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SWIMMING LIKE OSCILLATORS ? THE QUESTION OF

MODELLING AND IDENTIFYING PARAMETERS

R. Charrier, N. Corson, L. Seifert, J. Komar, C. Bertelle ∗†‡

Abstract. This paper addresses the knee and elbow evolution dur-

ing a swimming cycle. From data collected in a sport lab, the aim

is to construct an oscillator model and to identify parameters in or-

der to exhibit the same dynamical behaviour. Litterature gives an

idea of oscillators which can be use to start with. Indeed, in other

sports, Van der Pol and Rayleigh nonlinear dynamical systems have

already been used to model athletic movements. Starting from this

point, we have applied a PSO-like algorithm to fit parameters with

a hybrid theoretical model of Rayleigh-Van der Pol. Results are

convincing for a restricted set of original data, showing that the

chosen theoretical model has to be enhanced.

Keywords. Nonlinear oscillators, Parameter identification, Data,

Dynamical systems,.

1 Introduction

Mathematical and Computer science models can con-
tribute to the search of performance and training of high
level athletes. Beyond new technologies we can use, espe-
cially in terms of sensors and images analysis, it remains
very important to understand and analyse the movement
coordination according to the environment (air, water),
taking into account the movement complexity. This
coordination can be either intuitive or controled.
Learning methods to tend to expert movements remains
open problems in research. Indeed, physical, behavioral
and psychological elements have to be taken into account.

The first part of this paper consists in constructing
models, using oscillators, of knee and elbow behaviors
through a breastroke cycle, based on data obtained from
real swimmers wearing sensors.
The second part of this paper adresses the design and the
use of an algorithm to identify parameters according to
the level of the swimmer.
For example, in other sports such as ski, it has been shown
through the study of Hooke portraits, giving the acceler-
ation according to the speed, that an expert behavior
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was quite well represented with a Van der Pol oscilla-
tor whereas a beginner behavior could be quite well rep-
resented with a Rayleigh oscillator [Teulier et al., 2006,
Nourrit et al., 2003]. The aquatic environment of swim-
mer may change this observation in the swimming case.

2 Model design and Parameter

identification

2.1 Collecting data

Breaststroke: In breaststroke swimming, achieving
high performance requires a particular management of
both arm and leg movements, in order to maximise
propulsion and optimise the glide and recovery times.
Therefore, expertise in breaststroke is defined by adopt-
ing a precise coordination pattern between arms and legs
(i.e. a specific spatial and temporal relationship between
elbow and knee oscillations). Indeed, when knees are flex-
ing, elbows should be fully extended (180➦), whereas knees
should be fully extended (180➦) when elbows are flexing,
in order to ensure a hydrodynamic position of the non-
propulsive limbs when the first pair of limbs is actually
propulsive.

Data: Participant performed 10 trials of 25-m swim
during each session, with 1 x 25-m consisting approxi-
matively in 8 recorded cycles (one cycle correspond to
the period between two successive maximal knee flex-
ion). Coordination between elbow and knee was defined
by the continuous relative phase between these two os-
cillators, considering elbows and knees as acting like in-
dividual pendulums. A value of relative phase close to
-180➦or 180➦defined an anti-phase relationship (i.e. oppo-
site movements of knee and elbow) while a value close to
0➦defined an in-phase mode of coordina- tion (i.e. identi-
cal movements of knee and elbow). Each cycle performed
during the learning process was therefore defined by a
time series of continuous relative phase (normalised to
100 values) describing the relationship between the knee
and the elbow during all the swimming cycle.
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Sensors: During every learning session, all learners
were equipped with small motion sensors on both arms
and legs including a data logger and recording elbow and
knee angle at a frequency of 200 Hz. Four small iner-
tial centrals were fixed on the right leg and right thigh to
record knee angle and on the right foream and right arm
to assess the elbow angle. These sensors combines 3D
gyroscope (1600➦/s), 3D accelerometer (+/-8G) and 3D
magnetometer (MotionLog, Movea➞, Grenoble, France).
These sensors used North magnetic and gravity refer-
ences. The advantage of using sensor is that all the cycles
performed by each swimmer were recorded during the en-
tire learning process and available for the analysis (i.e. 8
cycles x 10 trials x 16 sessions = approximatively 1280
cycles per learners).

2.2 Plotting data

In this section, we analyse experimental data collected
during beginner sessions. Thanks to litterature, we have
the idea that a hybrid Van der Pol - Rayleigh oscillator
model could fit data.
Experimental data are given as time series of knee and
elbow angle. The sampling frequence is f = 200Hz.
In the case of the elbow, data of three swimming sessions
are used : 3, 10 et 17. Each session is itself divided into
ten swimming sequences. The speed and acceleration are
computed using a polynomial interpolation. This method
prevents us from numerous computation artefacts because
of the noise in data. To go through these drawbacks, we
interpolate a sample of 50 points before and after the cur-
rent point with a polynom of a sufficiently high degree (
degree 10 in our case ) so that we can compute proper
derivatives on each point.
This way, we can obtain phase portraits and hooke por-
traits from the time series. Figure 1(a) shows the knee
datas for three sessions. Figure 1(b) shows the phase por-
traits (angular speed according to angle), and figure 1(c)
shows Hooke portraits, meaning the angular acceleration
according to the angle.

This first visualisation allows to have an idea of the
model which could be used to obtain the same behavior.
Indeed, we can see that during sessions 3 and 17, cycles of
the attractor (cf. figure 1(b)) are not symmetric and that
the speed remains zero for a while (cf. time series). This
introduces a delay in the data cycles. This asymetric
behavior will make the parameter identification of the
Van der Pol - Rayleigh model much more complicated.
This is why, as a first step, we will focus on session 10.

2.3 Hybrid Rayleigh - Van der Pol model

In this field of research, periodic behavior of human
movements are often studied using Van der Pol or
Rayleigh oscillatoors [Beek et al., 1995, Beek et al., 2002,
Delignières et al., 1999]. This model is described by the

(a) Angle time series

(b) Phase portraits

(c) Hook Portraits

Figure 1: Normalized data of knees and elbows during
the same cycle of a swimming cycle.
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Figure 2: Phase porttrait of a hybrid Rayleigh - Van der
Pol model, with : t0, γ = 2.0, ǫ = 1.2, δ = 1.0, ω = 1.5

following differential equations :

ẍ− (γ − ǫx2
− δẋ2)ẋ+ ω2x = 0 (1)

where x(t) is the variable, ẋ et ẍ are its two first time
derivatives [Huys and Jirsa, 2011]. All parameters are
positive, and this model can be rewritten as a two di-
mensional differential system as follows:

{

ẋ = y

ẏ = (γ − ǫx2
− δy2) y − ω2x

(2)

The trajectories of such a differential system can be visu-
alized for example on figure 2.

We aim at identifying as well as possible (i.e. in the
mean of least squares) solutions of this differential model
to experimental data.
Let x̃(t) the time series corresponding to experimental
data. This problem consists of finding the parameter set
(γ, ǫ, δ, ω) which minimize the following objective func-
tion:

F =
1

N

N−1
∑

i=0

(x(ti)− x̃(ti))
2 (3)

N is the number of considered sampling.
The following section presents an algorithm to realize this
optimization.

2.4 Chaotic PSO for parameter identifi-

cation

This optimization problem is a difficult one since it is
a nonlinear, continuous variable identification problem.
The parameter space is large enough so that classical
methods such as Levensberg-Marquardt cannot be used
[Ljung, 2010].

In this case, alternatives are said “soft computing” ap-
proaches using metaheuristics for optimization. One of

these metaheuristics is inspired by the collective behav-
ior of social insects. This gives rise to optimization algo-
rithms by swarms of particules in which every possible so-
lution is represented by a particule moving in the search
space for finding the best position. On each explored
point, the particle computes the objective function and
shares this information with the rest of the swarm. This
method can be summarized by the following dynamical
system, governing particule i:











vi(t+ 1) = w vi(t) + c1(xb(i)− xi(t))

+ c2(xg − xi(t))

xi(t+ 1) = xi(t) + vi(t+ 1)

(4)

where xb(i) and xg are respectively the best position
of the current particle through its own history and
the best position within the group at time t only.
Parameters w, c1 and c2 are random coefficients in
a certain range, representing respectively an inertia
coefficient (controling the importance of the explo-
ration phase in the search space) and two coefficients
of balance between individual and collective performance.

For this study, we used this kind of algorithm adding
a local search from the best position of the group at
time t using chaotic maps for exploration. It appears
that these applications are more powerful than a clas-
sical random uniform creation of parameter sets. This
is due to their very specific probability density giving
advantage to extrem and central values of the search
range [Yang et al., 2012]. The chaotic map used for the
local research is the following:

xn+1 =
sin(4π xn) + 1

2

This kind of algorithm, named Chaotic PSO in many pa-
pers, is used since about ten years. Results presented in
the next section are obtained with this method.

3 Results

Results presented here concern training sessions named
E3, E10, E17. Sessions 3 and 10 are the better ones in
term of parameter identification, in particular concerning
the elbow angle (cf. fig. 3 and 4). Other series have been
studied but less successfully (cf. fig. 5 et 6).

We can oberve a real variability of exploration accord-
ing to the best performance. The best fitness function
gives from 0.2% to 0.5% average quadratic error and the
obtained attractors follow the experimental trajectories
for sessions E3 and E10 of the elbow, despite the noise
of measure. Differential equations corresponding to iden-
tifications are given in table 4. We can then follow the
evolution of the parameter values to see if a behavior cor-
responds whether to a Rayleigh or a Van der Pol one,
looking at two specific parameters.
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3.1 Discussion

Results of identification allow to conclude that, unlike
the skiing case, a swimmer behavior can rarely be
assimilated to a Rayleigh-Van der Pol oscillator. Indeed,
identification fits quite well in the case of sessions 3
and 10 for the elbow. In these cases, it could be very
interesting to study the evolution of the parameter values
to check if they are signiticative in terms of learning.

However, the hypothesis of a Rayleigh - Van der Pol
dynamic concerning the knee is almost never verified us-
ing this identification method. This might be due to the
kind of landing on the time series, also observed on the
phase portraits (see the right part of the phase portaits
of figure 1).

4 Conclusion

Hypothesis on the hybrid de Van der Pol-Rayleigh model
are validated on most of the experimental data in the case
of elbow angles. The interest of using this model is that
it requires a low number of parameters and allows a sim-
plified representation of the trajectories in the parameter
space. However, this model does not fit in most of the
knee data.
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Appendix A Visualization of iden-

tification results

The following results have been obtained using Octave (clone li-
bre of Matlab) with a unique execution, with 100 particles, on 300
principal research loops and 50 local research loops.

Appendix B Model identification

The parameters given in this table are those in the equation (1).
They correpond to the best approximation obtained with the
chaotic swarm particle algorithm. Let us mention that these
simulations have been perfomed only once.

series γ ǫ δ ω

E3 P1 elbow 3.70 5.95 1.36 4.07
E3 P3 elbow 8.45 10.00 3.52 4.39
E3 P5 elbow 6.93 8.05 3.10 4.05
E3 P7 elbow 6.01 5.10 2.47 4.28
E3 P9 elbow 1.87 9.94 0.51 3.88

E10 P1 elbow 8.65 3.25 3.62 4.50
E10 P3 elbow 5.25 7.46 1.89 3.91
E10 P5 elbow 5.53 9.65 2.42 3.66
E10 P7 elbow 4.22 0.04 1.85 3.61
E10 P9 elbow 4.00 6.17 1.19 3.63

E17 P1 elbow 3.53 8.07 9.86 2.29
E17 P3 elbow 3.20 9.15 9.58 2.44
E17 P5 elbow 1.31 0.03 7.12 2.24
E17 P7 elbow 4.67 8.99 9.72 2.96
E17 P9 elbow 3.51 9.55 9.97 2.76

E3 P1 knee 4.62 4.69 1.11 4.41
E3 P3 knee 2.27 0.15 0.82 3.99
E3 P5 knee 6.96 4.34 3.22 4.06
E3 P7 knee 9.17 3.43 4.44 4.61
E3 P9 knee 8.95 8.64 3.41 4.58

E10 P1 knee 3.39 2.88 0.65 3.62
E10 P3 knee 4.48 0.69 0.76 3.88
E10 P5 knee 3.58 1.29 0.92 3.53
E10 P7 knee 3.30 1.09 1.22 3.49
E10 P9 knee 2.58 0.29 1.30 3.38

E17 P1 knee 4.40 1.74 3.19 2.96
E17 P3 knee 5.61 1.99 3.25 3.37
E17 P5 knee 6.30 3.77 3.83 3.48
E17 P7 knee 9.56 0.00 4.57 4.45
E17 P9 knee 9.86 3.15 6.50 4.55
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(a) E3 P1 coude (b) E3 P1 genou

(c) E3 P3 coude (d) E3 P3 genou

(e) E3 P5 coude (f) E3 P5 genou

(g) E3 P7 coude (h) E3 P7 genou

Figure 3: Identification Results using chaotic PSO involving 100 particles after 300 iterations.
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(a) E3 P9 coude (b) E3 P9 genou

(c) E10 P1 coude (d) E10 P1 genou

(e) E10 P3 coude (f) E10 P3 genou

(g) E10 P5 coude (h) E10 P5 genou

Figure 4: Identification Results using chaotic PSO involving 100 particles after 300 iterations.
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(a) E10 P7 coude (b) E10 P7 genou

(c) E10 P9 coude (d) E10 P9 genou

(e) E17 P1 coude (f) E17 P1 genou

(g) E17 P3 coude (h) E17 P3 genou

Figure 5: Identification Results using chaotic PSO involving 100 particles after 300 iterations.
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(a) E17 P5 coude (b) E17 P5 genou

(c) E17 P7 coude (d) E17 P7 genou

(e) E17 P9 coude (f) E17 P9 genou

Figure 6: Identification Results using chaotic PSO involving 100 particles after 300 iterations.


