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Abstract

We evidence experimentally the statistical properties of frequency shifted
feedback (FSF) lasers through measurements of the homodyne beat signal
and interferometric autocorrelation of a dye FSF laser at the output of a
Michelson interferometer. The FSF laser is found to show thermal fluctu-
ations and photon bunching. Moreover whereas the degree of first-order
coherence vanishes beyond the coherence length of the FSF source, the
degree of second-order coherence exhibits periodic revivals far beyond the
coherence length, with a period equal to the cavity roundtrip time. Our
observations are in good agreement with the theoretical treatment of Yat-
senko et al. (Opt. Comm. 282 (2009) 300) and validate the description
of the output field of a FSF laser by a broadband cyclostationary thermal
field.

1 Introduction and methods

Frequency shifted feedback (FSF) lasers constitute remarkable light sources, in
terms of both practical applications and fundamental research. A FSF laser
is a gain cavity in which an acousto-optics (AO) frequency shifter is inserted.
Each time a photon makes a roundtrip in the cavity, it experiences a frequency
shift, usually in the range of a few tens of MHz [1]. If the frequency shift
is commensurable with the cavity free spectral range, the FSF laser emits in
the pulsed mode [2]. Otherwise the output field is CW, the interferences re-
sponsible for the usual cavity comb spectrum are washed out and the resulting
output spectrum is continuous [3]. Its width is adjustable by means of intra-
cavity selective elements and can be tailored by seeding the FSF cavity with
an external laser [4]. The broadband spectrum finds naturally applications in
atomic physics since it enables to excite a whole Doppler-hyperfine transition
[5]. Optical pumping of all velocity classes of an atomic vapor has recently being



applied to high resolution interferometry [6]. Since it optimizes the excitation of
an atomic transition by reducing the saturation, FSF lasers are also currently
implemented in the field of laser guide stars for astronomy (LGS) where one
seeks to excite as efficiently as possible the mesospheric sodium to use the re-
turn fluorescence as an intense artificial guide star to pilot the adaptive optics
loop [7, 8]. Other applications have also been demonstrated in white light cool-
ing of atoms [9] and laser induced atomic drift [10]. But so far, most of the
applications of FSF lasers concern metrology, where their dynamical properties
have led to promising implementations. Namely when the FSF laser beam is
split in an interferometer and recombined, a RF modulation is observed in the
homodyne signal and the beat frequency is proportional to the path difference
of the interferometer. This result is valid far beyond the coherence length of
the laser source and demonstrates the intrinsic chirped nature of the FSF laser
field. Applications to optical frequency domain ranging [11, 12, 13], measure-
ment of group velocity dispersion in fibers [14], vibrometry [15], temperature
measurement [16] have recently been demonstrated. Other applications also
include multiple access optical communications [17].

The puzzling behaviour of FSF sources have lead to multiple studies on the
dynamics of such lasers [18, 19, 20, 21], and to some controversy on the na-
ture of the light field, in particular whether the chirp was continuous or not
[22, 23, 24]. A simple and intuitive image of the output of the FSF laser has
emerged, consisting in a comb of modes chirping with time, at a rate propor-
tional to the intracavity frequency shift [11, 25, 26, 27]. This description enables
to explain easily the homodyne properties of FSF lasers. However the question
of the origin of this frequency comb remained unanswered. Recently a theo-
retical study showed that there was no need to invoke the description by the
chirping comb since homodyne RF properties can be deduced from the intuitive
picture, where the output field is cyclostationary and consists in an infinite se-
quence of spontaneous emission events emitted in the gain curve of the cavity.
Each of them repeats periodically at the cavity roundtrip time, experiencing a
periodical frequency shift [28]. This model succeeds remarkably in explaining
the RF properties of the FSF laser field while being compatible with earlier ex-
perimental studies [29]: heterodyne measurements in particular had shown that
the broadband nature of the FSF field relied mostly on chaotic (white) phase
fluctuations, which is consistent with the role played by spontaneous emission.
Contrary to the phase noise, intensity noise of a FSF laser (which can be directly
measured on the RF spectrum of the laser output) shows usually discrete beats
at integer multiples of the free spectral range (FSR), and also additional noise
induced by the frequency shifter. In some cases however FSF sources showed
no repetitive intensity modulation at the laser FSR [30, 31]. But in any case
no study has been done yet to quantify the intensity fluctuations of FSF lasers
and to link them to their statistical properties.

In this paper we investigate both theoretically and experimentally the statis-
tical properties of a dye FSF laser by characterizing the degree of second-order
coherence (or the intensity correlation function) ¢(®) (7). Since the coherence
time of our laser is in the ps range, measuring photoelectrons statistics during



a variable observation time is not appropriate in our case [32]. Instead we use
the technique of second-harmonic generation (SHG) whose efficiency is directly
linked to the intensity fluctuations of the laser source [33, 34]. To access the
second-order coherence function we adopt an interferometric autocorrelation
(IAC) scheme [35, 36] where the laser beam is split in two arms experiencing
a variable delay 7 and recombined in the same spatial mode into a type I non-
linear crystal tuned to the phase-matching condition for SHG. The intensity
correlation function can be deduced from the variation of the harmonic signal
with the path difference.

In the first part of the paper we investigate theoretically the degrees of first-
and second-order coherence g(V)(7) and g(®(7) of FSF lasers using the passive
frequency-independent cavity model given in [28] and calculate the interfero-
metric autocorrelation function of a FSF laser, compared to a chaotic light
source with the same spectral width. Thermal photon statistics and a periodic
behavior of g(? (1) are predicted.

Then in the second part we describe the experimental measurement of the
second-order coherence function through measurement of the autocorrelation
function of a dye FSF laser at the output of a Michelson interferometer. Our
measurements confirm both the thermal statistics (i.e. the photon bunching) of
the FSF laser and the periodic nature of the degree of second-order coherence
beyond the (first-order) coherence domain. Finally novel applications of FSF
lasers exploiting their coherence properties are proposed.

2 Theoretical description

2.1 Chaotic light

First we briefly review elementary aspects of the coherence properties of chaotic
light fields: this point is useful for further comparison to the output field of a
FSF laser.

We consider £(t) a stationary chaotic light field in a defined spatial mode,
generating the time-dependent intensity I(t) = &(¢)&(t)*. L

For an ergodic process the time-average intensity Iy = I(¢) equals the
ensemble-average (I(t)). We also assume a Lorentzian field with a spectral
density given by:

= v/
l(w) = ————=1 1
)= Gl 1)
where v and wg characterize respectively the width and the central angular

frequency of the spectral distribution of this Lorentzian chaotic (LC) field [37].
The corresponding correlation function of the field is:

F(r) = (€& (¢ + 7)) = Toe~ o717, (2)

The degrees of first- and second-order coherence are respectively:
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where we use the factorization rule valid for chaotic fields:

(€(t1)E" (t2)8(t3)€7 (1)) = (€(81)€7 (£2)) (€ (£3)E™ (1))
5*

+(E(t1)€" (ta))(€(t3)E" (22))- (5)

Then a chaotic light source exhibits the usual properties of thermal fluctua-
tions or photon bunching ¢ (0) = 2. In other words the variance of the process
defined as 0 = (I(t)?) — (I(t))? is equal to (I(t))?: intensity fluctuations of the
chaotic field are comparable to the mean intensity. The degrees of first- and
second-order coherence of the LC light source are plotted on fig. 1 (top).

We now turn to the case where the previous LC field feeds a balanced in-
terferometer, with a time delay 7 between both arms. At the output of the
interferometer a non-linear crystal performs the interferometric autocorrelation
(TAC) function of the light field.

The time-dependent intensity of the second-harmonic field is proportional
to:

IS (t,m) = 1/16](&(t) + &(t + 7). (6)

After simple calculations the time-average harmonic intensity is:

I () = 1120t 7) = (7)

12
012 4 4e M cos(wor) + e 21l cos(2woT) 4+ e~ 2171

The interferometric autocorrelation trace is plotted on fig. 1 (bottom). The
ratio of the maximum at 7 = 0 to the background is 8:2, and 3:2 when averaging
is performed over the fringes.

2.2 Passive frequency-independent FSF cavity

In this paragraph we turn to the statistical properties of the FSF laser field: we
assume that the light field results from the intracavity spontaneous emission and
consists in periodic trains of chaotic Lorentzian light shifted in frequency at each
roundtrip (cyclostationary process). We consider the simple model of a passive
frequency independent cavity with no gain and whose losses are simply due to
the reflection on the weakly transmitting output mirror, defined by a reflection
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Figure 1: Top: plot of the |¢g((7)|> and ¢®(r) functions of the LC light
field. Bottom: interferometric autocorrelation trace of the LC light field without
(black) and with an average over the fringes (red).



coefficient R (R < 1). For the sake of clarity we take the same notations as
[28]: A is the angular frequency shift experienced by the cavity photons per
roundtrip (in the case of a linear cavity, twice the AO angular frequency), 7,
is the roundtrip time in the cavity. Considering that the field originates solely
from spontaneous emission described by a chaotic field £(t), the electric field at
the output of the laser cavity is proportional to the intracavity laser field, which
can be defined by an infinite sum [28]:

E(t) = i RM{(t — nr, e ((MAT=Pn) (8)

n=0

where ®,, = A7, E;:Ol [, or by the recurrence relation:

E(t) = £(t) + Re A E(t — 7,). (9)

Considering that the intracavity laser field is much larger than the sponta-
neous emission field, the previous expression reduces to: F(t) ~ Re ***E(t—1,.).
Therefore the time-dependent intensity obeys the relation: I(t) = E*(t)E(t) ~
R2I(t — 7,) which shows that in first approximation the intensity fluctuations
of the FSF laser are periodic with the period 7.

Turning back to the calculation of the coherence functions of the field given
in (8) we assume that the roundtrip time in the cavity 7, is larger than the co-
herence time 1/7 of the stochastic field £(¢), which ensures the following relation
for the two integers n and p:

<§(t - nTr)g* (t - pTr)> = 571,;0[0 (10)

where §; ; is the Kronecker symbol. It follows that for the correlation func-
tion F(7),

F(r —n1)F (1 — p1y) = 6n pF2 (T — n7). (11)
The time-average degree of first-order coherence of the FSF laser field is

identical to the chaotic field:

T TOFCE e
9rsr(T) = p By : (12)
rer (E(t)E*(t))
The second-order coherence function is found to be independent from the
time and writes:

(EQ)E*(t)E(t+ 1)E*(t+ 1))

gg;F(T) =
(E(t)E* (1))
220:0 R ZZO:O |F(r = (p—n)7)|?
- S T -

The widths of the first- and second-order coherence functions are simply
determined by -y, the spectral width of the chaotic light and are identical to
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Figure 2: Top: plot of the [¢(V)(7)|?> and ¢ () functions for the passive
frequency-independent FSF cavity. R is supposed close to 1. Bottom: TAC
trace of the FSF light field without (black) and with an average over the fringes
(red).



the case of the LC field. Contrary to the degree of first-order coherence which
vanishes outside the coherence domain, the second-order coherence function
shows periodic maxima for 7 = k7, (k integer) and ¢®(k7,.) = 1 + R?* (fig.
2). The amplitude of the successive maxima decreases exponentially down to 1
with a characteristic constant 79 = 1/(21In R), but remains close to 2 provided
R is close to 1. Interestingly this periodic behavior does not depend on the
intracavity frequency shift and would also be valid for an unshifted feedback
cavity, like a multimode laser. But in that case the first-order coherence function
would also be periodic. Therefore the fact that g (7) and ¢®(r) show a
different behavior is the specific signature of FSF lasers, which present photon
bunching far beyond the coherence region (fig. 2 top).

We now focus on the IAC signal. The ensemble-average homodyne signal at
the output of the interferometer is:

homodyne
Ipgp ™ (t,7) = 1/4( E(t) + B(t+ 7)) (14)
which leads to the expression of the time average of the beat signal:

“homodine, < 1
homodyne 0
Tese ™ (1) = 50— 1y

The time-dependent intensity of the IAC trace is proportional to:

[1+ eIl cos(woT)]. (15)

ISt 1) =1/16 < |(E(t) + E(t +7))%* > . (16)

Cumbersome but straightforward calculations lead to the following expres-
sion for the autocorrelation signal averaged over time:

H56) = TR0 = 15 |
ESERD 16 | (1 — R?)?
812 < F(r) N F(-71) >
1—R2\ 11— R2eiAT 1 — R2e—iAT
2F(7)? 2F (—7)?
(1 — R2eiA7)2 " (1 — R2¢—#A7)2

+$ZRQPZ|F(T— (p—nh)lﬂ. (17)
p=0 n=0

+

+

Assuming that the frequency shift A is much smaller than ~ the spectral
width of the correlation function, the terms F(+7)/(1 — R2e**AT) can be ap-
proximated by F(47)/(1 — R?), which leads to the simpler expression:

Lii§5(7)

1§
41— R?)?

2+ 4e " cos(wor) + €217 cos(2woT)
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The TAC signal exhibits periodic maxima when the path difference equals
the cavity roundtrip time (see fig. 2 bottom). As in the case of the chaotic field
the ratio of the IAC signal averaged over the fringes at 7 = 0 to the background
outside the coherence domain is 3:2. This result is completely equivalent to
g (0) = 2 and is the signature of thermal intensity fluctuations.

The height of the k" maximum of the IAC trace located at 7 = k7, is also
found to decrease exponentially as (2 + R2*1)/4(1 — R?)2.

Finally we turn back to the expression of the homodyne signal. It is worth
writing the time-dependent expression of the intensity at the output of the
interferometer when the time delay 7 is close to an integer number of the cavity
roundtrip time, that is when 7 = k7. + € where € < 7,.. Calculations lead to:

IZ%rgodyne(t7 kT, + 6) — 1/4<|E(t) -+ E(t + k7 + €)|2>

I 1 n RFe=lel cos(kAt — woe + @) (19)
T 91 -Rr? (1+ R* — 2R2 cos(2kAT,.))1/2

where ¢ is the argument of the complex number e_m“(3k2_k)/2/(1—R26i2kA“‘).
The resulting intensity shows a modulation at the angular frequency kA whose
amplitude is determined by the value of 2kAr,.. If one assumes kA7, is small,
which can be realized for instance when k& = 1, then the resulting intensity is:

IRty + €) =
Iy
2(1 — R?)

If R is close to 1 and € = 0, the resulting beat intensity is 100% modulated
at the frequency A. In other words when the path difference is set equal to a
cavity length, the homodyne interferometer performs amplitude modulation of
the laser, at the frequency of the frequency-shifter. When the delay equals k
times the cavity roundtrip time (k integer), the homodyne signal at the output
of the interferometer is modulated at kAt. If the laser parameters are adjusted
so that A7, /7 is an integer, then the amplitude of the modulation is maximum
for any value of k: the contrast of this modulation is R*. This configuration
can be useful for instance, for the generation of amplitude modulation at a high
rate (MHz to GHz range). This point is discussed in the conclusion. When the
delay 7 is slightly detuned from k7, (e # 0), the amplitude of the RF modulation
of the beat signal decreases as e~ "l¢l: therefore the homodyne signal exhibits
a significant RF beating at kA provided the time difference 7 — k7, is kept
smaller than the coherence time of the laser. Interestingly this effect shows
analogy with white-light interferometry: white-light fringes appear periodically
when 7 = k7., except that the fringes are shifted from the zero observation
frequency to a nonzero frequency equal to kA.

[1+ Re ™"l cos(At — woe + ¢)]. (20)



2.3 Frequency-dependent effective gain

The simple model of a passive frequency-independent FSF cavity implies that
any photon emitted by the gain medium in the spatial mode of the cavity sur-
vives with identical probability. It is also possible to include the frequency
dependence of gain and losses in the cavity at the expense of more complicated
calculations. Authors of [28] showed that when gain and losses are taken into
account the width (resp. shape) of the peaks in the intensity correlation function
is fixed by the spectral width (resp. shape) of the source. Moreover the ampli-
tude of the successive maxima of ¢(?)(7) decreases according to a Gaussian law
e=(7/7)” where T, is the effective lifetime of a photon in the cavity. Therefore
the coherence and autocorrelation functions of a real FSF laser are expected to
follow the same behavior as fig. 2 with the following changes: the shape of the
peaks is not Lorentzian but Gaussian (for a Gaussian output spectrum) with a
width equal to the coherence length of the source, and the height of the peaks
decreases with 7 according to a gaussian law, compared to the exponential de-
cay obtained for the passive frequency-independent FSF cavity. But the ratio
of the height of the central autocorrelation peak over the background is still 3:2,
which corresponds to g(*)(0) = 2.

3 Experimental results

3.1 Experimental setup

In this part we present the experimental demonstration of the previous theo-
retical predictions by measuring the homodyne signal and the TAC trace of a
CW dye FSF laser at the output of a Michelson interferometer enabling large
path difference. In the frame of LGS applications we developed a FSF dye
("modeless”) laser tunable around 589 nm [7]. A CW 3W frequency-doubled
Nd:YAG laser pumps the Rhodamine 6G jet of a commercial L-shaped laser
cavity. The free spectral range is 283 MHz, corresponding to a cavity length
l.= 530 mm. An acousto-optics modulator operating at 40 MHz is inserted in
the cavity (A = 2 x 27 x40.10° rad/s). The latter is closed on the +1 diffraction
order. Without additional selective elements in the cavity, the output spectrum
is measured and shows a 85 GHz FWHM. We also have the possibility to insert
a Fabry-Perot etalon to narrow the spectral width down to 3GHz in the per-
spective of exciting sodium D transitions for the LGS applications. (It is worth
to note that in both cases the time scale of the laser intensity fluctuations is
in the ps range and would require very fast detection to be evidenced). The
output intensity is about 200 mW. The laser beam feeds a Michelson interfer-
ometer where the path difference between both arms can be as large as 1.20 m,
i.e. larger than twice the length of the laser cavity (fig. 3). The interferometer
is mechanically scanned at a typical average speed of 10 cm-path difference per
second. At the output of the interferometer, the beam is focused onto a type
I BBO crystal whose angle is adjusted to the phase-matching condition for the
second-harmonic generation of the beam at 589 nm. A dichroic mirror enables

10
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Figure 3: Experimental setup (see text for details).

to separate the harmonic component at 294.5 nm from the fundamental one.
The latter is detected by a photodiode with a 20 ns rise time. The harmonic
signal is filtered by means of a dispersive prism and a 10 nm bandwidth interfer-
ence filter (IF), and detected by a PM tube. The output current is preamplified
and averaged by a 4 ms time constant integrator. A digital oscilloscope with a
long capture time (1Gs/s) enables to record long (10 s) scans. The RF spectrum
of the beat signal for a given value of the path difference is also calculated by
the same oscilloscope using a FFT procedure.

3.2 RF spectrum of the beat signal

First we study the variation of the RF spectrum of the laser beam after the
interferometer, as a function of the path difference (fig. 4, top). A strong beat
at the free spectral range (283 MHz) is always recorded, corresponding to the
periodic repetition of the intrinsic fluctuations of the stochastic spontaneous
emission. We also observe that the multiples of the AO frequency are always
present inducing additional intensity noise in the RF spectrum due to the AO
modulation. The usual satellite components used in metrology are recorded
and their position evolve linearly with the path difference with a rate A/(4xl.).
When the path difference is equal to 2l., the first satellite is located at A/(2m)
and its amplitude increases dramatically. Then the beat signal monitored by
a fast photodiode (1 ns risetime) exhibits a near 100% amplitude modulation
with a period of 12.5 ns (1/80 MHz) as expected from section 1 (fig. 4, bottom).

3.3 Interferometric autocorrelation of the FSF laser

We now turn to the measurement of the autocorrelation trace of the FSF laser.
The interferometer is scanned and the homodyne and IAC signals are recorded
and plotted as a function of the path difference (fig. 5 and 6). In the vicinity of

11
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Figure 4: Top: experimental RF spectrum of the homodyne signal with re-
spect to the path difference in the interferometer. The RF peak at 250 MHz
is an electronic parasit. Bottom: homodyne signal at the output of the inter-
ferometer when the path length is set at 1.06 m. Detection made use of a 1 ns
risetime photodiode. Fast intensity fluctuations (ps range) are washed out by
the dynamics of the detection.
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Figure 5: Variation of the homodyne and autocorrelation signals with the path
difference over a full scan of the interferometer. Peaks on the IAC trace are
clearly visible at a path difference equal to 0 and 1.06 m.

null path difference the usual interferogram is recorded in the homodyne signal
(fig. 6 (a)). The TAC trace averaged over the fringes by the integrator, exhibits
a maximum, illustrating large intensity fluctuations or photon bunching (fig. 6
(b)). The ratio between the peak height and the background is around 1.45,
i.e. slightly smaller than the expected value of 1.5. This small discrepancy is
probably partly due to the fact that the interferometer is slightly imperfectly
balanced as illustrated by the fact that the contrast of the interference fringes
is not exactly 100%.

In the vicinity of 1.06 m, the path difference of the interferometer is close to
twice the cavity length. Therefore the IAC trace corresponds to the correlation
of the FSF field with the field emitted one cavity roundtrip later. The homo-
dyne signal shows no fringes, which corresponds to the fact that both fields
are not first-order mutually coherent: indeed in first approximation they are
shifted by 80 MHz. However the IAC trace exhibits the expected maximum,
illustrating the second-order mutual coherence of the fields. The ratio between
the maximum and the background on the autocorrelation signal is close to 1.4,
partly due to the slight lack of balance of the interferometer and also to the fact
that after a 1 m path difference, the spatial modes of both fields are slightly
different which decreases the relative contrast of the SHG signal.

4 Conclusion and perspectives

The statistical properties of FSF lasers have been investigated both theoretically
following the treatment given in [28], and experimentally by means of interfer-
ometric autocorrelation measurements. Our data confirm the chaotic nature

13
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Figure 6: Evolution of the homodyne (top) and autocorrelation signals (bottom)
when the path difference is close to 0 (left) and to 1.06 m (right) for the same
scan as fig. 5. Top right: the small modulation of the homodyne signal in the
vicinity of 1.06 m is an artefact coming from the fact that the resulting homo-
dyne signal is modulated at 80 MHz, that is slightly too slow to be completely
averaged by the 20 ns risetime photodiode.
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of the output field of FSF lasers and are in agreement with the description of
the output field as a periodic sequence of spontaneous emission events, periodi-
cally shifted in frequency. A FSF laser is a cyclostationary thermal light source
exhibiting strong intensity fluctuations or photon bunching. Interestingly, the
second-order coherence function of FSF laser also shows periodic maxima, con-
trary to the first-order coherence function whose variations are localized within
the coherence length of the laser. A first possible application of this peculiar
laser source could be the realization of very high frequency amplitude modula-
tion (AM). If one recombines the output FSF laser field with the field emitted
k. later (k is an integer), the resulting light field is modulated at the angular
frequency kA. The amplitude of the modulation depends on the cavity param-
eters but can be close to 100%. The other condition for strong modulation is
that k7., the time difference between both paths should be smaller than 7. the
average time a photon spends in the cavity, otherwise the memory of the laser
field is lost and the fields E(¢) and E(t + k7,.) loose their relative second-order
coherence, even if very high orders (k ~ 20000) beatings have been evidenced
[11]. But one can expect to generate AM in the GHz range provided the spec-
tral width of the laser is large enough. Among others such a source might
find applications in atomic physics, where coherent population trapping or elec-
tromagnetically induced transparency schemes require to excite coherently two
transitions at different frequencies. Another field of applications could be lidar
radar techniques where RF radar signals are carried by an optical carrier wave
[38]. Finally we also believe FSF lasers could find applications in the grow-
ing field of quantum imaging, which is based on the measurement of intensity
correlations [39]. Thermal light sources have recently demonstrated their po-
tential compared to twin photon sources and FSF lasers displaying thermal and
periodic fluctuations could constitute interesting devices for this emerging field.
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