defined, then the be-
ginning of the event is the first of the preceding time steps at
which the precipitation is null. The threshold dischargeQ0
is defined for each event, rising limb, and declining limb of
the hydrograph by Eq. (1):

Q0 = max
tp−240<t<tp

tp<t<tp+240

(

Qp/4; Qm + 0.05 ·
(

Qp − Qm
))

, (1)

where Qp is the peak flow (i.e., the maximum discharge
found),tp is the time step at which the peak flow is observed,
Qm is the minimum discharge observed over the 10-day pe-
riod before (after) the peak flow to calculate the threshold
discharge needed to define the beginning (end) of the event.

Table 3 presents the four event-based performance criteria
used for the evaluation. The Kling–Gupta efficiency (KGE)
(Gupta et al., 2009) measures the overall fit between sim-
ulated and observed flows. The peak flow, time to peak and
volume errors evaluate the quality of the model simulation on
the peak discharge value, timing of the peak discharge and to-
tal flow volume of the event, respectively. Note that the peak
flow was defined as the maximum discharge, so there was
only one peak flow for each event; if several peak flows oc-
curred for the same event, only the highest peak flow was
considered for the evaluation.

The relative performance indexRm[b|a] formulated by
Lerat et al. (2012) is used to compare the performance of
modeling optionb to modeling optiona:

Rm[b|a] =
m

[

Qobs, Qa
]

− m
[

Qobs, Qb
]

m
[

Qobs, Qa
]

+ m
[

Qobs, Qb
]

,
(2)

wherem is a metric measuring the discrepancies between
the simulated and observed streamflows, which ranges be-
tween 0 and infinity (withm = 0 when the error is null),
Qa and Qb are, respectively, the discharge computed by
the models (or the spatial resolution inputs)a and b. The
Rm[b|a] criterion is bounded between−1 and 1 (m = 0 when
the error is null), which limits the comparison problems on
large sets of catchments arising from the of use of non-
bounded criteria, as discussed by Mathevet et al. (2006),
Schaefli and Gupta (2007) and Seibert (2001). Table 4 de-
tails the interpretation ofRm.

3.4 Criteria for the evaluation of rainfall spatial
variability

We used two indexes to quantify and compare the spatial
variability of precipitation fields: the index of spatial rain-
fall variability, Iσ , and the location index,IL, proposed by
Smith et al. (2004) and shown in Eqs. (3) and (4) respectively.
In addition, we used the catchment-scale storm velocity,VS,
proposed by Zoccatelli et al. (2011) to compute the rainfall
movement index of precipitation fields,IM , shown in Eq. (5).

Iσ =

T
∑

t=1
σt · Pt

T
∑

t=1
Pt

(3)

IL =

T
∑

t=1
Ipcp(t) · Pt

T
∑

t=1
Pt

(4)
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Table 4. Interpretation of the relative performance indexRm[b|a] comparing the performance of modelb to the reference modela using a
metricm (Lerat et al., 2012).

Rm[b|a] m
(

Qobs, Qa
)

/m
(

Qobs, Qb
)

Interpretation

1 0 Modela is perfect according to the metricm, with m
[

Qobs, Qa
]

= 0

0.5 1/3 m
[

Qobs, Qa
]

is three times smaller (better) thanm
[

Qobs, Qb
]

0 1 Modelsa andb are equal tom
[

Qobs, Qa
]

=m
[

Qobs, Qb
]

−0.5 3 m
[

Qobs, Qa
]

is three times larger (worse) thanm
[

Qobs, Qb
]

−1 +∞ Modelb is perfect according to the metricm, with m
[

Qobs, Qb
]

= 0

IM =

T
∑

t=1
VS(t) · Pt

T
∑

t=1
Pt

(5)

In addition to Eqs. (3), (4) and (5), we also have

σt =

√

√

√

√

√

√

N
∑

i=1
[Pi(t)]2

N
−

[

N
∑

i=1
Pi(t)

]2

N2
, (6)

Ipcp(t) =
Cpcp(t)

Cbsn
(7)

Cpcp(t) =

N
∑

i=1
Pi(t) · Ai · Li

N
∑

i=1
Pi(t) · Ai

, (8)

Cbsn =

N
∑

i=1
Ai · Li

N
∑

i=1
Ai

, (9)

Vs(t) = Cbsn
dIpcp(t)

dt
, (10)

whereσt is the standard deviation of the hourly precipitation
field covering the basin,Pi(t) is the hourly rainfall data for
the pixeli at the time stept , N is the total number of rain-
fall pixels within the watershed,Cbsn is the basin’s center of
mass,Cpcp(t) is the center of rainfall mass for each time step
t , Ipcp(t) is the rainfall centroid ratio for each time stept , Ai

is the pixel area (Ai = 1 km2 in the present case) andLi is
the hydraulic distance between the pixeli and the catchment
outlet calculated through the river network.

The spatial rainfall variability, the rainfall localization and
the storm movement indexes are computed over the hourly
gridded (1× 1 km) rainfall database for each entire flood
event. The spatial rainfall variability indexIσ ranges from 0
to infinity; small values indicate that the spatial variability
of the observed rainfall field is low (typical of stratiform
events), while high values indicate high spatial variability

(convective events). Values of the location index (IL) that are
less than 1 indicate that the largest rainfall amount measured
over the event was generally located at the region closest to
the outlet, whereas the values greater than 1 indicate that the
center of rainfall is far from the outlet.IL values close to 1
indicate that the rainfall and basin centroids coincide.

The rainfall movement indexIM quantifies the averaged
catchment-scale storm velocity over the flood event duration;
it is a velocity measure expressed in L T−1. As discussed by
Zoccatelli et al. (2011), negative and positive values of the
rainfall movement index, respectively, indicate that the pre-
cipitation field mainly moved to the upstream and the down-
stream part of the catchment. NullIM values indicate that the
storm is stationary or moved to the upstream as well as down-
stream part of the catchment during the flood event duration.

4 Results and discussion

4.1 Typology of the 3620 observed flood events

The distribution of characteristics of the 3620 observed flood
events are presented in Fig. 6. The spatial representations
shown in Fig. 7 use values averaged over the 20 events se-
lected for each catchment. About 5 % of the events are longer
than 490 h (20 days); these events are observed in catch-
ments with dominant groundwater contributions, mainly lo-
cated in northern France (Fig. 7). The mean rainfall amounts
on the event scale vary between 1 and 500 mm over the
181 catchments, with a mean value equal to 72 mm (Fig. 6).
The rainfall amounts greater than 300 mm are observed for
32 events with generally short duration (less than 138 h),
which are typical of late summer Mediterranean conditions
(Fig. 7). The highest peak flow value is observed in the Mas-
sane at Argelès-sur-Mer (16 km2, max(Qp) = 36.7 mm h−1),
which is the smallest catchment in the catchment set. Peak
flows greater than 4 mm/h are observed for 111 flood events
(3 % of events), which all occurred in the Cévennes and
Mediterranean regions: in the Ardèche at Meyras (99 km2,
max(Qp) = 11.3 mm h−1), the Gardon at Mialet (244 km2,
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Fig. 6. Cumulative distribution of flood durations, peak values, event-based amounts of precipitation, localization, spatial variability and
rainfall movement indexes of precipitation fields for the 3620 observed events in the 181 selected catchments (values for the minimum, 25th,
50th, and 75th percentiles, and the maximum are indicated on the cumulative distribution axes).

Fig. 7. Event characteristics averaged over the 20 flood events observed in each of the 181 catchments. The peak flow coefficient is the ratio
between the peak flow and the mean flow. The colors refer to geographic regions.

max(Qp) = 10.7 mm h−1), . . . , and the Hérault at Gignac
(1430 km2, max(Qp) = 4.3 mm h−1).

The median value of the location index is almost equal
to 1, which indicates that events are equally distributed be-
tween events closer to or farther from the outlet than the

catchment centroid. The spatial rainfall variability index is
quite low (the third quartile is less than 1), which means that
the precipitation fields in the 3620 observed events are gener-
ally stratiform or spatially uniform (Fig. 6). Nevertheless, the
spatial rainfall variability index is greater than 1.11 for 20 %
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Fig. 8. Relationship between seasonality of the spatial rainfall variability (left panel) and spatial rainfall variability and event duration (right
panel) for the 3620 flood events observed. The colors refer to geographic regions, with the same color scheme used in Fig. 7.

of the events, which means that the data set has a significant
number of high-variability events (Fig. 6).

The localization index is correlated to the spatial rainfall
variability index: values far from 1 are usually observed in
the regions where high values of the spatial rainfall vari-
ability index are also observed (Fig. 7). Indeed, precipitation
fields localized close to (or far from) the outlet are most likely
to be observed in regions where precipitation fields are spa-
tially variable. In addition, extreme values of the localization
index are also observed in northeastern France, where the
largest catchments of the set are located: these large catch-
ments are more exposed to high localization indices (i.e.,
with precipitation fields centered on the upstream part of the
catchment) because of the orographic effect.

The rainfall movement index ranges between−10.2 and
15.9 km h−1 but the values are generally low for the
3620 flood events: the 5th and 95th percentiles are−1.47 and
2.78 km h−1 respectively (Fig. 6). Similar results have been
reported by Tarolli et al. (2013) for 10 subcatchments lo-
cated in the Eastern Ore Mountains in the Czech Republic.
Note that the rainfall movement indexes are catchment-scale
storm velocities, which are not comparable to the velocities
of storm elements (Tarolli et al., 2013). The highest abso-
lute values averaged over 20 flood events selected for each
catchment (Fig. 7) are observed in the Sauldre catchment
(IM = 6.39 km h−1) in Selles-sur-Cher (2296 km2), the In-
dre catchment (IM = 6.20 km h−1) in Saint-Cyran-du-Jambot
(1706 km2) and the Isle catchment (IM = 6.15 km h−1) in
Abzac (3757 km2). These catchments have low elevations
(lower than 434, 500 and 560 m respectively) and narrow and
elongated shapes with west–east orientations similar to the
main atmospheric fluxes from the Atlantic Ocean.

The precipitation fields with a strong spatial variability
have short durations (Fig. 8), and they are typically observed
between May and October (Fig. 8) in the Mediterranean area
(Fig. 7). The largest peak flow coefficients are also observed

in the Mediterranean area, where the catchments are exposed
to summer convective storms with high spatial variability of
precipitation fields (Fig. 7). The highest values are obtained
in the Ardèche catchment (Iσ = 4.39) at Vogüé (625 km2),
and in the Hérault catchments and the Gardon catchments
(Iσ > 3.5), which are all located in the Mediterranean area
(Fig. 7).

4.2 Impact of spatial rainfall resolution on streamflow
simulation efficiency

The impact of spatial rainfall resolution inputs on flow simu-
lation was investigated by comparing model simulations for
the four spatial resolutions: (1) lumped, (2) 64 km2 (SD64),
(3) 16 km2 (SD16) and (4) 4 km2 (SD04). The results were
analyzed by catchment classes based on the catchments’
characteristics, shown in Table 1. The catchment area and
the rainfall intensity coefficient were found to be the most
relevant in explaining the impact of spatial rainfall resolution
on model performance.

Figure 9 presents model performance by catchment classes
based on catchment area: the catchment set is divided into
three subsamples of 60 catchments (one subsample hav-
ing 61 catchments). The size ranges from 16 to 155 km2

for the G01 group of the smallest catchments, and from
497 to 6834 km2 for the G03 group of the largest catchments
(Fig. 9). Note that for G01, only the smaller subcatchment
size (4 km2) could be tested for all catchments. Therefore,
the results for the two other resolutions are not shown.

Some obvious modeling results can be observed in Fig. 9:

1. Model performance is higher for the largest
catchments (see, e.g., Merz et al., 2009). Sig-
nificant differences were found in model effi-
ciency between the smallest-catchment group (G01;
1Qp = 37 %, 1V = 26 %, 1tp = 0.14, KGE = 0.44)
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Fig. 9. Distributions of model performance in validation mode using the four efficiency criteria (top to bottom panels) for three catchment
groups (G01, G02, and G03, left to right panels) sorted by increasing catchment area. Model performance was computed for 3620 flood
events and for different spatial resolutions of precipitation forcing (LUMPED, SD64, SD16 and SD04). The box plots show the 5th, 25th,
50th, 75th, and 95th percentiles, and the mean value is given and shown by a dot.

and the largest-catchmentgroup (G04;1Qp = 21 %,
1V = 16 %,1tp = 0.11, KGE = 0.60).

2. The KGE criteria followed identical trends as the three
event-based criteria1Qp, 1tp and1V . This may be
due to the fact that KGE is balanced between the bias
(e.g., volume of flow), the relative variability in the
simulated and observed values (i.e., the spread of flow)
and the coefficient of correlation (i.e., the timing and
shape of the hydrograph) (Gupta et al., 2009).

3. For all catchment subsets, the lumped model per-
forms almost as well as the semidistributed model,
regardless of the spatial resolution of precipitation
input. Only slight improvements were noted with
higher spatial resolution in precipitation inputs and
they were larger for the largest-catchment subsam-
ple (group G03). Similar conclusions were made by
Arnaud et al. (2011), for example. In the present study,
the KGE averaged over 1200 flood events (for the
60 largest catchments) rose from 0.594 for the lumped

model to 0.624 for the semidistributed model with the
finest resolution; the averaged absolute volume, peak
and time to peak errors decreased from 22.4 to 21.4 %,
from 16.4 to 15.7 %, and from 0.112 to 0.108, respec-
tively (Fig. 9).

In Fig. 10, model performance is analyzed by catchment
classes based on catchment area and the rainfall intensity
coefficient. Each catchment subsample (based on catchment
area) is divided into three subclasses based on the rainfall
intensity coefficient (Table 1). Each subclass has the same
number of catchments (20 catchments) except one having
21 catchments (G01 and low rainfall intensity coefficient).
The low rainfall intensity coefficients range from 17.3 to 19.4
for G01, from 16.8 to 19.0 for G02 and from 14.3 to 18.0 for
G03. The high rainfall intensity coefficients range from 21.6
to 27.7 for G01, from 20.9 to 28.3 for G02, and from 19.3
to 25.4 for G03. Note that the rainfall intensity coefficient
(Table 1) was calculated over the whole period of records
(1997–2006) and was not limited to the selected events (we
consider this coefficient as a catchment descriptor).
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Fig. 10.Distributions of model performance in validation mode for three catchment groups sorted by increasing catchment area (G01, G02,
and G03, left to right panels) and by increasing rainfall intensity coefficient (low, intermediate and highP99/Pm; top to bottom panels).
The model performance was computed for 3620 flood events and for different spatial resolutions of precipitation forcing (LUMPED, SD64,
SD16 and SD04). The box plots show the 5th, 25th, 50th, 75th, and 95th percentiles, and the mean value is shown by a dot.

Model performance was better for catchments with a low
rainfall intensity coefficient for all catchment area groups
(Fig. 10). Significant differences were found in model effi-
ciency, which decreased when the rainfall intensity coeffi-
cient rose: on average, between the low and high rainfall in-
tensity coefficient, the KGE criteria ranged from 0.49 to 0.35
for the smallest-catchment group, and from 0.68 to 0.48 for
the largest-catchment group (Fig. 10).

The lumped model performed as well as the semidis-
tributed model regardless of the spatial resolution of precipi-
tation input for catchments with a low rainfall intensity coef-
ficient. Interestingly, improvements were noted with higher
spatial resolution in precipitation inputs for catchments with
a high rainfall intensity coefficient (P99/Pm > 20) and for
all ranges of catchment area (Fig. 10). Although model
performance improvements were slight for the G01 (16–
156 km2) and G02 (156–513 km2) catchment groups, signifi-
cant improvements were obtained for the largest-catchment
group (G03: 513–6834 km2): the KGE averaged over 20
flood events (for the 20 largest catchments with a high rain-
fall intensity coefficient) rose from 0.483 for the lumped
model to 0.564 for the semidistributed model with the finest
resolution.

Regardless of the catchment area and rainfall intensity co-
efficient, the semidistributed model performed equally well
at the different spatial resolutions investigated (SD64, SD16
and SD04). Indeed, the improvements in streamflow sim-
ulation at the catchment outlet between the lumped model
and the semidistributed model at the finest spatial resolution
(SD04) were nearly equivalent at coarser spatial resolutions
(SD16 and SD64) (Fig. 10).

These results allow us to generalize, with confidence,
the conclusions drawn by previous studies (but only ob-
tained over a few catchments) that reported a lack of signif-
icant differences between lumped and semidistributed flow

simulations at the catchment outlet (Ajami et al., 2004; Apip
et al., 2012; Bell and Moore, 2000; Lindström et al., 1997;
Naden, 1992; Nicòtina et al., 2008; Obled et al., 1994;
Refsgaard and Knudsen, 1996). However, we found that
the impact of higher resolution in precipitation inputs were
catchment-dependent since the quality of streamflow simula-
tions was significantly improved at the outlet of catchments
exposed to high rainfall intensity, and these improvements
rose with catchment area.

4.3 Do criteria describing rainfall spatial variability
explain the observed differences?

The previous results were averaged over the 20 flood events
for each catchment; this may hide some of the model be-
havior variability between events, depending on the charac-
teristics of the precipitation fields. This aspect is now fur-
ther investigated. Given the very limited differences between
the three sizes of subcatchments, hereafter we will only con-
sider the lumped and semidistributed (SD04, finest resolu-
tion) simulations. Figure 11 shows the links between the rel-
ative performance index (see Eq. 5) applied using the KGE
criterion (here notedR1−KGE) and the indexes of rainfall
variability (location indexIL and spatial rainfall variability
index Iσ ) and rainfall movement (IM). A positive R1−KGE
criterion indicates that the semidistributed approach is bet-
ter than the lumped one, and the reverse is true for negative
values.

First of all, it is worth noting that flood events with strong
spatial variability of precipitation rarely occur compared to
stratiform storms with uniform precipitation fields; most of
theIL values are close to 1, andIσ values are generally low
(Fig. 11). Interestingly, the medianIL value rises with catch-
ment area from 0.97 for the smallest-catchment group (G01)
to 0.99 for the medium-sized catchment group (G02), and up
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Fig. 11.Relative KGE performance index in validation mode between the lumped and the semidistributed (SD04) simulations. The relative
performance indexes are computed for 3620 flood events ordered by location index (top panels), rainfall movement index (middle panels),
spatial rainfall variability index (bottom panels) and for three groups of 60 catchments classed by area (G01, G02, and G03). For each
catchment group, the red point plotted on thex axis atx = 0 shows the median values of the variable of interest (IL , IM or Iσ ). The box plots
show the distribution of the relative KGE performance index for three groups of events with the same number of events per box plot.

to 1.01 for the largest-catchment group (G03). Similarly, the
medianIσ value rises with catchment area from 0.52 to 0.66
and to 0.69 for the G01, G02, and G03 catchment groups,
respectively. Thus, the precipitation centroid is generally lo-
cated at the upstream part of the basin for large catchments,
and the probability of obtaining uniform spatial rainfall fields
is lower in large catchments.

The rainfall movement index increased with catchment
size (Fig. 11); most of theIM values are close to 0 for the
smallest-catchment group (G01) whereas the highest val-
ues are observed for the group of largest catchments (G03).
This result corroborates the findings reported by Tarolli et
al. (2013) who assessed the catchment-size dependency of
storm velocity. Nevertheless, the catchment-scale storm ve-
locity and the rainfall motion do not seem to explain the
impact of spatial resolution input on streamflow simulation
quality; the semidistributed rainfall–runoff model could ob-
tain better as well as worse performance than the lumped

model for all catchment groups and all ranges of rainfall
movement index (Fig. 11).

For the small-catchment subsamples (groups G01
and G02: from 16 to 513 km2), the semidistributed model
(with high spatial resolution of precipitation inputs) and the
lumped model (with spatially uniform precipitation inputs)
performed equally well (Fig. 11). For the largest catchments
(group G03: from 513 to 6834 km2), the results were mixed
for low spatial rainfall variability and location indexes close
to and greater than 1 (Fig. 11).

Nevertheless, for the largest catchments (group G03: from
513 to 6834 km2), the semidistributed model with high spa-
tial resolution yields better streamflow simulations for the
few flood events in which the greatest spatial variability in
precipitation fields are observed (highIσ values orIL < 1)
(Fig. 11). Interestingly, the semidistributed model performed
better than the lumped model (for large catchments) for the
events where the precipitation fields were located close to
the outlet (IL < 1), while the lumped model was able to cope
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Fig. 12.Distribution of relative performance index values in validation mode of the lumped model and the SD04 semidistributed model. The
distribution is drawn for the whole set of 3620 flood events (left panel) and for the 20 events of each catchment (right panel). The red points
show the median values of the relative performance index for each catchment.

with rainfall fields located far from the outlet (IL > 1). This
may be due to the fact that larger precipitation amounts are
more often concentrated at the upstream part of the catch-
ment due to an orographic effect and a strong altitudinal gra-
dient in large catchments (Fig. 7). Thus, through calibration,
the lumped model acquires the ability to accurately repro-
duce the catchment response for such more common rainfall
field patterns, but not for the other “extraordinary” (from a
precipitation spatial variability point of view) events.

These results – based on a large set of catchments (181)
and a wide variety of flood events – clearly show that the im-
pact of spatial variability of precipitation is scale-dependent
and event-characteristic-dependent, as suggested by several
authors (Ajami et al., 2004; Bell and Moore, 2000; Koren et
al., 2004; Segond et al., 2007; Smith et al., 2004; Tetzlaff and
Uhlenbrook, 2005; Winchell et al., 1998). This may explain
why contradictory results can be found in the literature on
the impacts of spatial rainfall variability on the catchment re-
sponse; this study shows that some flood events are improved
using higher spatial rainfall information and others are not
(Fig. 11).

4.4 Which catchments should be modeled in a
semidistributed way?

Here we investigate the possibility of identifying catchments
where a spatially distributed representation would bring a
definite advantage. Figure 12 shows the comparison between
lumped and semidistributed simulations evaluated by the
relative performance index on KGE for the whole set of
catchments (181) (left, overall distribution on the 3620 flood
events) and by catchment (right, 181 distributions on 20
flood events each). The analysis based on the 3620 ob-
served flood events shows that the results are contrasting
(Fig. 12): 44 % of flood events are better simulated with
the lumped model (fed with spatially uniform precipitation

inputs). Using higher spatial resolution of precipitation in-
puts only improves model performance for a small majority
(56 %). It is difficult to draw conclusions given the low me-
dian value of the relative performance index (equal to 0.006)
(Fig. 12).

However, when the large set of flood events is analyzed
by catchment (Fig. 12, right panel), these contrasting results
appear to be catchment-dependent: spatial precipitation in-
puts greatly improve the streamflow simulations at the out-
lets of some catchments, whereas the impact of spatial forc-
ing is insignificant, or semidistributed modeling is worse than
lumped modeling, for other catchments (Fig. 12). These find-
ings highlight the need to test model hypotheses on large and
diversified catchment sets (Andréassian et al., 2009).

4.5 Can specific catchment behaviors be explained?

To identify the catchments that benefit (or not) from higher-
resolution rainfall information, the relative performance in-
dexes calculated over 20 flood events (Fig. 12) were averaged
by catchment. The cumulative distribution of the mean rela-
tive performance index and the geographic localization for
the 181 catchments are shown in Fig. 13. The performance
of the lumped model was better than that of the semidis-
tributed model for 39 % of catchments. Hence the semidis-
tributed approach appears beneficial for 61 % of the catch-
ment set (Fig. 13).

The analysis applied independently for each catchment
pointed out regional tendencies concerning the impact of spa-
tial rainfall resolution on streamflow simulation (Fig. 13). In
western France, streamflow simulation at the outlets of the
catchments located close to the Atlantic coast were not im-
proved when using higher spatial rainfall information. In this
region, catchments are exposed to an oceanic climate with
precipitation fields that are spatially quite uniform (Fig. 7),
which may explain the fact that the lumped model performed
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Table 5.List of particular catchments shown in Fig. 13.

ID Catchment Area Iσ |1 − IL | KGE Characteristic
(km2) [LUMPED – SD04]

1 Eyre at Salles 1678 0.77 0.03 0.645–0.532 Implausible spatial precipitation data
2 Petite Leyre at Belhade 413 0.78 0.02 0.619–0.417 Implausible spatial precipitation data
3 Orge at Saint-Chéron 111 1.15 0.04 0.451–0.314 Groundwater contribution
4 Essonne at Boulancourt 586 0.58 0.01 0.322–0.397 Groundwater contribution
5 Indre at Saint-Cyran-du-Jambot 1706 0.79 0.05 0.639–0.698 Narrow and elongated
6 Alagnon at Joursac 322 1.14 0.05 0.444–0.514 Particular morphology
7 Allier at Langogne 323 2.00 0.04 0.593–0.627 High spatial rainfall variability
8 Gardon at Mialet 244 3.52 0.06 0.450–0.481 High spatial rainfall variability
9 Hérault at Gignac 1429 3.57 0.04 0.631–0.712 High spatial rainfall variability
10 Vigueirat at Tarascon 257 4.21 0.03 0.475–0.515 High spatial rainfall variability
11 Moselle at Custines 6834 1.08 0.12 0.804–0.819 Extreme location index value
12 Bruche at Holtzheim 676 1.22 0.10 0.573–0.616 Extreme location index value

 

Fig. 13.Relative performance index averaged by catchment: cumulative distribution (left panel); geographic distribution (right panel). The
number refers to the particular catchments discussed in Table 4. Green dots (R1−KGE > 0) indicate better performances of the semidistributed
approach.

as well as the semidistributed model (Fig. 13). Two catch-
ments, the Petite Leyre and the Eyre catchments (Fig. 13
and Table 5), exhibited strong model performance decreases
when used in spatial distribution mode. Detailed analysis
showed that the semidistributed model was affected by ab-
surdly high values in spatial precipitation data inputs coming
from radar measurements (despite the treatments applied to
correct them and the numerous quality checks). These inac-
curate precipitation values were smoothed by averaging the
spatial precipitation data over the catchment in the lumped
model. As a result, the lumped model successfully computed
the flow at the catchment’s outlets, contrary to the semidis-
tributed model.

In northern France, the results were contrasted. In this re-
gion, many catchments are influenced by significant ground-
water contribution. Model performance remained low for
these catchments whatever the spatial distribution (Fig. 13);
for example, for the Essonne catchment, the KGE value

increased from 0.322 with the lumped model to only 0.397
with the semidistributed model (Table 5). Increasing spatial
information in precipitation inputs did not necessarily yield
better flow simulations, and strong decreases in model per-
formance could be observed between the lumped and the
semidistributed model (Fig. 13 and Table 5). Our interpre-
tation is that (1) spatial rainfall variability is already quite
low in this region (Fig. 7), while (2) the impact of spatially
variable precipitation is dampened by the high infiltrability
in this catchment dominated by subsurface flow (Nicòtina et
al., 2008).

The catchments that benefit most from higher spatial res-
olution of precipitation inputs (Fig. 13) are the catchments
in which precipitation fields are identified to be signifi-
cantly variable in space (Fig. 7). We identified two regions
strongly exposed to spatial rainfall variability: the Cévennes
and Mediterranean regions in southern France with high spa-
tial rainfall indexes (Fig. 7), and northeastern France with
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Fig. 14. Cumulated precipitation fields observed in the Cévennes and Mediterranean regions for three flood events with simulated and
observed streamflow at different spatial resolutions: November 1997 flood event (IL = 1.08 andIσ = 1.66) in the Allier catchment at Langogne
(323 km2) (top panels); September 2000 flood event (IL = 1.02 andIσ = 6.73) in the Hérault catchment at Gignac (1429 km2) (middle panels);
October 2003 flood event (IL = 1.05 andIσ = 0.94) in the Alagnon catchment at Joursac (322 km2) (bottom panels).

extreme location index values (Fig. 7). As examples, we
present three flood events with high spatial rainfall variabil-
ity that occurred in the large Hérault catchment (1430 km2)
and the medium-sized Allier (323 km2) and Alagnon catch-
ments (322 km2). The observed precipitation fields were
highly variable in space, as indicated by the high values
of the spatial rainfall variability index:Iσ = 6.73 (Septem-
ber 2000),Iσ = 1.66 (November 1997), andIσ = 0.94 (Octo-
ber 2003). As a consequence, the simulated peak flow was
well depicted with the semidistributed model due to spa-
tially distributed precipitation inputs, whereas it was missed
with spatially uniform precipitation input in lumped mod-
eling (Fig. 14). Similar conclusions were reached for two
catchments in northeastern France and one Cévennes catch-
ment where extreme location index values were identified:
the quality of streamflow simulations was improved due to

higher spatial rainfall information within the semidistributed
model (Fig. 15).

5 Conclusions

5.1 Summary

The impact of higher-resolution rainfall information on
streamflow simulation was investigated using a large set
of flood events (3620) in 181 French catchments. Semidis-
tributed streamflow simulations were run at different spa-
tial resolutions and evaluated against observed flow data at
catchment outlets. The results were analyzed (1) by catch-
ment classes based on catchment area and (2) by flood events
based on the spatial variability of observed precipitation
fields.
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Fig. 15. Cumulated precipitation fields (with extreme location index values) observed for three flood events with simulated and observed
streamflow at different spatial resolutions: October 1998 flood event (IL = 1.07 andIσ = 2.00) in the Bruche catchment at Holtzheim
(676 km2) (top panels); November 2000 flood event (IL = 1.12 andIσ = 1.17) in the Moselle catchment at Custines (6834 km2) (middle
panels); September 2002 flood event (IL = 0.85 andIσ = 13.47) in the Gardon catchment at Mialet (244 km2) (bottom panels).

This study first confirms that, on average, the differ-
ences in model performance between lumped and semidis-
tributed options are not significant. However, the analysis
applied by catchment and by flood event clearly showed
that the impact of spatial rainfall information on flow sim-
ulation is scale-dependent, catchment-dependent and event-
characteristic-dependent. This result underlines that catch-
ment response to spatial heterogeneity of precipitation fields
is highly variable between catchments.

The catchments’ size and the rainfall intensity coefficient
were shown to be effective indicators to identify catchments
on which detailed spatial rainfall information is useful to
improve simulations. In addition, the indexes proposed by
Smith et al. (2004) to evaluate spatial rainfall variability
showed that the greatest improvements on streamflow sim-
ulation were obtained at the outlet of large catchments and

for events with significant spatial variability in precipitation
fields.

By investigating catchment responses independently for
each catchment and for a variety of flood events, regional ten-
dencies concerning the potential benefit of high spatial rain-
fall resolution for runoff modeling in France were pointed
out. While a better spatial representation of precipitation in-
puts did not yield better streamflow simulations at the outlet
of catchments exposed to oceanic climate conditions, signif-
icant improvements were obtained in regions frequently ex-
posed to rainstorms with high spatial variability, such as the
Cévennes and the Mediterranean regions.

These results highlight the need to work on large and
varied sets of catchments (Gupta et al., 2013). Catchment
dependency on rainfall spatial variability is confirmed. By
carefully analyzing the changes in simulated hydrographs
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at different spatial resolutions, the significant influence on
particular subcatchments can be detected. In this way, the
methodology applied in this study provides insights that will
aid investigations of the catchment properties that may influ-
ence the catchment response.

5.2 Limits and perspectives

In spite of our effort to obtain general results, we do see some
limits to our conclusions. First of all, we must mention that
the results may still be somewhat dependent on the model or
testing methodology used, and these may not be adapted to
certain particular basin behaviors (Pokhrel et al., 2012; Smith
et al., 2012). Here, we have applied a single model struc-
ture to all catchments, whereas others would have preferred
catchment-specific structures (Fenicia et al., 2011). The spa-
tial heterogeneities in catchment characteristics may inter-
act with the spatial heterogeneity in precipitation fields, with
the risk of masking the impact of spatial rainfall variability.
Working on optimizing the model structure on a catchment-
by-catchment basis could help to resolve a few surprising re-
sults, including a few catchments in the Mediterranean region
(where the spatial rainfall variability was high) that were not
improved with semidistributed modeling (Fig. 13). In addi-
tion, substantial improvements due to semidistributed mod-
eling were obtained for a few catchments in central France
(Fig. 13 and Table 5), although these catchments were not
exposed to strong spatial rainfall variability (Fig. 7); how-
ever, these are long catchments with a particular morphol-
ogy for which streamflow simulations may benefit from the
channel-routing function of the semidistributed model. These
particular catchments need complementary analysis to val-
idate these hypotheses, which is beyond the scope of this
paper.

At this point, we see a natural continuation of this work
in further investigations with models whose parameters will
be allowed to be distributed spatially, in order to explore the
impact of catchment heterogeneities on catchment response.
In our opinion, however, this complementary work would not
fundamentally modify the conclusions of this paper.
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