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Summary. This work adresses the dynamics and complexity of the Hindmarsh-
Rose neuronal mathematical model. The general aim is the study of the asymptotic
behaviour of neuron networks. In this paper, the analysis of these networks uses the
synchronization theory via connections between neurons which give rise to emergent
properties and self-organization. Our results lead to a classical law which describes
many natural or artificial self-organized complex systems. This has been performed
using numerical tools.
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1 Introduction

Also called nerve cells, neurons are the most important cells of the nervous
system. The Hindmarsh-Rose model (HR hereafter), see [7, 8], describes the
dynamics of the membrane potential in the axon of a neuron with a three
dimensional system of nonlinear first order differential equations which read
as,







ẋ = y + ax2 − x3 − z + I
ẏ = 1 − dx2 − y
ż = ǫ(b(x − xc) − z)

(1)

While x describes the membrane potential, y describes the exchange of ions
accross the neuron membrane through fast ionic channels and z the exchange
of ions through slow ionic channels.
I is the applied current while ǫ is a recovery variable, which is very small. This
last parameter controls the slow motion of the neuron activity. Parameters
a, b, d are constants experimentally determined and xc is the equilibrium
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x-coordinate of the two dimensional Hindmarsh-Rose system composed of the
first two equations of (1) with z = 0 and I = 0.

(a) (b)

Fig. 1. System (1) for a = 3, b = 4, d = 5, xc = −1

2
(1 +

√
5), I = 3.25 and

ǫ = 0.001. (a) Time series (t, x), (b) (x, y, z) view.

In this paper, we mainly study synchronization motions of coupled HR
systems which can be chaotic for some parameters choices. See for example
[5, 6, 10, 16], or [9, 14, 15, 17] in which the behaviour bursting, spiking chaos or
adding bifurcation are studied. For the reader convenience, let us recall that
synchronization is a phenomenon characteristic of many processes in natu-
ral systems and nonlinear science. It has remained an objective of intensive
research and is today considered as one of the basic nonlinear phenomena
studied in mathematics, physics, engineering or life science. Several different
regimes of synchronization have been investigated by many authors, see for
example [1, 4, 11, 12, 13].
This word has a greek root, syn = common and chronos = time, which means
to share common time or to occur at the same time, that is correlation or
agreement in time of different processes.
Thus, synchronization of two dynamical systems generally means that one
system somehow follows the motion of another. A lot of research has been
carried out and, as a result, showed that even chaotic systems could syn-
chronize when they are coupled. Many researchers have discussed the theory,
the design or applications of synchronized motion in coupled chaotic systems.
A broad variety of applications have emerged, for example to increase the
power of lasers, to synchronize the output of electronic circuits, to control
oscillations in chemical reactions or to encode electronic messages for secure
communications. Here are some synchronization regimes,

• Identical (or complete) Synchronization, which is defined as the coinci-
dence of states of interacting systems,

• Generalized Synchronization, which extends the identical synchronization
phenomenon and implies the presence of some functional relation between
two coupled systems; if this relationship is the identity we recover the
identical synchronization,
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• Phase Synchronization, which means driving of phases of chaotic oscilla-
tors, whereas their amplitudes remain uncorrelated,

• Lag Synchronization, which appears as a coincidence of shifted-in-time
states of two systems.

Hereafter, for all numerical experiments, we use HR system with the following
coordinates changes, see [3], y = 1−y, z = 1+I+z, d = a+α, c = −1−I−bxc.
From this changes of coordinates, we obtain,







ẋ = ax2 − x3 − y − z
ẏ = (a + α)x2 − y
ż = ǫ(bx + c − z)

(2)

Let us consider a network composed by n HR neurons. These neurons are
coupled by their first variable xi. A model of this network is given by,







ẋi = ax2

i − x3

i + yi − zi − h(xi, xj), i 6= j, i = 1, ..., n, j = 1, ..., n
ẏi = (a + α)x2

i − yi

żi = ǫ(bxi + c − zi)
(3)

In the case of a network of n neurons linearly coupled, the coupling function
h is chosen as,

h(xi, xj) = kn

n
∑

j=1

cijΓ (xj) (4)

in which the synaptic coupling Γ is a linear function, Γ (xj) = xi − xj , for
i = 1, 2, ..., n. Parameter kn represents the coupling strength and Cn = (cij)
is the n × n connectivity matrix,

{

cij = 1 if i and j are connected, i = 1, ...n, j = 1, ...n, i 6= j
cij = 0 if i and j are not connected.

This matrix Cn can be symmetric or not, so that unidirectional or bidirec-
tional coupling are possible.

In the case of a network of n neurons nonlinearly coupled, the coupling func-
tion h is given by [3] and reads as,

h(xi, xj) = (xi − V )kn

n
∑

j=1

cijΓ (xj) (5)

in which the synaptic coupling Γ is a nonlinear function with a threshold as
given,

Γ (xj) =
1

1 + exp(−λ(xj − Θ))
(6)
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where Θ is the threshold reached by every action potential for a neuron and
λ is defined in [3].
As in the case of linear coupling, parameter kn corresponds to the synaptic
coupling strength. Parameter V is the reversal potential and must be larger
than xi(t) for all i and all t since synapses are supposed excitatory.
We have chosen the situation in which each neuron has the same number of
inputs from other neurons. Indeed, according to [3], it is a necessary condition
for the synchronous solution to exist. Therefore, the synaptic connections we
use have to be bidirectional. The Cn matrix should be symmetric and in our
case, Cn = 1n − Idn where 1n = (1)nn and Idn = (Id)nn is the identical
matrix.

The following parameters are fixed as follows throughout this paper,

a = 2.8, α = 1.6, c = 5, b = 9, ǫ = 0.001 (7)

V = 2, λ = 10, Θ = −0.25 (8)

Interactions between nerve cells are possible thanks to synapses. The word
synapse has a greek root, syn = common and haptein = to touch, which
means connection. This is the functional contact part which exists between
two neurons or between a neuron and another cell (muscular cell, sensorial
receptor, ...). It operates the conversion of an action potential fired by the
presynaptic neuron into a signal in the postsynaptic cell. Usually, two different
types of synapses are discerned, which are,

• the chemical synapse, widely majoritary, which needs some neurotrans-
mitters to transmit information,

• the electrical synapse, in which the signal is transmitted electrically
through gap-junctions.

The size of the synaptic cleft is characteristic of one or the other kind of
synapse. In the case of electrical synapses, this synaptic cleft is about two
nanometers, while it can reach from ten to forty nanometers in the case of
chemical synapses.

This paper is organized as follows. In the next section, the coupling func-
tion between mathematical neurons is a linear function in order to represent
electrical synaptic connections. In this section, we firstly assume that neurons
are identical and then, we assume that they are slightly different. In section
3, the same steps are followed with a nonlinear function in order to study
chemical synaptic connections.
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2 Property emerging from synchronization with a linear

coupling

In this paper, the asymptotic behaviour is studied only by numerical analysis
in various regions of the parameter space commonly used in the litterature.
We have done the numerical computations very accurately in double precision
and for different variations of parameters. In order to obtain reliable numerical
results, the step size has been chosen to be equal to 10−4 and the first 106

steps are discarded to avoid the transient regime.

2.1 Coupling identical HR neurons

The first step is to consider the asymptotic behaviour of two neurons lineraly
coupled. Therefore, we numerically study system (3) with coupling function
(4) for n = 2. The connectivity matrix C2 and the graph of the network are
given in figure 2.

C2 = 12 − Id2 =

[

0 1
1 0

]

Fig. 2. Bidirectional connection scheme for two neurons and the connectivity matrix
C2.

This gives the six-dimensional system representing two bidirectionaly coupled
HR neurons given in (9),



































ẋ1 = ax2
1 − x3

1 + y1 − z1 − k2(x1 − x2)
ẏ1 = (a + α)x2

1
− y1

ż1 = ǫ(bx1 + c − z1)

ẋ2 = ax2

2
− x3

2
+ y2 − z2 − k2(x2 − x1)

ẏ2 = (a + α)x2

2
− y2

ż2 = ǫ(bx2 + c − z2)

(9)

Figure 3 shows the evolution of the (x1, x2) phase portrait of system (9) while
making the coupling strength k2 increase after a certain period of time. For
low values of this coupling strength, the behaviour of x1 is really different
from the one of x2, whereas when this coupling strength is large enough, x1

and x2 behaviours become synchronous.
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Fig. 3. Phases portraits for system (9) showing x2 according to x1 for the coupling
strength (a) k2 = 0.2, (b) k2 = 0.25, (c) k2 = 0.36, (d) k2 = 0.376. For two neurons
linearly coupled, the synchronization threshold for the coupling strength is about
k2 = 0.376.

We observe that synchronization motion between the first variable x1 of
one neuron and the first variable x2 of the other, i.e : x1 = f(x2) (here,
f(x) = Id(x)), appears for a coupling strength k2 ≥ 0.376. For every coupling
strength larger that this value of k2, x1 and x2 remain synchronous. This
phenomenon is also observed for variables y and z, for the same values of
parameters. Therefore, this synchronization is total.

In the case of three neurons, the connectivity matric C3 and the graph of
the network are given in figure 4.

C3 = 13 − Id3 =

[

0 1 1
1 0 1
1 1 0

]

Fig. 4. Bidirectional connection scheme for three neurons and the connectivity
matrix C3.

System (3) with coupling function (4) for n = 3 reads as,


































































ẋ1 = ax2

1
− x3

1
+ y1 − z1 − k3(x1 − x2) − k3(x1 − x3)

ẏ1 = (a + α)x2

1
− y1

ż1 = ǫ(bx1 + c − z1)

ẋ2 = ax2

2
− x3

2
+ y2 − z2 − k3(x2 − x1) − k3(x2 − x3)

ẏ2 = (a + α)x2
2 − y2

ż2 = ǫ(bx2 + c − z2)

ẋ3 = ax2
3 − x3

3 + y3 − z3 − k3(x3 − x1) − k3(x3 − x2)
ẏ3 = (a + α)x2

3
− y3

ż3 = ǫ(bx3 + c − z3)

(10)

As shown in the case of two neurons, figure 5 shows the evolution of x1 ac-
cording to x2 for system (10) while making the coupling strength increase.
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For low values of this coupling strength, the behaviour of x1 is really different
from the one of x2, whereas when this coupling strength is large enough, x1

and x2 behaviours become identical.
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Fig. 5. Phases portraits for system (10) showing x2 according to x1 for the coupling
strength (a) k3 = 0.1, (b) k3 = 0.2, (c) k3 = 0.24, (d) k3 = 0.255. For three linearly
coupled neurons, the synchronization threshold of the coupling strength is around
k3 = 0.255.

If figure 5 only shows the (x1, x2) view of the phase portraits of system (10),
a similar phenomenon is observed for between x1 and x3. Therefore, the min-
imum coupling strength k3 to exhibit synchronization between the first vari-
ables x1, x2 and x3 of three HR neurons is about k3 = 0.255. Once again, we
observe also this phenomenon for the variables y and z for the same numerical
values of parameters. This is a synchronization threshold.

There are different possible ways for coupling four, five or more neurons.
However, as we already said, we consider the case in which each neuron is
connected to all the others. Therefore, there is a unique possible connection
scheme.

Here, we consider system (3) with coupling function (4) for n = 4, n = 5,
n = 6, n = 7, n = 8. Figures 6, 8, 10, 12 and 14 show the connection graphs
of the network and the connectivity matrix Cn respectively in the case of 4,
5, 6, 7 and 8 neurons coupled all together.

Fig. 6. Bidirectional connection scheme for four neurons. The connectivity matrix
C4 is C4 = 14 − Id4.

Figures 7, 9, 11, 13, 15 show the evolution of the (x1, x2) phase portrait while
making the coupling strength increase in the case of 4, 5, 6, 7 and 8 neurons
coupled all together using the coupling function given in (4). These phase
portraits are plotted after a period of time. These figures show x2 according
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to x1, but the same motion is observed comparing the behaviour of the first
variable of the other corresponding variables.
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Fig. 7. x2 according to x1 when four neurons are connected for the coupling strength
(a) k4 = 0.1, (b) k4 = 0.15, (c) k4 = 0.18, (d) k4 = 0.191. Minimum coupling
strength to observe synchronization between variables xi and xj , yi and yj , zi and
zj (i = 1, ..., 4, j = 1, ..., 4, i 6= j) when coupling four neurons is k4 = 0.191.

Fig. 8. Coupling five neurons. The connectivity matric C5 is C5 = 15 − Id5.
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Fig. 9. x2 according to x1 when five neurons are connected for the coupling strength
(a) k5 = 0.05, (b) k5 = 0.11, (c) k5 = 0.14, (d) k5 = 0.152. Minimum coupling
strength to observe synchronization between variables xi and xj , yi and yj , zi and
zj (i = 1, ..., 5, j = 1, ..., 5, i 6= j) when coupling five neurons is k5 = 0.152.

Fig. 10. Coupling six neurons. The connectivity matrix C6 is C6 = 16 − Id6.
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Fig. 11. x2 according to x1 when six neurons are connected for the coupling strength
(a) k6 = 0.03, (b) k6 = 0.05, (c) k6 = 0.1, (d) k6 = 0.122. Minimum coupling
strength to observe synchronization between variables xi and xj , yi and yj , zi and
zj (i = 1, ..., 6, j = 1, ..., 6, i 6= j) when coupling six neurons is k6 = 0.122.

Fig. 12. Coupling seven neurons. The connectivity matrix C7 is C7 = 17 − Id7.
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Fig. 13. x2 according to x1 when seven neurons are connected for the coupling
strength (a) k7 = 0.025, (b) k7 = 0.05, (c) k7 = 0.1, (d) k7 = 0.104. Minimum
coupling strength to observe synchronization between variables xi and xj , yi and
yj , zi and zj (i = 1, ..., 7, j = 1, ..., 7, i 6= j) when coupling seven neurons is
k7 = 0.104.

Fig. 14. Coupling eight neurons. The connectivity matrix C8 is C8 = 18 − Id8.
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Fig. 15. x2 according to x1 when eight neurons are connected for the coupling
strength (a) k8 = 0.05, (b) k8 = 0.07, (c) k8 = 0.08, (d) k8 = 0.088. Minimum
coupling strength to observe synchronization between variables xi and xj , yi and
yj , zi and zj (i = 1, ..., 8, j = 1, ..., 8, i 6= j) when coupling eight neurons is
k8 = 0.088.

Synchronization thresholds of the coupling strength we obtained are summa-
rized in table 1.

n 2 3 4 5 6 7 8

kn 0.376 0.255 0.191 0.152 0.122 0.104 0.088

Kn 0.303 0.202 0.151 0.121 0.101 0.086

Table 1. Tabular summarizing minimal coupling strength kn to observe synchronous
motion of n neurons, with n = 2, ..., 8 when coupling identical HR neurons using the
linear function (4). Kn is the theoretical value of coupling strength obtained with
the heuristic law given in (11).

In this tabular, the first column shows the number n of neurons in the network.
The second column shows the numerical results we obtained while the last
column shows the theoretical results obtained thanks to the heuristic law we
observed,

Kn =
k2

0.62 ∗ (n − 1)
(11)

Figure 16 (a) uses table 1 to show kn versus n (dots) and Kn versus n (solid
lines). Figure 16 (b) shows the curve obtained plotting Log(Kn) according to
Log(n).
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Fig. 16. (a) Minimum coupling strength kn to observe a synchronous behaviour of n
neurons, according to the number of neurons in the network (dots) plotted together
with Kn = k2/(0.62(n − 1)) (solid line). (b) Log(Kn) according to Log(n).

The curve of figure 16 (b) corresponds to a classical law (for n large enough)
which can describe many self-organized complex systems, like earthquakes
(for 1000 earthquakes of magnitude 4 on Richter scale, there are only 100
of magnitude 5 and 10 of magnitude 6), linguistics (for 1000 occurrences of
“the” in an english text, there are only 100 occurrences of “I” and 10 of
“say”), urban systems (big cities are rare and small ones are frequent in an
exponential way).

2.2 Coupling non-identical HR neurons

In this subsection, the same coupling function (4) is used to study the asymp-
totic behaviour of networks composed of HR neuron which parameters are
slightly different from one another. Indeed, in nature, it is not realistic to
assume that a neuron network is composed of exactly identical neurons. We
then make all parameters vary slightly from one neuron to another. Let pi be
a generic way of writing every parameters of neuron i (i.e. ai, αi, bi, ci). The
variation of parameters from one neuron to another is defined as in (12). It
has been choosen around e = 10−4,











pi = p1 + (1 +
i

2
10−1) × e, i = 2j, j = 1, 2, 3, 4

pi = p1 + (1 −
i − 1

2
10−1) × e, i = 2j + 1, j = 1, 2, 3

(12)

With these variations of parameters from a neuron to another, we obtain the
following tabular (Table 2) of minimal coupling strength to obtain synchro-
nization, and figure 17 showing a similar law as given in figure 16.
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n 2 3 4 5 6 7 8

kn 0.376 0.252 0.192 0.152 0.127 0.11 0.092

Kn 0.303 0.202 0.151 0.121 0.101 0.086

Table 2. Tabular summarizing minimal coupling strength kn to observe synchronous
motion of n neurons, with n = 2, ..., 8 when coupling slightly distinct HR neurons
using linear function (4). The difference between neurons is around 10−4.

(a) (b)

Fig. 17. (a) Minimum coupling strength kn to observe a synchronous behaviour
of n neurons according to the number of neurons in the network n (dots) plotted
together with Kn = k2/(0.62(n − 1)) (solid line). (b) Log(Kn) according to Log(n).

Then, in order to make the difference between neurons bigger, the variation
is chosen as done in (12) with e = 10−3. With these variations of parameters
from a neuron to another, we obtain the following tabular (Table 3) of syn-
chronization thresholds, and figure 18 showing a similar law as previously
presented.

n 2 3 4 5 6 7 8

kn 0.4 0.275 0.210 0.170 0.130 0.115 0.098

Kn 0.351 0.234 0.175 0.140 0.117 0.100

Table 3. Tabular summarizing minimal coupling strength to observe synchronous
motion of n neurons, with n = 2, ..., 8 when coupling slightly distinct HR neurons
using linear function (4). The difference betwenn neurons is around 10−3.
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Fig. 18. (a) Minimum coupling strength kn to observe a synchronous behaviour of
n neurons according to the number of neurons in the network (dots) plotted together
with Kn = k2/(0.57(n − 1)) (solid line). (b) Log(Kn) according to Log(n).

3 Property emerging from synchronization with a

nonlinear coupling

3.1 Coupling identical HR neurons

For n = 2, system (3) with the sigmöıdal coupling function h defined as in (5)
and Γ defined as in (6) reads as,



















































ẋ1 = ax2

1
− x3

1
+ y1 − z1 − (x1 − V )k2

1

1 + exp(−λ(x2 − Θ))
ẏ1 = (a + α)x2
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ż1 = ǫ(bx1 + c − z1)

ẋ2 = ax2

2
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2
+ y2 − z2 − (x2 − V )k2

1

1 + exp(−λ(x1 − Θ))
ẏ2 = (a + α)x2

2 − y2

ż2 = ǫ(bx2 + c − z2)

(13)

For n = 3, system (3) with the coupling function h defined as in (5) and Γ
defined as in (6) reads as,
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1
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( 1

1 + exp(−λ(x2 − Θ))
+

1

1 + exp(−λ(x3 − Θ))

)

ẏ1 = (a + α)x2

1
− y1

ż1 = ǫ(bx1 + c − z1)

ẋ2 = ax2

2
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2
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( 1

1 + exp(−λ(x1 − Θ))
+
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)

ẏ2 = (a + α)x2

2
− y2

ż2 = ǫ(bx2 + c − z2)

ẋ3 = ax2

3
− x3

3
+ y3 − z3 − (x3 − V )k3

( 1

1 + exp(−λ(x1 − Θ))
+

1

1 + exp(−λ(x2 − Θ))

)

ẏ3 = (a + α)x2

3 − y3

ż3 = ǫ(bx3 + c − z3)

The same numerical experiments as in the previous section lead us to table
4, in which theorical coupling strength Kn given by the heuristic law (14) is
also presented,

Kn =
k2

(n − 1)
(14)

n 2 3 4 5 6 7 8

kn 1.26 0.63 0.5 0.3 0.24 0.21 0.17

Kn 0.63 0.42 0.315 0.252 0.21 0.18

Table 4. Tabular summarizing minimal coupling strength kn to observe synchronous
motion of n neurons, with n = 2, ..., 8 when coupling identical HR neurons using
linear function (4) and the coupling strength obtained with the heuristic law given
in (14).
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Fig. 19. (a) Minimum coupling strength kn to observe a synchronous behaviour of
n neurons according to the number of neurons in the network (dots) plotted together
with Kn = k2/(n − 1) (solid line). (b) Log(Kn) according to Log(n).
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As the previous numerical results show, the synchronization threshold follows
the heuristic law,

Kn = k2/(n − 1) (15)

This result has been first presented in [3].

3.2 Coupling non-identical HR neurons

In this subsection, the coupling function (5), with Γ defined as in (6), is
used to study the asymptotic behaviour of networks composed of coupled HR
neurons, the parameters of which are slightly different from one another, as
in subsection 2.2. The variation of parameters from one neuron to another is
defined as in (12) with e = 10−4. With these different neurons, we obtain the
following tabular (Table 5) which gives the synchronization thresholds from
two to eight coupled neurons. The obtained results are similar to those we
observed in the previous section. They show the same heuristic law given by
equation (15). These results plotted figure 20.

n 2 3 4 5 6 7 8

kn 3.8 1.8 1.2 0.9 0.7 0.6 0.2

Kn 1.9 1.26 0.95 0.76 0.63 0.54

Table 5. Tabular summarizing minimal coupling strength kn to observe synchronous
motion of n neurons, with n = 2, ..., 8 when coupling slightly distinct HR neurons
using the nonlinear function (5) Γ defined as in (6). The third column shows the
coupling strength obtained with the heuristic law given in (15).
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Fig. 20. (a) Minimum coupling strength kn to observe a synchronous behaviour of
n neurons according to the number of neurons in the network (dots) plotted together
with Kn = k2/(n − 1) (solid line). (b) Log(Kn) according to Log(n).
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4 Conclusion

Emergence and complexity refer to the appearance of higher-level properties
and behaviours of a system that obviously comes from the collective dynam-
ics of that system’s components, see [2]. These properties are not directly
deductable from the lower-level motion of that system. Emergent properties
are properties of the ’whole’ that are not possessed by any of the individual
parts making up that whole. For example, an air molecule is not a cyclone, an
isolated species does not form a food chain and an isolated neuron is not con-
scious : emergent behaviours are typically novel and unanticipated. Thus, if a
synchronization phenomenon is exhibited in a neuron network, it may develop
some kind of consciousness. This is an emergent property which comes from
the collective dynamics of n neurons. Moreover, as given in figure (19), as the
number of neurons n increases, the synchronization threshold kn decreases.
Consciousness is more important when the number of neurons is larger?

References

1. M.A. Aziz-Alaoui (2006), Synchronization of chaos, Encyclopedia of mathe-
matical physics, Elsevier vol.5, pp 213-226

2. M.A. Aziz-Alaoui (2006), Complex emergent properties and chaos (De) synchro-
nization, in Emergent Properties in Natural and Artificial Dynamical Systems,
Eds M.A. Aziz-Alaoui and C. Bertelle, Understanding complex systems series,
Springer, pp 129-147

3. I. Belykh, E. Lange, M. Hasler (2005), Synchronization of Bursting Neurons:
What matters in the Network Topology, Phy. Rev. Lett.94, 18, pp 188101.1-
188101.4

4. S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, C. Zhou (2002), The syn-
chronization of chaotic systems, Physics Reports 366, pp 1-101

5. N. Corson, M.A. Aziz Alaoui (2009), Asymptotic dynamics of the slow-fast
Hindmarsh-Rose neuronal system, To appear in DCDIS-B

6. J.M. Gonzalez-Miranda (2007), Complex bifurcation structures in the
Hindmarsh-Rose neuron model, International Journal of Bifurcation and Chaos,
Vol. 17, 9, pp 3071-3083

7. J.L. Hindmarsh, R.M. Rose (1982), A model of the nerve impulse using two
first-order differential equations, Nature, vol. 296, pp 162 - 164

8. J.L. Hindmarsh, R.M. Rose (1984), A model of neuronal bursting using three
coupled first order differential equations, Proc. R. Sc. Lond. B221, pp 87-102

9. E. Mosekilde, B. Lading, S. Yanchuk, Y. Maistrenko (2001), Bifurcation struc-
ture of a model of bursting pancreatic cells, BioSystems, Vol 63, pp 3-13

10. G. Innocenti, A. Morelli, R. Genesio, A. Torcini (2007), Dynamical phases of
the Hindmarsh-Rose neuronal model : Studies of the transition from bursting
to spiking chaos, Chaos, Vol 17, 043128, pp 1-11

11. E.M. Izhikevich (2007), Dynamical systems in neuroscience - The geometry of
excitability and bursting, The MIT Press

12. L.M. Pecora, T.L. Caroll (1998), Master stability functions for synchronized
coupled systems, Phys. Rev. Lett.80, 10, pp 2109-2112



HR synchronization and complex emergent properties 17

13. A. Pikovsky, M. Rosenblum, J. Kurths (2001), Synchronization, A universal
concept in nonlinear sciences, Cambridge Nonlinear Science Series 12

14. D. Terman (1991), Chaotic spikes arising from a model of bursting in excitable
membranes, SIAM J. Appl. Math. 51, 5, pp 1418-1450

15. D.Terman (1992), The transition from bursting to continuous spiking in ex-
citable membrane models, J. Nonlinear Sc. 2, pp 135-182

16. X.J. Wang (1993), Genesis of bursting oscillations in the Hindmarsh-Rose
model and homoclinicity to a chaotic saddle, Physica D, Vol 62, Issues 1-4,
pp 263-274

17. Z.Q. Yang, Q.S. Lu (2004) Characteristics of Period-Adding Bursting Bifurca-
tion Without Chaos in the Chay Neuron Model, Chin.Phy.Let., Vol 21, Num
11, pp 2124-2128


