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1 Introduction

Studies concerning coupled neurons have already led to
very interesting results on emergent global behaviour such
as synchronization phenomena (see for example [6, 7]).
While working on this kind of problems, it appears that
if coupling neurons could make some collective behaviour
appear, it could also drastically change each neuron dy-
namics. This paper deals with the influence of the cou-
pling strength on one neurone behaviour throught bifur-
cation diagrams and numerical analysis of the asymptotic
dynamics of a neuron connected to another.

2 Coupling HR Neurons

The HR model (see [2, 3]) reads as follows,

(HR)







ẋ = y + ax2 − x3 − z + I

ẏ = 1− dx2 − y

ż = ǫ(b(x− cx)− z)
(1)

Parameters a, b and d are experimentally determined, cx
is the equilibrium x-coordinate of the two-dimensional
system given by the first two equations of (1) when I = 0
and z = 0 and parameter I corresponds to the applied
current. Finally, parameter ǫ represents the ratio of time
scales between fast and slow fluxes across the membrane
of a neuron. This HR neuron model can exhibit most of
biological neuron behaviour, such as spiking or bursting.
With appropriate parameter settings, the HR model
exhibits periodic behavior characterized by fast periods
of spiking called bursts, followed by slow quiescent
inter-burst periods, as shown in Fig. 1.

Hereafter, for all numerical experiments, we use HR
system with the following coordinate changes, see [4], y =
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Figure 1: Time series (t, x) of (2) when parameters are
fixed as in (5). For this set of parameters values, a HR
system exhibit a periodic bursting behaviour.

1−y, z = 1+I+z, d = a+α, c = −1−I−bxc. Applying
this transformation, we obtain,







ẋ = ax2 − x3 − y − z

ẏ = (a+ α)x2 − y

ż = ǫ(bx+ c− z)
(2)

Let us consider a network composed by n HR neurons.
These neurons are coupled by their first variable xi. A
model of this network is given by







ẋi = ax2
i − x3

i + yi − zi −
∑n

j=1 cijh(xi, xj)

ẏi = (a+ α)x2
i − yi

żi = ǫ(bxi + c− zi)
(3)

for i = 1, . . . , n, where h is the coupling function and {cij}
is the network adjacency matrix. When the neurons are
chemically coupled, the coupling function h is given by
[4] and reads as

h(xi, xj) = gsyn
(xi − V )

1 + exp(−λ(xj −Θ))
(4)

where gsyn is the coupling strength, Θ is the threshold
reached by every action potential for a neuron. Param-
eter V is the reversal potential and must be larger than
xi(t) for all i and all t since synapses are supposed exci-
tatory. The parameters are fixed as follows throughout
this paper,

a = 2.8, α = 1.6, c = 5, b = 9, ǫ = 0.001 (5)

V = 2, λ = 10, Θ = −0.25 (6)
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Figure 2: A chain of eight coupled HR neurons

It appears that when neurons are non linearly coupled,
complete synchronization can be exhibited only if all the
neurons of a network receive the same number of inputs.
Moreover, if it is not the case, and under some condi-
tions, a burst synchronization phenomenon can arise. In
some previous papers (see [6, 7]), we presented a numeri-
cal method for the detection of this burst synchronization
phenomenon and some results concerning the value of the
coupling strength required to obtain burst synchroniza-
tion.

3 Main Results

Consider a chain of n non-linearly coupled HR neurons
as shown in Fig. 2. In the simplest case n = 2, we
have two neurons, the first sending signal to the second.
The signal received from the second neuron drastically
changes its behavior. This change depends on the cou-
pling strength gsyn as shows Fig. 3. Note that when the
coupling strength is 0 (or equivalently, the neurons are
not coupled) all of them have periodic behavior as shows
the phase portrait on the left of Fig. 3. Therefore the first
interesting result is that a chaotic behavior arises from the
coupling for small values of the coupling strength. When
we keep increasing this parameter, we observe periodic
behavior interval around 1.5, followed by a new chaotic
interval. Finally, for large parameter values, the periodic
behavior is restored.

The bifurcation diagrams on the bottom of Fig. 3 show
similar transition from chaotic to periodic behavior for
neurons at higher level of the chain, except that there is
no intermediate periodic interval.

Since in [7] we studied the coupling strength needed to
make n neurons of a chain synchronize their bursts, we
wanted to see if a correlation exists between periodic be-
havior and burst synchronization. Fig. 3 shows that these
two phenomena seem not to be correlated. Surprisingly,
in shorter chains neurons synchronize even before they
become periodic, but this is not the case in longer chains.

In this extended abstract, we only present results for
one kind of network: a chain of non-linearly coupled neu-
rons. Among others, arise the questions of the influence
of the network topology and the type of the coupling func-
tion on this kind of results.

Acknowledgements

The research for this work was supported, in part, by the
RISC Project (Region Haute-Normandie) and the ISCN

References

[1] Hodgkin A.L., Huxley A.F., A quantitative description of mem-

brane current and its application to conduction and excitation

in nerve, J. Physiol 117 (1952) 500-544

[2] Hindmarsh J.L., Rose R.M., A model of the nerve impulse using

two first-order differential equations, Nature vol. 296, (1982)
162-164

[3] Hindmarsh J.L., Rose R.M., A model of neuronal bursting us-

ing three coupled first order differential equations, Proc. R. Sc.
Lond. B221 (1984) 87-102

[4] Belykh I., Lange E., Hasler M., Synchronization of Bursting

Neurons: What matters in the Network Topology, Phy. Rev.
Lett.94, 18, (2005) 188101.1-188101.4

[5] Izhikevich E.M., Dynamical systems in Neuroscience, MIT
Press, Cambridge, (2007)

[6] Corson N., Balev S., Aziz-Alaoui M.A., Detection of synchro-

nization phenomena in a network of Hindmarsh-rose neuronal

models, ECCS’2010, Lisbon, Portugal, 2010.

[7] Corson N., Balev S., Aziz-Alaoui M.A., Burst synchronization

of coupled oscillators : towards understanding the influence of

the network topology, ECCS’2011, Vienna, Austria, 2011.



Coupling strength as a bifurcation parameter

Figure 3: Top: Bifurcation diagram of the second neuron in a chain as a function of the coupling strength parameter.
Phase portraits are given for selected coupling strength values: 0, 0.5, 1.5 and 3.0. Bottom: Bifurcation diagrams
(from left to right) of the 4th, 8th, 15th and 32nd neuron in a chain.

Figure 4: Behavior of a chain of n neurons. For each n we give the minimum coupling strength needed to pass from
chaotic to periodic behavior (periodic threshold), as well as the minimum coupling strength needed to observe burst
synchronization in the chain (sync threshold).


