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This work adresses the dynamics and complexity of the Hindmarsh-Rose neuronal mathematical model. The general aim is the study of the asymptotic behaviour of neuron networks. In this paper, the analysis of these networks uses the synchronization theory via connections between neurons which give rise to emergent properties and self-organization. Our results lead to a classical law which describes many natural or artificial self-organized complex systems. This has been performed using numerical tools.

Introduction

Also called nerve cells, neurons are the most important cells of the nervous system. The Hindmarsh-Rose model (HR hereafter), see [START_REF] Hindmarsh | A model of the nerve impulse using two first-order differential equations[END_REF][START_REF] Hindmarsh | A model of neuronal bursting using three coupled first order differential equations[END_REF], describes the dynamics of the membrane potential in the axon of a neuron with a three dimensional system of nonlinear first order differential equations which read as,

   ẋ = y + ax 2 -x 3 -z + I ẏ = 1 -dx 2 -y ż = ǫ(b(x -x c ) -z) (1) 
While x describes the membrane potential, y describes the exchange of ions accross the neuron membrane through fast ionic channels and z the exchange of ions through slow ionic channels. I is the applied current while ǫ is a recovery variable, which is very small. This last parameter controls the slow motion of the neuron activity. Parameters a, b, d are constants experimentally determined and x c is the equilibrium x-coordinate of the two dimensional Hindmarsh-Rose system composed of the first two equations of (1) with z = 0 and I = 0. In this paper, we mainly study synchronization motions of coupled HR systems which can be chaotic for some parameters choices. See for example [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system, To appear in DCDIS-B 6. J.M. Gonzalez-Miranda[END_REF]6,[START_REF] Innocenti | Dynamical phases of the Hindmarsh-Rose neuronal model : Studies of the transition from bursting to spiking chaos[END_REF][START_REF] Wang | Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle[END_REF], or [START_REF] Mosekilde | Bifurcation structure of a model of bursting pancreatic cells[END_REF][START_REF] Terman | Chaotic spikes arising from a model of bursting in excitable membranes[END_REF][START_REF] Terman | The transition from bursting to continuous spiking in excitable membrane models[END_REF][START_REF] Yang | Characteristics of Period-Adding Bursting Bifurcation Without Chaos in the Chay Neuron Model[END_REF] in which the behaviour bursting, spiking chaos or adding bifurcation are studied. For the reader convenience, let us recall that synchronization is a phenomenon characteristic of many processes in natural systems and nonlinear science. It has remained an objective of intensive research and is today considered as one of the basic nonlinear phenomena studied in mathematics, physics, engineering or life science. Several different regimes of synchronization have been investigated by many authors, see for example [START_REF] Aziz-Alaoui | Synchronization of chaos[END_REF]4,[START_REF] Izhikevich | Dynamical systems in neuroscience -The geometry of excitability and bursting[END_REF][START_REF] Pecora | Master stability functions for synchronized coupled systems[END_REF][START_REF] Pikovsky | Synchronization, A universal concept in nonlinear sciences[END_REF]. This word has a greek root, syn = common and chronos = time, which means to share common time or to occur at the same time, that is correlation or agreement in time of different processes. Thus, synchronization of two dynamical systems generally means that one system somehow follows the motion of another. A lot of research has been carried out and, as a result, showed that even chaotic systems could synchronize when they are coupled. Many researchers have discussed the theory, the design or applications of synchronized motion in coupled chaotic systems. A broad variety of applications have emerged, for example to increase the power of lasers, to synchronize the output of electronic circuits, to control oscillations in chemical reactions or to encode electronic messages for secure communications. Here are some synchronization regimes,

• Identical (or complete) Synchronization, which is defined as the coincidence of states of interacting systems, • Generalized Synchronization, which extends the identical synchronization phenomenon and implies the presence of some functional relation between two coupled systems; if this relationship is the identity we recover the identical synchronization,

• Phase Synchronization, which means driving of phases of chaotic oscillators, whereas their amplitudes remain uncorrelated, • Lag Synchronization, which appears as a coincidence of shifted-in-time states of two systems.

Hereafter, for all numerical experiments, we use HR system with the following coordinates changes, see [START_REF] Belykh | Synchronization of Bursting Neurons: What matters in the Network Topology[END_REF],

y = 1-y, z = 1+I +z, d = a+α, c = -1-I -bx c .
From this changes of coordinates, we obtain,

   ẋ = ax 2 -x 3 -y -z ẏ = (a + α)x 2 -y ż = ǫ(bx + c -z) (2) 
Let us consider a network composed by n HR neurons. These neurons are coupled by their first variable x i . A model of this network is given by,

   ẋi = ax 2 i -x 3 i + y i -z i -h(x i , x j ), i = j, i = 1, ..., n, j = 1, ..., n ẏi = (a + α)x 2 i -y i żi = ǫ(bx i + c -z i ) (3)
In the case of a network of n neurons linearly coupled, the coupling function h is chosen as,

h(x i , x j ) = k n n j=1 c ij Γ (x j ) (4) 
in which the synaptic coupling Γ is a linear function, Γ (x j ) = x i -x j , for i = 1, 2, ..., n. Parameter k n represents the coupling strength and C n = (c ij ) is the n × n connectivity matrix, c ij = 1 if i and j are connected, i = 1, ...n, j = 1, ...n, i = j c ij = 0 if i and j are not connected.

This matrix C n can be symmetric or not, so that unidirectional or bidirectional coupling are possible.

In the case of a network of n neurons nonlinearly coupled, the coupling function h is given by [START_REF] Belykh | Synchronization of Bursting Neurons: What matters in the Network Topology[END_REF] and reads as,

h(x i , x j ) = (x i -V )k n n j=1 c ij Γ (x j ) (5) 
in which the synaptic coupling Γ is a nonlinear function with a threshold as given,

Γ (x j ) = 1 1 + exp(-λ(x j -Θ)) ( 6 
)
where Θ is the threshold reached by every action potential for a neuron and λ is defined in [START_REF] Belykh | Synchronization of Bursting Neurons: What matters in the Network Topology[END_REF]. As in the case of linear coupling, parameter k n corresponds to the synaptic coupling strength. Parameter V is the reversal potential and must be larger than x i (t) for all i and all t since synapses are supposed excitatory.

We have chosen the situation in which each neuron has the same number of inputs from other neurons. Indeed, according to [START_REF] Belykh | Synchronization of Bursting Neurons: What matters in the Network Topology[END_REF], it is a necessary condition for the synchronous solution to exist. Therefore, the synaptic connections we use have to be bidirectional. The C n matrix should be symmetric and in our case, C n = 1 n -Id n where 1 n = (1) nn and Id n = (Id) nn is the identical matrix.

The following parameters are fixed as follows throughout this paper,

a = 2.8, α = 1.6, c = 5, b = 9, ǫ = 0.001 (7) V = 2, λ = 10, Θ = -0.25 (8) 
Interactions between nerve cells are possible thanks to synapses. The word synapse has a greek root, syn = common and haptein = to touch, which means connection. This is the functional contact part which exists between two neurons or between a neuron and another cell (muscular cell, sensorial receptor, ...). It operates the conversion of an action potential fired by the presynaptic neuron into a signal in the postsynaptic cell. Usually, two different types of synapses are discerned, which are,

• the chemical synapse, widely majoritary, which needs some neurotransmitters to transmit information, • the electrical synapse, in which the signal is transmitted electrically through gap-junctions.

The size of the synaptic cleft is characteristic of one or the other kind of synapse. In the case of electrical synapses, this synaptic cleft is about two nanometers, while it can reach from ten to forty nanometers in the case of chemical synapses.

This paper is organized as follows. In the next section, the coupling function between mathematical neurons is a linear function in order to represent electrical synaptic connections. In this section, we firstly assume that neurons are identical and then, we assume that they are slightly different. In section 3, the same steps are followed with a nonlinear function in order to study chemical synaptic connections.

Property emerging from synchronization with a linear coupling

In this paper, the asymptotic behaviour is studied only by numerical analysis in various regions of the parameter space commonly used in the litterature. We have done the numerical computations very accurately in double precision and for different variations of parameters. In order to obtain reliable numerical results, the step size has been chosen to be equal to 10 -4 and the first 10 6 steps are discarded to avoid the transient regime.

Coupling identical HR neurons

The first step is to consider the asymptotic behaviour of two neurons lineraly coupled. Therefore, we numerically study system (3) with coupling function (4) for n = 2. The connectivity matrix C 2 and the graph of the network are given in figure 2.

C2 = 12 -Id2 = 0 1 1 0 Fig. 2.
Bidirectional connection scheme for two neurons and the connectivity matrix C2.

This gives the six-dimensional system representing two bidirectionaly coupled HR neurons given in [START_REF] Mosekilde | Bifurcation structure of a model of bursting pancreatic cells[END_REF],

                 ẋ1 = ax 2 1 -x 3 1 + y 1 -z 1 -k 2 (x 1 -x 2 ) ẏ1 = (a + α)x 2 1 -y 1 ż1 = ǫ(bx 1 + c -z 1 ) ẋ2 = ax 2 2 -x 3 2 + y 2 -z 2 -k 2 (x 2 -x 1 ) ẏ2 = (a + α)x 2 2 -y 2 ż2 = ǫ(bx 2 + c -z 2 ) (9)
Figure 3 shows the evolution of the (x 1 , x 2 ) phase portrait of system (9) while making the coupling strength k 2 increase after a certain period of time. For low values of this coupling strength, the behaviour of x 1 is really different from the one of x 2 , whereas when this coupling strength is large enough, x 1 and x 2 behaviours become synchronous. We observe that synchronization motion between the first variable x 1 of one neuron and the first variable x 2 of the other, i.e :

x 1 = f (x 2 ) (here, f (x) = Id(x))
, appears for a coupling strength k 2 ≥ 0.376. For every coupling strength larger that this value of k 2 , x 1 and x 2 remain synchronous. This phenomenon is also observed for variables y and z, for the same values of parameters. Therefore, this synchronization is total.

In the case of three neurons, the connectivity matric C 3 and the graph of the network are given in figure 4. System (3) with coupling function (4) for n = 3 reads as,

C3 = 13 -Id3 = 0 1 1 1 0 1 1 1 0
                                 ẋ1 = ax 2 1 -x 3 1 + y 1 -z 1 -k 3 (x 1 -x 2 ) -k 3 (x 1 -x 3 ) ẏ1 = (a + α)x 2 1 -y 1 ż1 = ǫ(bx 1 + c -z 1 ) ẋ2 = ax 2 2 -x 3 2 + y 2 -z 2 -k 3 (x 2 -x 1 ) -k 3 (x 2 -x 3 ) ẏ2 = (a + α)x 2 2 -y 2 ż2 = ǫ(bx 2 + c -z 2 ) ẋ3 = ax 2 3 -x 3 3 + y 3 -z 3 -k 3 (x 3 -x 1 ) -k 3 (x 3 -x 2 ) ẏ3 = (a + α)x 2 3 -y 3 ż3 = ǫ(bx 3 + c -z 3 ) (10)
As shown in the case of two neurons, figure 5 shows the evolution of x 1 according to x 2 for system [START_REF] Innocenti | Dynamical phases of the Hindmarsh-Rose neuronal model : Studies of the transition from bursting to spiking chaos[END_REF] while making the coupling strength increase.

For low values of this coupling strength, the behaviour of x 1 is really different from the one of x 2 , whereas when this coupling strength is large enough, x 1 and x 2 behaviours become identical. If figure 5 only shows the (x 1 , x 2 ) view of the phase portraits of system (10), a similar phenomenon is observed for between x 1 and x 3 . Therefore, the minimum coupling strength k 3 to exhibit synchronization between the first variables x 1 , x 2 and x 3 of three HR neurons is about k 3 = 0.255. Once again, we observe also this phenomenon for the variables y and z for the same numerical values of parameters. This is a synchronization threshold.

There are different possible ways for coupling four, five or more neurons. However, as we already said, we consider the case in which each neuron is connected to all the others. Therefore, there is a unique possible connection scheme.

Here, we consider system (3) with coupling function (4) for n = 4, n = 5, n = 6, n = 7, n = 8. Figures 6, 8, 10, 12 and 14 show the connection graphs of the network and the connectivity matrix C n respectively in the case of 4, 5, 6, 7 and 8 neurons coupled all together. Fig. 6. Bidirectional connection scheme for four neurons. The connectivity matrix C4 is C4 = 14 -Id4. Figures 7,[START_REF] Mosekilde | Bifurcation structure of a model of bursting pancreatic cells[END_REF][START_REF] Izhikevich | Dynamical systems in neuroscience -The geometry of excitability and bursting[END_REF][START_REF] Pikovsky | Synchronization, A universal concept in nonlinear sciences[END_REF][START_REF] Terman | The transition from bursting to continuous spiking in excitable membrane models[END_REF] show the evolution of the (x 1 , x 2 ) phase portrait while making the coupling strength increase in the case of 4, 5, 6, 7 and 8 neurons coupled all together using the coupling function given in (4). These phase portraits are plotted after a period of time. These figures show x 2 according to x 1 , but the same motion is observed comparing the behaviour of the first variable of the other corresponding variables. 1. Tabular summarizing minimal coupling strength kn to observe synchronous motion of n neurons, with n = 2, ..., 8 when coupling identical HR neurons using the linear function (4). Kn is the theoretical value of coupling strength obtained with the heuristic law given in [START_REF] Izhikevich | Dynamical systems in neuroscience -The geometry of excitability and bursting[END_REF].

HR synchronization and complex emergent properties

In this tabular, the first column shows the number n of neurons in the network.

The second column shows the numerical results we obtained while the last column shows the theoretical results obtained thanks to the heuristic law we observed,

K n = k 2 0.62 * (n -1) (11) 
Figure 16 (a) uses table 1 to show k n versus n (dots) and K n versus n (solid lines). Figure 16 (b) shows the curve obtained plotting Log(K n ) according to Log(n). The curve of figure 16 (b) corresponds to a classical law (for n large enough) which can describe many self-organized complex systems, like earthquakes (for 1000 earthquakes of magnitude 4 on Richter scale, there are only 100 of magnitude 5 and 10 of magnitude 6), linguistics (for 1000 occurrences of "the" in an english text, there are only 100 occurrences of "I" and 10 of "say"), urban systems (big cities are rare and small ones are frequent in an exponential way).

Coupling non-identical HR neurons

In this subsection, the same coupling function ( 4) is used to study the asymptotic behaviour of networks composed of HR neuron which parameters are slightly different from one another. Indeed, in nature, it is not realistic to assume that a neuron network is composed of exactly identical neurons. We then make all parameters vary slightly from one neuron to another. Let p i be a generic way of writing every parameters of neuron i (i.e. a i , α i , b i , c i ). The variation of parameters from one neuron to another is defined as in [START_REF] Pecora | Master stability functions for synchronized coupled systems[END_REF]. It has been choosen around e = 10 -4 ,

     p i = p 1 + (1 + i 2 10 -1
) × e, i = 2j, j = 1, 2, 3, 4

p i = p 1 + (1 - i -1 2 10 -1 ) × e, i = 2j + 1, j = 1, 2, 3 (12) 
With these variations of parameters from a neuron to another, we obtain the following tabular (Table 2) of minimal coupling strength to obtain synchronization, and figure 17 showing a similar law as given in figure 16. Then, in order to make the difference between neurons bigger, the variation is chosen as done in ( 12) with e = 10 -3 . With these variations of parameters from a neuron to another, we obtain the following tabular (Table 3) of synchronization thresholds, and figure 18 showing a similar law as previously presented. 3. Tabular summarizing minimal coupling strength to observe synchronous motion of n neurons, with n = 2, ..., 8 when coupling slightly distinct HR neurons using linear function (4). The difference betwenn neurons is around 10 -3 .

As the previous numerical results show, the synchronization threshold follows the heuristic law,

K n = k 2 /(n -1) (15) 
This result has been first presented in [START_REF] Belykh | Synchronization of Bursting Neurons: What matters in the Network Topology[END_REF].

Coupling non-identical HR neurons

In this subsection, the coupling function [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system, To appear in DCDIS-B 6. J.M. Gonzalez-Miranda[END_REF], with Γ defined as in (6), is used to study the asymptotic behaviour of networks composed of coupled HR neurons, the parameters of which are slightly different from one another, as in subsection 2.2. The variation of parameters from one neuron to another is defined as in ( 12) with e = 10 -4 . With these different neurons, we obtain the following tabular (Table 5) which gives the synchronization thresholds from two to eight coupled neurons. The obtained results are similar to those we observed in the previous section. They show the same heuristic law given by equation [START_REF] Terman | The transition from bursting to continuous spiking in excitable membrane models[END_REF]. These results plotted figure 20. Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components, see [START_REF] Aziz-Alaoui | Complex emergent properties and chaos (De) synchronization[END_REF]. These properties are not directly deductable from the lower-level motion of that system. Emergent properties are properties of the 'whole' that are not possessed by any of the individual parts making up that whole. For example, an air molecule is not a cyclone, an isolated species does not form a food chain and an isolated neuron is not conscious : emergent behaviours are typically novel and unanticipated. Thus, if a synchronization phenomenon is exhibited in a neuron network, it may develop some kind of consciousness. This is an emergent property which comes from the collective dynamics of n neurons. Moreover, as given in figure (19), as the number of neurons n increases, the synchronization threshold k n decreases.

Consciousness is more important when the number of neurons is larger?

Fig. 1 .

 1 Fig. 1. System (1) for a = 3, b = 4, d = 5, xc = -1 2 (1 + √ 5), I = 3.25 and ǫ = 0.001. (a) Time series (t, x), (b) (x, y, z) view.

Fig. 3 .

 3 Fig.3. Phases portraits for system[START_REF] Mosekilde | Bifurcation structure of a model of bursting pancreatic cells[END_REF] showing x2 according to x1 for the coupling strength (a) k2 = 0.2, (b) k2 = 0.25, (c) k2 = 0.36, (d) k2 = 0.376. For two neurons linearly coupled, the synchronization threshold for the coupling strength is about k2 = 0.376.

Fig. 4 .

 4 Fig. 4. Bidirectional connection scheme for three neurons and the connectivity matrix C3.

Fig. 5 .

 5 Fig. 5. Phases portraits for system (10) showing x2 according to x1 for the coupling strength (a) k3 = 0.1, (b) k3 = 0.2, (c) k3 = 0.24, (d) k3 = 0.255. For three linearly coupled neurons, the synchronization threshold of the coupling strength is around k3 = 0.255.

Fig. 7 .

 7 Fig. 7. x2 according to x1 when four neurons are connected for the coupling strength (a) k4 = 0.1, (b) k4 = 0.15, (c) k4 = 0.18, (d) k4 = 0.191. Minimum coupling strength to observe synchronization between variables xi and xj, yi and yj , zi and zj (i = 1, ..., 4, j = 1, ..., 4, i = j) when coupling four neurons is k4 = 0.191.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Coupling five neurons. The connectivity matric C5 is C5 = 15 -Id5.

Fig. 10 .

 10 Fig. 10. Coupling six neurons. The connectivity matrix C6 is C6 = 16 -Id6.

Fig. 11 .

 11 Fig. 11. x2 according to x1 when six neurons are connected for the coupling strength (a) k6 = 0.03, (b) k6 = 0.05, (c) k6 = 0.1, (d) k6 = 0.122. Minimum coupling strength to observe synchronization between variables xi and xj, yi and yj , zi and zj (i = 1, ..., 6, j = 1, ..., 6, i = j) when coupling six neurons is k6 = 0.122.

Fig. 12 .

 12 Fig. 12. Coupling seven neurons. The connectivity matrix C7 is C7 = 17 -Id7.

Fig. 13 .

 13 Fig. 13. x2 according to x1 when seven neurons are connected for the coupling strength (a) k7 = 0.025, (b) k7 = 0.05, (c) k7 = 0.1, (d) k7 = 0.104. Minimum coupling strength to observe synchronization between variables xi and xj , yi and yj, zi and zj (i = 1, ..., 7, j = 1, ..., 7, i = j) when coupling seven neurons is k7 = 0.104.

Fig. 14 .Fig. 15 .

 1415 Fig. 14. Coupling eight neurons. The connectivity matrix C8 is C8 = 18 -Id8.

Fig. 16 .

 16 Fig. 16. (a) Minimum coupling strength kn to observe a synchronous behaviour of n neurons, according to the number of neurons in the network (dots) plotted together with Kn = k2/(0.62(n -1)) (solid line). (b) Log(Kn) according to Log(n).

Table 2 .Fig. 17 .

 217 Fig. 17. (a) Minimum coupling strength kn to observe a synchronous behaviour of n neurons according to the number of neurons in the network n (dots) plotted together with Kn = k2/(0.62(n -1)) (solid line). (b) Log(Kn) according to Log(n).

Table 5 .

 5 Tabular summarizing minimal coupling strength kn to observe synchronous motion of n neurons, with n = 2, ..., 8 when coupling slightly distinct HR neurons using the nonlinear function (5) Γ defined as in (6). The third column shows the coupling strength obtained with the heuristic law given in[START_REF] Terman | The transition from bursting to continuous spiking in excitable membrane models[END_REF].

Fig. 20 .

 20 Fig. 20. (a) Minimum coupling strength kn to observe a synchronous behaviour of n neurons according to the number of neurons in the network (dots) plotted together with Kn = k2/(n -1) (solid line). (b) Log(Kn) according to Log(n).

  Synchronization thresholds of the coupling strength we obtained are summarized in table 1.

	n	2	3	4	5	6	7	8
	kn 0.376 0.255 0.191 0.152 0.122 0.104 0.088
	Kn		0.303 0.202 0.151 0.121 0.101 0.086
	Table							

3 Property emerging from synchronization with a nonlinear coupling

Coupling identical HR neurons

For n = 2, system (3) with the sigmoïdal coupling function h defined as in [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system, To appear in DCDIS-B 6. J.M. Gonzalez-Miranda[END_REF] and Γ defined as in (6) reads as,

For n = 3, system (3) with the coupling function h defined as in [START_REF] Corson | Asymptotic dynamics of the slow-fast Hindmarsh-Rose neuronal system, To appear in DCDIS-B 6. J.M. Gonzalez-Miranda[END_REF] and Γ defined as in (6) reads as,

The same numerical experiments as in the previous section lead us to table 4, in which theorical coupling strength K n given by the heuristic law ( 14) is also presented,