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This work adresses the study of the threedimensional autonomous ordinary differential equations Hindmarsh-Rose neuronal model. General bifurcation diagrams are first given after a brief presentation of the model. Then, the existence of a Hopf bifurcation according to a small parameter which corresponds to the ratio of time scales between the fast and the slow dynamics is proved. Using the Hassard method we show that, under some conditions, a Hopf bifurcation occurs for a critical value of this parameter. The direction, stability and period of this bifurcation are also discussed. Numerical simulations are done to observe this bifurcation and to illustrate theoretical results.

I. INTRODUCTION

In 1952, a mathematical model that describes neuron activity has been given by two neurophysiologists, A.L. Hodgkin and A.F.Huxley, see [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. Different neuron models have been then developped and studied, see for example [START_REF] Izhikevich | Which model to use for cortical spiking neurons[END_REF], [START_REF] Izhikevich | Dynamical systems in Neuroscience[END_REF], [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF] and references therein cited. In this paper, we focus on one of them, the Hindmarsh-Rose model (HR), which results from a simplification and a generalization of the Hodgkin-Huxley model, see [START_REF] Hindmarsh | A model of the nerve impulse using two first-order differential equations[END_REF], [START_REF] Hindmarsh | A model of neuronal bursting using three coupled first order differential equations[END_REF]. As observed in various biology systems, neuron activity presents different time scales. This can be explicitly observed in HR, which is a slow-fast autonomous three ordinary differential equations. The two first equations control the fast dynamics while the third one controls the slow one. Besides, periodic phenomena or oscillations are observed as in many natural systems such as neuron models. Those phenomena can be closely related to Hopf bifurcation.

The HR model reads as follows, (HR)

   ẋ = y + ax 2 -x 3 -z + I ẏ = 1 -dx 2 -y ż = ǫ(b(x -c x ) -z) (1)
Parameters a, b and d are experimentally determined, c x is the equilibrium x-coordinate of the two-dimensional system given by the two first equations of (1) when I = 0 and z = 0 and parameter I corresponds to the applied current. It is easy to experimentaly change its value and it is therefore often used as the bifurcation parameter. Indeed, in the next part, bifrucation diagrams according to I are presented. Finally, parameter ǫ represents the ratio of time scales between fast and slow fluxes accross the membrane of a neuron and, therefore, plays a very special role in neuron activity. It is chosen, in nathalie.corson@univ-lehavre.fr Laboratoire de Mathématiques Appliquées du Havre, 25 rue Philippe Lebon, BP 540, 76058 Le Havre Cedex, France this paper, as the bifurcation parameter, as in [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system[END_REF] or in [START_REF] Gonzalez-Miranda | Complex bifurcation structures in the Hindmarsh-Rose neuron model[END_REF], in which numerical simulations are done, among other, to study this system according to parameter ǫ. In the last section of this paper, parameters a, b, d and c x are fixed as follows,

a = 3, b = 4, d = 5, c x = - 1 2 (1 + √ 5). (2) 
Equilibria are given by ẋ = ẏ = ż = 0, that is to say by,

x 3 + (d -a)x 2 + bx -bc x -I -1 = 0 (3) 
Let us denote,

x = ξ + a -d 3 , p = b - (a -d) 2 3 q = - 2(a -d) 3 27 + b(a -d) 3 -bc x -I -1 (4) 
Then, (3) reads as, ξ 3 + pξ -q = 0. Solving this equation gives the equilibria of system (1).

Proposition 1.

With notations (4), if 4p 3 + 27q 2 > 0, then system (1) has a unique equilibrium S e = (x e , y e , z e ) given by,

                   x e = - q 2 + q 2 4 + p 3 27 
1 2 1 3 + - q 2 - q 2 4 + p 3 27 1 2 1 3 + a -d 3 y e = 1 -dx e z e = b(x e -c x ) (5) 
In the next section, a presentation of some bifurcation diagrams of the Hindmarsh-Rose model according to parameter I and parameter ǫ is done. Then the existence of a Hopf bifurcation according to parameter ǫ is studied. Indeed, even if this HR model dates from 1984 and has been widely numerically studied, see for example [START_REF] Arena | Locally active Hindmarsh-Rose neurons[END_REF], [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system[END_REF], [START_REF] Duan | Codimension-two bifurcation analysis in Hindmarsh-Rose model with two parameters[END_REF], [START_REF] Gonzalez-Miranda | Complex bifurcation structures in the Hindmarsh-Rose neuron model[END_REF], [START_REF] Innocenti | Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos[END_REF], no theoretical proof has ever been published as far as we know.

II. BIFURCATION DIAGRAMS

A bifurcation diagram shows the evolution of the aysmptotic behaviour of solutions according to one parameter.

Parameter I corresponds to the current which is injected in the neuron. Thus, it can be controlled during experiments and can then play the role of bifurcation parameter. 2(c) exhibits not only inverse period doubling cascades starting with period 3, period 4 or period 5 but also some dark parts, which is a numerical sign of chaotic motion. Of course, this argument is not sufficient to clame that this system is chaotic for some given ranges of parameters. A more acurate study is done, for example, in [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system[END_REF]. The enlargement of figure 2(c) for ǫ ∈ [0.0138, 0.0148] shown in figure 2(d) also exhibits a chaotic behaviour of system (1). The right part of figure 2(a) exhibits a reverse period doubling cascade. As ǫ becomes larger, the number of spikes within a burst decreases until the bursting motion of the neuron disappears to let the spiking motion arises. 

III. EXISTENCE, DIRECTION, STABILITY AND PERIOD OF A HOPF BIFURCATION ACCORDING TO ǫ

In this section, the existence, direction, stability and period of a Hopf bifurcation according to ǫ is studied, see [START_REF] Corson | Hopf bifurcation in the slowfast Hindmarsh-Rose neuronal system[END_REF]. Under the coordinate transformation, x 1 = x-x e , y 1 = y -y e and z 1 = z -z e , system (1) becomes,

       ẋ1 = (2ax e -3x 2 e )x 1 + y 1 -z 1 + F1 (x 1 , y 1 , z 1 ) ẏ1 = -2dx e x 1 -y 1 + F2 (x 1 , y 1 , z 1 ) ż1 = ǫbx 1 -ǫz 1 + F3 (x 1 , y 1 , z 1 ) (6)
where Fj (x 1 , y 1 , z 1 ), j = 1, 2, 3 are the nonlinear terms.

The Poincaré-Andronov-Hopf theorem applied to system (1) leads to the following proposition, Proposition 2. With notations ( 12) and ( 13), if the two following conditions hold,

4r 3 + 27s 2 > 0 (7) 2 3 (a -d) < x e < 0 (8) 
then, when parameter ǫ passes the value ǫ c , system (1) undergoes a Hopf bifuration at the equilibrium S e , where, Proof: The existence of a Hopf bifurcation point in system (1) is studied using the linearized system (6) at S e . First of all, its jacobian matrix M (ǫ) is,

ǫ c = -(1 -m 11 ) 2 -m 11 b + ∆ 1 2 2(1 -m 11 + b) (9 
M (ǫ) = (m ij ) 1≤i,j≤3 (10) 
The corresponding characteristic equation is,

f (λ(ǫ)) = λ 3 (ǫ) + P (ǫ)λ 2 (ǫ) + Q(ǫ)λ(ǫ) + R(ǫ) (11) 
where,

P (ǫ) = 1 -m 11 + ǫ Q(ǫ) = (1 -m 11 + b)ǫ -m 11 -m 21 R(ǫ) = ǫ(b -m 11 -m 21 ) (12) 
Setting,

λ(ǫ) = ν(ǫ) -P (ǫ) 3 r(ǫ) = Q(ǫ) - P 2 (ǫ) 3 s(ǫ) = 2P 3 (ǫ) 27 - P (ǫ)Q(ǫ) 3 + R(ǫ) (13) 
equation ( 11) reads as,

ν 3 (ǫ) + r(ǫ)ν(ǫ) + s(ǫ) = 0,
which is the equation giving M (ǫ) eigenvalues.

The sign of 4r 3 (ǫ) + 27s 2 (ǫ) provides the number of real and complex eigenvalues of this matrix. Indeed, if 4r 3 (ǫ) + 27s 2 (ǫ) > 0, that is if condition [START_REF] Hassard | Theory and Applications of Hopf bifurcation[END_REF] holds, then M (ǫ) has two complex eigenvalues λ 1,2 (ǫ) = α(ǫ) + iω(ǫ) and one real, λ 3 (ǫ).

Now, let us study the existence of a critical value ǫ c of parameter ǫ. From ( 10), [START_REF] Innocenti | Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos[END_REF] and [START_REF] Izhikevich | Which model to use for cortical spiking neurons[END_REF], polynomial rules lead to the existence of,

ǫ c = -(1 -m 11 ) 2 -m 11 b ± ∆ 1 2 2(1 -m 11 + b) .
Algebraic computations show that under condition (8), ǫ c > 0.

Moreover, since x e < 0, it is obvious that m 11 < 0 and thus, P (ǫ c ) > 0. Therefore, λ 3 (ǫ) < 0.

The derivative according to ǫ of the characteristic equation given in [START_REF] Innocenti | Dynamical phases of the Hindmarsh-Rose neuronal model: Studies of the transition from bursting to spiking chaos[END_REF] 

is, ∂f (ǫ) ∂ǫ = 3λ 2 (ǫ) ∂λ(ǫ) ∂ǫ + ∂P (ǫ) ∂ǫ λ 2 (ǫ) +2P (ǫ)λ(ǫ) ∂λ(ǫ) ∂ǫ + ∂Q(ǫ) ∂ǫ λ(ǫ) +Q(ǫ) ∂λ(ǫ) ∂ǫ + ∂R(ǫ) ∂ǫ . (14) 
Therefore, solving ∂f ∂ǫ (ǫ c ) = 0 and separating imaginary and real parts, we obtain,

∂α ∂ǫ (ǫ c ) = ∂R ∂ǫ (ǫ c ) - ∂P ∂ǫ (ǫ c )Q(ǫ c ) -P (ǫ c ) ∂Q ∂ǫ (ǫ c ) 2Q(ǫ c ) + 2P (ǫ c ) 2 . Since 2Q(ǫ c ) + 2P (ǫ c ) 2 > 0, ∂α ∂ǫ (ǫ c ) < 0.
Finally, if 4r 3 (ǫ) + 27s 2 (ǫ) > 0 and 2 3 (a -d) < x e < 0, then all the conditions of the Poincaré-Andronov-Hopf theorem hold and (S e , ǫ c ) is a Hopf bifurcation point of system [START_REF] Arena | Locally active Hindmarsh-Rose neurons[END_REF].

Let us now study direction, stability and period of this Hopf bifurcation occuring at ǫ c using Hassard method, see [START_REF] Hassard | Theory and Applications of Hopf bifurcation[END_REF] and see also [START_REF] Hassard | Bifurcation formulae derived from center manifold theory[END_REF], [START_REF] Lü | Local bifurcation of the Chen system[END_REF], [START_REF] Zhou | Hopf bifurcation of the Liu system[END_REF] .

Let us denote by ω 0 the value ω(ǫ c ) > 0 and let v j , j = 1, 2, 3, be the eigenvectors of the matrix M (ǫ c ), given in [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], corresponding to the eigenvalues λ j . We have, λ j = ±iω 0 = ±iQ 1/2 (ǫ c ), j = 1, 2, and λ 3 = -P (ǫ c ).

The eigenvector v 1 associated with λ 1 = iω 0 is,

v 1 = 1, m 21 (1 -iω 0 ) 1 + ω 2 0 , ǫ c b(ǫ c -iω 0 ) ǫ 2 c + ω 2 0 T ,
and the eigenvector v 3 associated with λ 3 is,

v 3 = 1, m 21 m 11 -ǫ c , ǫ c b m 11 -1 T . Let us define P such that (x 1 , y 1 , z 1 ) T = [P (x 2 , y 2 , z 2 )] T , P = (Re(v 1 ), -Im(v 1 ), v 3 ) = (p ij ) 1≤i,j≤3 (15) 
The inverse matrix is given by P

-1 = (p -1 ij ) 1≤i,j≤3 . Thus,    ẋ2 = ω 0 y 2 + F 1 (x 2 , y 2 , z 2 ), ẏ2 = -ω 0 x 2 + F 2 (x 2 , y 2 , z 2 ), ż2 = λ 3 z 2 + F 3 (x 2 , y 2 , z 2 ),
where F 1 , F 2 and F 3 are the nonlinear terms, satisfying F i (x 2 , y 2 , z 2 ) = P -1 ( Fi (x 1 , y 1 , z 1 )), Procedures proposed by Hassard et al. [START_REF] Hassard | Theory and Applications of Hopf bifurcation[END_REF] are used to calculate the following quantities, evaluated at ǫ = ǫ c .

g 11 = 1 2 p -1 11 (a -3x e ) -p -1 12 d + i 2 p -1 21 (a -3x e ) -p -1 22 d g 02 = g 11 g 20 = g 11 G 21 = - 3 4 p -1 11 + ip -1 21 .
Moreover, let us calculate the quantities,

h 11 = 1 2 p -1 31 (a -3x e ) -p -1 32 d h 20 = h 11 .
Then, solving the two equations,

λ 3 w 1 = -h 11 (λ 3 -2iω 0 )w 20 = -h 20
gives,

w 11 = p -1 31 (a -3x e ) -p -1 32 d 2(1 -m 11 + ǫ c ) , w 20 = 1 2 p -1 31 (a -3x e ) -p -1 32 d (1 -m 11 + ǫ) 2 + 4ω 2 0 . (1 -m 11 + ǫ c + 2iω 0 )
Furthermore, calculating the quantities,

G 110 = 1 4 p -1 11 (a -3x e ) -p -1 12 d + i 4 p -1 21 (a -3x e ) -p -1 22 d G 101 = G 110 g 21 = G 21 + (2G 110 w 11 + G 101 w 20 )
and by setting,

c 1 = i 2ω 0 g 20 g 11 -2|g 11 | 2 - 1 3 |g 02 | 2 + 1 2 g 21
we can give the main result below in which,

µ 2 = - Re(c 1 ) ∂α ∂ǫ (ǫ c ) , τ 2 = - Im(c 1 ) + µ 2 ∂ω ∂ǫ (ǫ c ) ω 0 , β 2 = 2Re(c 1 ).
Theorem 1. Under the hypothesis of proposition 2, system (1) undergoes a Hopf bifurcation at the equilibrium point (x e , y e , z e ) as ǫ passes through ǫ c with the following properties.

1) If µ 2 < 0 (reps. µ 2 > 0) , then the direction of bifurcation is ǫ < ǫ c (resp. ǫ > ǫ c ) and the bifurcation is supercritical (resp. subcritical), 2) If β 2 < 0 (resp. β 2 > 0), the bifurcating periodic solutions are orbitally stable (resp. unstable), 3) If τ 2 > 0 (resp. τ 2 < 0), the period of bifurcating periodic solutions increases (resp. decreases).

The period and characteristic exponents are given by,

T = 2π ω 0 (1 + τ 2 E 2 + O(E 4 )) β = β 2 E 2 + O(E 4 )
Where,

E 2 = ǫ -ǫ c µ 2 + O(ǫ -ǫ c ) 2 (provided µ 2 = 0).
The periodic solutions themselves are,

  x y z   =   x e y e z e   + P.   u 1 u 2 u 3   (16) 
where,

u 1 = Re(ζ) , u 2 = Im(ζ) u 3 = w 11 |ζ| 2 + Re(w 20 ζ 2 ) + O(|ζ| 3 ) and ζ = Ee 2iπt/T + iE 2 6ω 0 (g 02 e -4iπt/T
-3g 20 e 4iπt/T + 6g 11 ) + O(E 3 )

Now, numerical computations are done to illustrate these theoretical results. Thereafter, we consider system (1), with parameters a, b, c x and d fixed as in (2) and I = 3.25. Equilibria of this system are studied as presented in the first section of this paper, and using notation of (4), we obtain,

4p 3 + 27q 2 ≈ 76.443755 > 0
Therefore, proposition 1 leads to the existence an uniqueness of system (1) equilibrium (x e , y e , z e ), given by ( 5),

x e ≈ -0.722126 , y e ≈ -1.607329 , z e ≈ 3.583632

Let us verify if proposition 2 can be applied to system [START_REF] Arena | Locally active Hindmarsh-Rose neurons[END_REF] with the fixed values of parameters [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system[END_REF]. The bifurcation value of ǫ, given by equation ( 9) of proposition 2, is, ǫ c ≈ 0.125912.

This value of ǫ c is really close to the one we observe on the bifurcation diagram given in figure 3.

For this value of ǫ c , we have, 4r 3 (ǫ c ) + 27s 2 (ǫ c ) ≈ 443.299666 > 0 and condition [START_REF] Hassard | Theory and Applications of Hopf bifurcation[END_REF] holds. Therefore, the jacobian matrix M (ǫ c ) has one real eigenvalue λ 3 (ǫ c ) and two complex ones λ 1,2 = α(ǫ c ) ± iω(ǫ c ).

Since 2(a -d)/3 = -4/3, the condition 2(a -d)/3 < x e < 0 is verified. Furthermore, ∂α ∂ǫ (ǫ c ) ≈ -0.748444 = 0, and λ 3 (ǫ c ) ≈ -7.025406 < 0.

Thus, thanks to proposition 2, ǫ c ≈ 0.125912 is the Hopf bifurcation value of parameter ǫ for system (1) at (-0.722126, -1.607329, 3.583632). with parameter fixed as in (2) and ǫ = 0.12 < ǫc, the asymptotic solution is a stable limit cycle. (b) (x, y, z) view of the phase portrait and time series of system (1) with parameter fixed as in (2) and ǫ = 0.13 > ǫc, the asymptotic solution is stable focus.

The computation of matrix P and its inverse matrice P -1 gives, = -0.063437 -0.009879i

P =   1 
Finally, computations give, µ 2 = -0.084758 < 0 , β 2 = -0.126873 < 0 , τ 2 = 0.384677 > 0.

According to theorem 1, the Hopf bifurcation occuring at ǫ c is supercritical and the direction of bifurcation is ǫ < ǫ c . Moreover, the bifurcating periodic solutions are asymptotically orbitally stable and the period of bifurcating periodic solutions increases.

The period of the solution is given by, T = 28.686363 -130.193932(ǫ -0.125912) +O((ǫ -0.125912) 2 ) and this period increases as ǫ decreases. The characteristic exponents is given by, 

IV. CONCLUSION

In this paper, after a presentation of the three-dimensional autonomous ordinary differential equations Hindmarsh-Rose neuronal model, bifurcation diagrams according to parameters I and ǫ are presented. Then, the existence of a Hopf bifurcation according to parameter ǫ in this model is discussed. Indeed, for a critical value ǫ c of this parameter, a Hopf bifurcation occurs under some conditions. Using Hassard algorithm, the direction, stability and period of this bifurcation are then studied. Finally, numerical simulations are done to observe this bifurcation and to illustrate theoretical results.
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 1 Figure 1. (a) Bifurcation diagram of the HR model for parameters (2) and ǫ = 0.001. As the magnitude of injected current I increases, the number of branches on the diagram also increases. Biologicaly, the fast dynamics of the neuron is evolving. (b) Enlargements of (a) for I ∈ [3.25; 3.3].
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 2 Figure 2(a) gives the bifurcation diagram with respect to the control parameter ǫ in the range [0, 0.05]. In order to have a more accurate analysis of the dynamics of system (1), we present in figure 2(b),(c),(d) enlargements of figure 2(a).Figure 2(b) shows, among other things, that there is an ǫ 1 ∈ [0.00041, 0.00049] for which the neuron behaviour changes abruptly. Indeed, ∀ǫ < ǫ 1 , the neuron exhibits a tonic spiking motion and, ∀ǫ > ǫ 1 , the neuron exhibits a bursting motion. Moreover, this figure shows that system (1) with parameters given in (2) and I = 3.25 does not exhibit chaotic behaviour for ǫ ∈ [ǫ 1 , 0.002]. The enlargement of figure 2(a) for ǫ ∈ [0.005, 0.015] shown in figure2(c) exhibits not only inverse period doubling cascades starting with period 3, period 4 or period 5 but also some dark parts, which is a numerical sign of chaotic motion. Of course, this argument is not sufficient to clame that this system is chaotic for some given ranges of parameters. A more acurate study is done, for example, in[START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system[END_REF]. The enlargement of figure2(c) for ǫ ∈ [0.0138, 0.0148] shown in figure2(d) also exhibits a chaotic behaviour of system (1). The right part of figure2(a) exhibits a reverse period doubling cascade. As ǫ becomes larger, the number of spikes within a burst decreases until the bursting motion of the neuron disappears to let the spiking motion arises.

  Figure 2(a) gives the bifurcation diagram with respect to the control parameter ǫ in the range [0, 0.05]. In order to have a more accurate analysis of the dynamics of system (1), we present in figure 2(b),(c),(d) enlargements of figure 2(a).Figure 2(b) shows, among other things, that there is an ǫ 1 ∈ [0.00041, 0.00049] for which the neuron behaviour changes abruptly. Indeed, ∀ǫ < ǫ 1 , the neuron exhibits a tonic spiking motion and, ∀ǫ > ǫ 1 , the neuron exhibits a bursting motion. Moreover, this figure shows that system (1) with parameters given in (2) and I = 3.25 does not exhibit chaotic behaviour for ǫ ∈ [ǫ 1 , 0.002]. The enlargement of figure 2(a) for ǫ ∈ [0.005, 0.015] shown in figure2(c) exhibits not only inverse period doubling cascades starting with period 3, period 4 or period 5 but also some dark parts, which is a numerical sign of chaotic motion. Of course, this argument is not sufficient to clame that this system is chaotic for some given ranges of parameters. A more acurate study is done, for example, in[START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system[END_REF]. The enlargement of figure2(c) for ǫ ∈ [0.0138, 0.0148] shown in figure2(d) also exhibits a chaotic behaviour of system (1). The right part of figure2(a) exhibits a reverse period doubling cascade. As ǫ becomes larger, the number of spikes within a burst decreases until the bursting motion of the neuron disappears to let the spiking motion arises.
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 2 Figure 2. Bifurcation diagrams in (ǫ, y) plane for system (1) with parameters given in (2) and with I = 3.25. (a) An inverse period doubling cascade is observed for ǫ ∈ [0, 0.05]. (b) Enlargement of figure (a) for ǫ ∈ ]0; 0.002]. (c) Enlargement of figure (a) for ǫ ∈ [0.005; 0.015]. (d) Enlargement of figure (c) for ǫ ∈ [0.0138; 0.0147].

) and m 11 =

 11 2ax e -3x 2 e , m 21 = -2dx e and ∆ = [(1 -m 11 ) 2 -m 11 b] 2 + 4(1 -m 11 + b)(m 11 + m 21 )(1 -m 11 ).

Figure 3 .

 3 Figure 3. Bifurcation diagram of system (1) with parameters given in (2) according to parameter ǫ.

Figure 4 .

 4 Figure 4. (a) (x, y, z) view of the phase portrait and time series of system (1) with parameter fixed as in (2) and ǫ = 0.12 < ǫc, the asymptotic solution is a stable limit cycle. (b) (x, y, z) view of the phase portrait and time series of system (1) with parameter fixed as in (2) and ǫ = 0.13 > ǫc, the asymptotic solution is stable focus.

β = 1 . 2 )u 1 =

 121 496888(ǫ -0.125912) + 0((ǫ -0.125912) The periodic solutions are, Re(ζ), u 2 = Im(ζ), u 3 = 0.359215|ζ| 2 + Re((0.357823 + 0.022319i)ζ 2 ) + O(|zη| 3 ) and, ζ = Ee 2iπt/T + iE 2 6ω 0 (0.060399 + 0.071870i)e -4iπt/T -3(0.060399 + 0.071870i)e 4iπt/T +6(0.060399 + 0.071870i) + O(E 3 )