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Abstract. This work adresses the asymptotic dynamics of a neuronal mathematical
model. The aim is first the understanding of the biological meaning of existing math-
ematical systems concerning neurons such as Hodgkin-Huxley or Hindmarsh-Rose models.
The local stability and the numerical asymptotic analysis of Hindmarsh-Rose model are
then developed in order to comprehend bifurcations and dynamics evolution of a single
Hindmarsh-Rose neuron. This has been performed using numerical tools borrowed from

the nonlinear dynamical system theory.
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1 Introduction and neurophysiology

Also called nerve cells, neurons are the most important cells of the nervous
system. They are composed of a cell body, or soma, extended by an axon,
an axon terminal and some dendrites (Fig. 1). These extensions are useful
not only for the transmission of information through a neuron but also for
the transmission from a neuron to another. Connections between neurons
are possible thanks to synapses.
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Figure 1: Structure of a typical neuron.

Ionic channels can be seen as macrocellular pores in the neuron membrane.
They enable molecules to pass through the membrane. They are the link
between intra-cellular and extra-cellular space. There are many types of ionic
channels. For example, we may cite those which are always open, those which
are voltage-dependent or those which select the molecule allowed to cross the
membrane. Sodium channels are so called because they are specific to sodium
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ions. They can be in an active state or in an inactive one. Potassium channels
open and close with delay. Leak channel are always open.

Neurons are enclosed by a membrane which separates the interior of the cell
from the extracellular space. On the inside of the cell, the concentration
of ions is different than in the surrounding liquid. The difference of con-
centration generates an electrical potential which plays an important role in
neuronal dynamics. The last is the membrane potential.

When not sending any signal, a neuron is at rest. At rest, there are relatively
more sodium ions (Na+) on the outside of the neuron and more potassium
(K+) ions on the inside. The inside of the neuron is negative compared to the
outside. The difference in the voltage between the inside and the outside of
the neuron gives the resting potential, the value of which is in general about
-70 mV.

The equilibrium po[te]ntz'al is predictable with the Nernst equation. It is given
RT . [S]out

by, E(S) = ZFZn S
S (measured as for membrane potential, inside with respect to outside), [S]out
represents the concentration of S outside the cell, [S];, the concentration of S
inside the cell, R is the gas constant, T represents the absolute temperature,
Z represents the valence of ion S : Z(K+) = +1, Z(Na+) = —1, and F is
Faraday’s constant.

where E(S) represents the Nernst potential for ion

An action potential, also called spike or impulse (Fig. 2) occurs when a
neuron sends information along an axon away from the cell body. The action
potential is an explosion of electrical activity that is created by a depolarizing
current. A stimulus makes the resting potential move up towards positive
values. If the potential reaches a certain threshold (about -55 mV), the
neuron fires an action potential the amplitude of which is always the same.
If the potential does not reach this threshold value, no action potential fires.
Therefore, a neuron respects the all or none principle.



Asymptotic dynamics of HR neuronal system 3

membrane
potential (mV)

ACTION POTENTIAL :
I : Resting state

I
30

[-11 : Stimulation

&I : Depolarization

IV : Repolarization & hyperpolarization
V : Resting state

IONIC SCALE :
11 : Sodium channels open
I1I : More sodium channels open
III-1V : Sodium channels close
II-IV : Potassium channels open
IV-V : Potassium channels close

-50

=70

time (ms):
Figure 2: Action potential (spike or impulse).

Action potentials are caused by an exchange of ions across the neuron mem-
brane. When a stimulus is applied, sodium channels open. Since there is
much more sodium ions on the outside of the neuron and since the inside of
the neuron is negative compared to the outside, sodium ions rush into the
neuron. As sodium has a positive charge, the neuron becomes more posi-
tive, that is depolarized. Besides, potassium channels open with delay. When
they do open, potassium goes out of the cell, reversing the depolarization.
At that time, sodium channels start to close. This induces the repolarization.
Indeed, it makes the membrane potential go back towards the resting poten-
tial. Then, there is the hyperpolarization of the neuron, since the potential
goes past the resting potential because the potassium channels close with
delay. Gradually, the ion concentrations go back to resting levels and the cell
returns to —70 mV (Fig. 2). For more details, see for example [7].

A burst is a group of at least two action potentials that occur close together
in time, separated from other action potentials by large time intervals which
are called quiescent or silent phases.

2 Mathematical models

Two neurophysiologists, Alan Lloyd Hodgkin and Andrew Fielding Huxley,
have developed an empirical kinetic description of ionic mechanisms in a
neuron, see [10]. This description was not only simple enough to make prac-
tical computation of electrical responses but also sufficiently precise so as
to predict conduction and major features of excitability. Their model com-
prises mathematical equations and suggests the main behaviour of the gating
mechanisms, [7,10]. For shortness, HH is a reference to the Hodgkin Huxley
model.
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The model is based on Sodium, Potassium and leakage ion flow. HH model
has separated equations for sodium conductance gy, and potassium con-
ductance gr. They are expressed as maximum conductances gy, and gg
multiplied by coefficients representing the fraction of the maximum conduc-
tances actually expressed. The multiplying coefficients are numbers varying
between 0 and 1. In the model, the conductance changes depend only on volt-
age and time. Because of their observations, Hodgkin and Huxley noted that
such kinetics would be obtained if the opening of a K channel is controlled
by several independent “particles”. Suppose that there are four identical
particles, each one with a probability n of being in the correct position to
set up an open channel. The probability that all four particles are correctly
placed is n*.

Mathematically, Ik is represented in the HH model by,

Ix =n'gr(V — B(K))

The voltage and time dependent changes of n are given by the reaction,
Aa'n/
l-n= g n

where the gating particles make transitions between the permissive and non-
permissive forms with voltage-dependent rate constants «,, and 3,. If the
initial value of the probability n is known, subsequent values can be computed
by solving the simple differential equation,

i an(l—=n) = Bun

The HH model uses a similar formalism to describe Iy,, with four hypo-
thetical gating particles making independent first order transitions between
permissive and non permissive state to control the channel. However, be-
cause there are two opposing gating processes, activation and inactivation,
there must be two kinds of gating particles, say h and m. Three m parti-
cles control activation and one h particle controls inactivation. Therefore,
the probability that they are all in permissive position is m3h. In, is then
represented by,

Ing = m*hgna(V — E(Na))

As for the n parameter of K channels, m and h are assumed to undergo
transitions between permissive and non-permissive forms with rates satisfying
differential equations,

dm
dt
dh

— =ap(l1—=h) = BLh
7 an( ) — Bn

=an(l—=m)—Bnm



Asymptotic dynamics of HR neuronal system 5

H H model for the squid giant axon describes ionic current accross the mem-
brane in terms of three components,

Ing = m*hgne(V — E(Na)), Ix =n'gg(V—-E(K)), Iy =g.(V—E(L))

where gy, is a fixed background leakage conductance.

Therefore, the HH model reads as follows,

dav

—C— = m*hgna(V = E(Na)) +n'gic(V = B(K)) + go(V = E(L)) = I
% — an(l—n) = fun

%’:‘ — am(l—m) = Bum

‘% — an(l—h)—Buh

in which C represents the membrane capacity, V' the total membrane poten-
tial, m the Na activation variable, h the Na inactivation variable, gy, the
maximum sodium conductance, E(Na) the Na equilibrium potential, n the
K activation variable, gx the maximum potassium conductance, E(K) the
K equilibrium potential, §;, the maximum leakage conductance, F(L) the
leakage equilibrium potential, I the external current (applied during an ex-
periment), «; the gate inactivation rate (i = m,n,h), 8; the gate activation
rate (i =m,n,h).

In 1982, J.L. Hindmarsh and R.M. Rose simplified the Hodgkin-Huxley
model, see [8]. The model they obtained is of Fitzhugh-Nagumo type. In-
deed, they observed that some variables could be replaced by constants and
they found relations between different variables. Therefore, they simplified
the Hodgkin-Huxley system into a more simple one with two euqations, as
follows,

(1)

Two years later, Hindmarsh and Rose decided to add a third equation to
their model, so that the motion of their model could be closer to the motion
of a real neuron, see [9]. This Hindmarsh-Rose model (HR) describes the
dynamics of the membrane potential x in the axon of a neuron. It is a three
dimensional system of non linear first order differential equations, which reads
as,

t=y+ax?— a3
y=1—dx?—y

y+ar?—ad—z+1
1—dx?—y (2)
z = e(blx—x.)—2)

@ 8.
I
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While x describes the membrane potential, y describes the exchange of ions
accross the neuron membrane through fast ionic channels and z the exchange
of ions through slow ionic channels. Parameters a, b, d are constants exper-

1
imentally determined and z. = 75(1 +/5) is the equilibrium z-coordinate

of system (1) for the following parameters,
1
a=3, b=4, d=5, xcz—§(1+\/5) (3)

In this paper, I and e are chosen as bifurcation parameters due to their
biological meaning. Indeed, I is the applied current while € is a recovery
variable, which is very small. This last parameter controls the slow motion
of the neuron activity.

This system, as well as HH model, has been studied in different ways, see
for example [3,12] or [4,13,14] and the references therein cited. Interesting
studies are also presented in [1,2,5,6,11].

3 Bifurcations and Chaos

3.1 Dissipativity and existence of attractors
Theorem 1 If0 < a < v/3(1 4 €)2 then system (2) is dissipative.
Proof :

The variation of the volume V' (¢) of a small element §Q(t) = dxdydz in the
phase space is determined by the divergence of the flow,

or oy 03
V=gt ay 5

System (2) leads to,

VV =-3124+2z—1—¢

VVi<0e —3224+2ax—1—€<0

Therefore, if —322 +2az — 1 — € < 0, then VV < 0. So that with 0 <
a < V3(1+€)z, system (2) is dissipative (obviously, one can prove the exis-
tence of a larger parameters range for which this system remains dissipative).

O

2

a
Besides, since —322 4+ 2ax — 1 — € < e 1 — € < 0, system (2) has, for the
volume element §§2(t) = daxdydz, an exponential contraction rate satisfying,

2

o0(t) < e 17¢,
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That is, a volume element Vj is contracted by the flow into a volume element
a2 . . o .

less than Vpe(s ~1=9)% in time . In other words, each volume containing the

system trajectory shrinks to zero as ¢ — oo at an expontential rate less than

2

a . .. . .

— — 1 — ¢, which is independent of x, y and z. Thus, all trajectories are

ultimately confined to a specific subset having zero volume (which, of course,

can not ensure the existence of bounded attractor), this has been confirmed

by our computer simulations.

3.2 Chaos dans HR84

The chaotic behaviour of the Hindmarsh-Rose system is shown by numerical
analysis in different regions of the parameters space, by bifurcation diagrams,
Lorenz plots, Lyapunov exponents, time series and phase portraits.

Since € << 1, the first two equations of HR system correspond to the fast
dynamics while the last equation controls the slow dynamics. In figure 3 (e),
the fast dynamics is the spiking part of time series while slow dynamics is
the resting part. In figure 3 (a), (b), (¢), (d), the fast dynamics corresponds
to the right part of the attractor, the part where we observe spirals, while
slow dynamics is on the left of the figures.

‘J\Ww\‘\m“ “N““‘H““‘\ NM\“‘H“H ! i .Jﬂx “ \L\

Figure 3: Numerical integration of system (2) for parameters given in (3)
with I = 3.25 and ¢ = 0.001. (a) : (¢,x) times series showing a sequence
of action potentials. (b), (¢), (d), (e) : phase portraits respectively in z-y
projection, -z projection, y-z projection and (z,y, z) tridimensional view.

An important phenomenon in neuron activity is the transition between spik-
ing and bursting. Spiking is represented by a generation of action potentials,
while bursting is represented by a membrane potential changing from rest-
ing to repetitive firing state. We can see also these phenomena looking at
time series and phase portraits, but bifurcation diagrams that are shown in
this section do not give any information on this “slow-fast” motion. Indeed,
in order to obtain these bifurcation diagrams, the chosen Poincaré section
crosses the phase portrait within the hole of the attractor which is on the
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right part on figures 3 (b,c¢,d,e) and corresponds to the fast dynamics. There-
fore, the following diagrams give only information about the fast dynamics
of HR system.

In the case of neuron dynamics, the location of bifurcation values is impor-
tant to determine the transition between a quiescent state and an oscillatory
one, and also between different kinds of oscillatory motion. Therefore, a bi-
furcation corresponds to a qualitative change of the information transmitted
through the axon of the neuron.

In this paper, codimension-1 bifurcations (that is the number of independent
conditions determining this bifurcation is one) are numerically computed.
We firstly make the slow parameter € be the control parameter and then, the
injected current I is chosen for this assignment.

3.3 Dynamics with respect to ¢

Parameter ¢ is the ratio of time scales between spiking (fast dynamics) and
resting (slow dynamics). Therefore, it controls the difference between the
slow and the fast dynamics of HR model corresponding to the difference be-
tween fast fluxes of ions accross the membrane to slow ones. Thereby, making
this parameter evolving to observe the neuron reaction is really interesting,
see [4].

A Dbifurcations diagram show the evolution of the aysmptotic behaviour of
solutions according to one parameter.

The successive local maxima map (first return map, Lorenz plot) is a reliable
numerical method that gives information about the presence (or not) of chaos
for some fixed parameters. This map gives the local maxima of z against the
immediatly preceding local maxima. Looking at phase portraits, it is justified
to wonder if, for some parameters, HR model exhibits a chaotic dynamics.
The Lorenz plot gives a good idea of this possible chaotic behaviour, when
the resulting plot is unimodal with a shape similar to a skewed Hénon map.
Lyapunov exponents measure the sensibility to initial conditions and are
numerical tools to have an idea of the presence of chaos. If all Lyapunov
exponents are negative, two initialy close trajectories remain close to each
other, while a positive Lyapunov exponent means that two initialy close tra-
jectories diverge. Therefore, plotting the larger Lyapunov exponent gives a
reliable evidence of the presence of chaos.

Figure 4(a) gives the bifurcation diagram with respect to the control param-
eter € in the range [0,0.05]. In order to have a more accurate analysis of
the dynamics of system (2), we present in figure 4(b),(c),(d) enlargements
of figure 4(a). Figure 4(b) shows, among other things, that there is an
€1 € [0.00041,0.00049] for which the neuron behaviour changes abruptly.
Indeed, Ve < €1, the neuron exhibits a tonic spiking motion and, Ve > €1, the
neuron exhibits a bursting motion. Moreover, this figure shows that system
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(2) with parameters given in (3) and I = 3.25 does not exhibit chaotic be-
haviour for € € [e1,0.002]. On figure 5(a) one can see that this model does
not exhibit any chaotic behaviour for € = 0.0005. Figure 5(b) confirms the
fact that there is no presence of chaos for ¢ € [e1,0.002], since the larger
Lyapunov exponent remains really close to zero. Time series and (z,y, 2)
phase portraits of figure 6 show how the variation of parameter ¢ makes the
dynamics of system (2) change from spiking to periodical bursting. These
figures confirm the non-chaotic behaviour of this system for e € [e1,0.002].
The enlargement of figure 4(a) for € € [0.005,0.015] shown in figure 4(c)
exhibits not only inverse period doubling cascades starting with period 3,
period 4 or period 5 but also some dark parts, which is a numerical sign of
chaotic motion. Some other numerical evidence can be seen, for ¢ = 0.008,
on the Lorenz plot of figure 7(a) which gives a typical unimodal map corre-
sponding to a chaotic behaviour. Moreover, either the positive larger Lya-
punov exponent of figure 7(b) or the time series and (z,y, z) phase portraits
of figure 8 point out the chaotic behaviour of the model for some ranges of
€ € [0.005,0015].

The enlargement of figure 4(c) for € € [0.0138,0.0148] shown in figure 4(d)
also exhibits a chaotic behaviour of system (2). This is confirmed not only
by the Lorenz plot for e = 0.0145 (figure 9(a)) but also by the positive larger
Lyapunov exponent in the left part of figure 9(b) and by the time series and
(z,y, z) phase portrait presented in figure 10(a1,2).

The right part of figure 4(a) exhibits a reverse period doubling cascade. As €
becomes larger, the number of spikes within a burst decreases until the burst-
ing motion of the neuron disappears to let the spiking motion arise. This
phenomenum is also obvious while looking at figure 10(b1,2),(c1,2),(d1,2).
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0.0138 0.0141 0.0144 0.0147

(d)

0 0.0005 0.001 0.0015 0.002

()

Figure 4: Bifurcation diagrams in (¢, y) plane for system (2) with parameters
given in (3) and with I = 3.25. (a) An inverse period doubling cascade is
observed for € € [0,0.05]. (b) Enlargement of figure (a) for € € ]0;0.002]. (c)
Enlargement of figure (a) for € € [0.005;0.015]. (d) Enlargement of figure
(c) for e € [0.0138;0.0147].

3.05 3.1 3.15 3.2 3.25 3.3 3.35 "0 0.0004 0.0008 0.0012 0.0016 0.002

(a) (b)

Figure 5: System (2) with parameters given in (3) and I = 3.25. (a) Succes-
sive local maxima in z (i.e. ‘Lorenz plot’) of the HR model with parameter
given in (3), I = 3.25 and ¢ = 0.0005. Since this Lorenz plot has not the
classical shape of unimodal chaotic map, for these parameters, HR model
does not exhibit chaotic motion, (b) Larger Lyapunov exponent which is nu-
merically close to zero for e € [0;0.002]. Indeed, for € = 0.0005, the larger
Lyapunov exponent is close to zero.
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(a1) (a2)
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(b1) (b2)

(d1) (d2)

Figure 6: Time series and (x,y, z) phase portraits of system (2) with param-
eters given in (3) and I = 3.25 for (ay,a2) € = 0.0002, (b1,b2) € = 0.0005,
(c1,¢2) € = 0.001, (d1,d2) € = 0.002. According to the chosen parameter e,
the neuron behaviour changes from tonic spiking (a1, a2) to bursting ((b1, b2),
(c1,¢2), (dv,d2)).

) 2 5as 5s 5 0t .01 0.008 . o “o.

Figure 7: System (2) with parameter given in (3) and I = 3.25. (a) Successive
local maxima in z (i.e. ‘Lorenz plot’) for e = 0.008. It produces a typical
tent first-return map, which is a numerical signature of chaos. (b) Larger
Lyapunov exponent for e € [0.004;0.016].
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(d1) (d2)
Figure 8: Time series and (z,y, z) phase portraits of system (2) with parame-
ters given in (3) and with I = 3.25, for (a1, az) € = 0.008, (b1, b2) € = 0.0095,

(c1,¢2) € = 0.01, (dq1,d2) € = 0.011. We observe a period doubling cascade
starting with a period three solution.

o
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W\Jl J,'..

R I
| | | .
0 \‘WH’] W ",'Jv‘.—'»'l # “"J»e“‘ i i A ""—

3.2 (403 3.3 3.35 3.4 3.5 ) . 02 (b)

Figure 9: System (2) with parameters given in (3) and I = 3.25. (a) First re-
turn map to maxima in z for e = 0.0145. It produces a typical tent first-return
map, which is a chaos numerical signature, (b) Larger Lyapunov exponent for
e € [0;0.05]. Since it is positive for e = 0.0145, it also confirms numerically
the presence of chaos for these values of parameters.



Asymptotic dynamics of HR neuronal system 13

(b1) (b2)

(d1) (d2)

Figure 10: Phase portraits illustrating the bursting bifurcation phenomena in
the HR model with parameters given in (3) and I = 3.25. (a1, az) € = 0.0145,
(b1,b2) € =0.017, (c1,¢2) € = 0.03, (dy,d2) € = 0.05. As this slow parameter
increases, the period, which corresponds to the number of spikes per burst,
decreases. A classical period doubling cascade is observed.

3.4 Dynamics with respect to [

Parameter I corresponds to the current which is injected in the neuron. Thus,
it can be controlled during experiments and can then play the role of bifur-
cation parameter.

Figure 11(a) shows the bifurcation diagram according to the bifurcation pa-
rameter I for I € [1.25,4] while figure 11(b) is an enlargement of figure 11(a)
for I € [3.25,3.3]. Figure 12(a) shows that the motion of this system is not
chaotic for I = 3.25. This observation is confirmed by the larger Lyapunov
exponent presented in figure 12(b) which remains close to zero for I € [3,3.5].
Time series and phase portraits given in figure 13 show a periodic behaviour
of system (2) for the chosen values of parameter I. Moreover, for each value
of I, there is the same number of branches within the bifurcation diagram
(figure 11), the same number of spikes within bursts in time series and the
same number of laps in the phase portraits (figure 13). This number corre-
ponds to the period of the associated limit cycle.
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Figure 11: (a) Bifurcation diagram of the HR model for parameters (3) and
e = 0.001. As the magnitude of injected current I increases, the number of
branches on the diagram also increases. Biologicaly, the fast dynamics of the
neuron is evolving. (b) Enlargements of (a) for I € [3.25;3.3].

.
o l““f“‘\juv‘r Wl kA
Arr'\,vr,'w,‘;ﬂh'\\ (J‘ﬁ““u}‘" I

Figure 12: System (2) with parameters given in (3) and € = 0.001. (a)
Successive local maxima in z (i.e. ‘Lorenz plot’) for I = 3.25. Since this
Lorenz plot has not the classical shape of unimodal chaotic map, for these
parameters, HR model does not exhibit chaotic motion, (b) Larger Lyapunov
exponent for I € [3;3.5]. Obviously, for I ~ 3.25, the larger Lyapunov
exponent is close to zero.
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Figure 13: Time series and (x,y, z) phase portraits of system (2) with pa-
rameters given in (3), € = 0.001 and (a1,az2) I = 1.5, (b1,b2) I = 2, (c1,¢2)
I =3, (d1,d2) I =3.25. The larger the injected current I is (I € [1.4;3.25]),
the larger the number of spikes within a burst is.

4 Conclusion

In this paper, an accurate numerical analysis of the asymptotic dynamics
of Hindmarsh-Rose model has been done. We have discussed the chaotic
dynamics of this system by use of different nonlinear dynamics numerical
tools such as bifurcation diagrams, Lorenz plots and Lyapunov exponents for
different parameter ranges. Two of the HR parameters, € the time scale ratio
between fast and slow dynamics and I the applied current, have been chosen
as bifurcation parameters due to their biological meaning. It is obvious that
the slow-fast motions due to the small parameter ¢ makes the dynamics even
more interesting.
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