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Abstract

It is now well established that separated representations built with the help of Proper Generalized Decomposition (PGD) can dras-

tically reduce computational costs associated with solution of a wide variety of problems. However, it is still an open question to

know if separated representations can be efficiently used to approximate solutions of hyperbolic evolution problems in space-time

domain. In this paper, we numerically address this issue and concentrate on transient elastodynamic models. For such models, the

operator associated with the space-time problem is non-symmetric and low-rank approximations are classically computed by mini-

mizing the space-time residual in a natural L2 sense, yet leading to non optimal approximations in usual solution norms. Therefore,

a new algorithm has been recently introduced by one of the authors and allows to find a quasi-optimal low-rank approximation

a priori with respect to a target norm. We presently extend this new algorithm to multi-field models. The proposed algorithm

is applied to elastodynamics formulated over space-time domain with the time discontinuous Galerkin method in displacement

and velocity. Numerical examples demonstrate convergence of the proposed algorithm and comparisons are made with classical a

posteriori and a priori approaches.

Keywords: elastodynamics, separation of variables, Proper Orthogonal Decomposition (POD), Proper Generalized

Decomposition (PGD), minimal residual, multi-field

1. Introduction

Standard discretization techniques, such as finite element

method and time integration schemes, are now sufficiently well-

established to be used for the solution of industrial problems.

However, applying these methods in industrial context requires

ever increasing computational resources. As an example, per-

forming one simple transient elastodynamic simulation, on a

structure discretized with one million nodes and over one mil-

lion time steps, requires more than 7000 Gbytes in order to store

a scalar solution over the space-time domain. Such a solution

can never be stored in practice and engineers have the difficult

task (before performing analyses) to select particular locations

in space-time domain for partially post-processing the full so-

lution, other calculated values being lost at the end of the sim-

ulation. Also, industrial problems usually depend on many pa-

rameters and engineers need to perform as many simulations

as possible in optimization or uncertainty quantification con-

texts. Then, even if the impressive amount of computational

resources today available potentially allows to deal with such

models, one should propose innovative methods to better ex-

ploit these resources.
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Reduced order models (ROMs) can be used to address this

issue. They are usually based on projection of the full order

model onto low dimensional reduced bases. The most popu-

lar reduced basis in elastodynamics is the truncated modal ba-

sis due to the physical interpretation of spatial modes [23, 37].

However, ROMs based on modal truncation are not efficient to

simulate transient motions since eigen modes associated with a

wide frequency band must be introduced in the reduced basis

to get accurate results. More recently, ROMs based on proper

orthogonal decomposition (POD) were proposed [7, 29, 28]. In

this approach, the full order model in space is used to compute

some solutions at particular time instants of the computational

domain (called snapshots). Then, the idea is to build the re-

duced basis with the most dominant modes of the POD of the

snapshots. This method is well-suited when reasonable com-

parability of model dynamics can be assumed [24]. Otherwise,

many snapshots must be computed to obtain a reduced basis

representative of all full order model states. POD method is

called a posteriori since the reduced basis must be computed

in a first step, based on partial knownledge of the full order

model solution. In this paper, we present an a priori approach

that allows finding a good approximation of the POD of the full

space-time solution, without computing this full solution. It is

based on a new algorithm recently proposed in [8].

Initially introduced in the 80’s for the solution of non-linear

mechanical models [30], ROMs based on PGD have been more
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recently generalized to high-dimensional problems [5, 1, 15,

35]. In the last decade, lots of contributions have been pub-

lished, showing that many problems solutions can be well ap-

proximated using PGD of low ranks [16]. For evolution prob-

lems [2, 36], the aim is to approximate a space-time solution

as a sum of products of space and time functions, that can be

viewed as space-time modes. The number of space-time modes

is called decomposition rank. The question is then, can we ac-

curately approximate the solution of a given evolution problem

with decomposition of low rank ? For second order hyperbolic

problems the question is still open (see [10] for a first appli-

cation of space-time PGD on the equation of waves motion).

In this paper, we numerically address this issue and concen-

trate on solutions of transient elastodynamic models with two

dimensions in space.

To evaluate if such solutions can be well approximated with

separated representations of low rank, we first need to define

what is the best approximation of a given rank M. Assuming

the full solution is known, we should introduce a target norm in

order to measure the error between the full solution and the low

rank approximations. Then, the optimal approximation of rank

M is defined as a minimizer of this error in the subset of rank-M

tensors. This construction is called a posteriori decomposition

[25] since one needs to calculate and be able to store the full

solution before computing its low rank approximation. When

this is not possible, a more challenging task is to compute a low

rank approximation a priori, that is without knowing the full

solution. This is aim of classical PGD methods. An even more

challenging task is to compute the optimal low rank approxi-

mation a priori and this is aim of this paper.

For linear systems of equations with non-symmetric oper-

ators, as is the case of elastodynamic problems, PGD is clas-

sically computed by minimizing the discrete residual typically

using (L2-type) Euclidean norms [3, 36]. However, when op-

erators are ill conditioned, the classical minimal residual PGD

yields poorly accurate approximations with respect to usual so-

lution norms. In elastodynamic problems, the number of space-

time modes required to represent the full solution at a given

accuracy is far from the optimal one. Therefore a new algo-

rithm for non-symmetric problems has been introduced in [8]

and allows finding a priori a quasi-optimal approximation of a

given rank, with respect to a target metric. The idea is to in-

troduce an ideal residual norm, so that minimizing this residual

norm is equivalent to minimizing the error in the target norm.

Notice that other variants have been also proposed in [36, 12].

We presently extend the algorithm proposed in [8] to multi-

field models for its application in elastodynamics. This is mo-

tivated by the fact that recent time integration schemes used to

compute an accurate solution of transient elastodynamic prob-

lems, are often based on multi-field formulations [27]. Here,

we formulate the elastodynamic problem with two fields (dis-

placement and velocity) and we use the Time Discontinuous

Galerkin (TDG) method [26]. This formulation allows avoid-

ing high frequency perturbations introduced by classical time

schemes (such Newmark scheme) and that can increase the num-

ber of space-time modes required to approximate the full so-

lution at a given accuracy [10]. Moreover, for elastodynamic

models with two dimensions in space (or more), unknown so-

lutions are vector fields (displacement and velocity vectors). In

such case, each component of the unknown vectors is taken as

a particular field.

This paper is structured as follows : in section 2, the opti-

mal approximation of a given rank with respect to a target norm

is defined and heuristic comparisons are made with approxima-

tions based on classical residual minimizations. In section 3,

the ideal minimal residual-based approach allowing finding a

quasi-optimal approximation with respect to the target metric

is described. In section 4, we extend this approach to multi-

field models and an example is given in section 5 for the elas-

todynamic problem with two dimensions in space. In section

6, space-time separated approximations of transient responses

due to impact loads whose duration varies from 0.01 to 1 ms are

computed. Numerical comparisons are made between a poste-

riori and a priori low-rank approximations, and convergence of

the new algorithm is analyzed.

2. Optimality of low-rank approximations

In this section, we introduce space-time separated represen-

tations of solutions of single field models. First, we define the

optimal separated approximation of a given rank with respect

to a target metric. Then, we give some heuristic arguments to

explain why this optimal decomposition may not be well ap-

proximated a priori with classical minimal residual approach if

the operator associated with the considered model is ill condi-

tioned.

2.1. A posteriori decomposition

Consider a scalar field u(x, t) defined in a space-time do-

main Ω × I. After discretization on a given space-time mesh,

the discrete representation of this field can be stored in a sec-

ond order tensor denoted by u ∈ S = R
N(S ) ⊗ R

N(T ), where

N(S ) and N(T ) give the size of the approximation spaces in the

spatial and temporal dimensions respectively.

The aim of space-time decomposition is to find a low-rank

approximation of a space-time field as a sum of products of

spatial and temporal functions [30]. In the discrete case, it con-

sists of approximating the tensor u as a sum of a few rank-one

tensors. Each rank-one tensor can be viewed as a space-time

mode. The number of space-time modes involved in the sum

is called the decomposition rank M. Then, the rank-M space-

time decomposition is denoted uM and is searched in the subset

SM ⊂ S defined as

uM ∈ SM =















u ∈ S | u =

M
∑

m=1

wS
m
⊗ wT

m















. (1)

Since a space-time decomposition of fixed rank gives an

approximation of the full tensor, we need a target norm in order

to define the best approximation in a certain sense. Here, we

choose the canonical norm for second order tensors, defined as

∥

∥

∥ x
∥

∥

∥

2
=

√

x D. x =

√

∑

i, j

x2
i j
,

2



where the inner product “ D. ” is the classical two times con-

tracted product between second order tensors (that is D = 2).

Then, the optimal rank-M approximation uM is searched as

a minimizer of the distance to the solution u, measured in the

target norm, that is

uM ∈ arg min
u⋆ ∈SM

∥

∥

∥u − u⋆
∥

∥

∥

2

2
. (2)

With the chosen target norm, problem (2) is simply the POD

of rank-M of the full space-time solution. This construction is

called a posteriori decomposition since it is necessary to calcu-

late (and store) the full tensor u before to compute its low rank

approximation. A more difficult task is to find an approxima-

tion of u while avoiding the calculation of u. This is called a

priori low rank approximation.

Remark 1. In practice, the rank-M approximation uM , solu-

tion of problem (2), can be written

uM =

M
∑

m=1

αm wS
m
⊗ wT

m
, (3)

with
∥

∥

∥wS
m
⊗ wT

m

∥

∥

∥

2
= 1, for all m = 1 . . .M. The obtained de-

composition is the Singular Value Decomposition (SVD) of the

second order tensor u and it verifies the following property :

∥

∥

∥u − uM

∥

∥

∥

2

2
=
∥

∥

∥u
∥

∥

∥

2

2
−

M
∑

m=1

α2
m . (4)

2.2. A priori low rank approximation

A space-time separated approximation of the solution of a

transient problem can be constructed a priori (that is without

knowing u) thanks to PGD methods [5, 3, 34]. After discretiza-

tion, such problem can be written in tensor format as : find

u ∈ RN(S ) ⊗ RN(T ) such that

A D. u = b (5)

with















A ∈ RN(S )×N(S ) ⊗ RN(T )×N(T )

b ∈ RN(S ) ⊗ RN(T )

where A is an invertible operator1.

PGD methods can be efficiently applied only if A and b

admit low rank representations2, that is

A =

MA
∑

m=1

AS

m
⊗ AT

m
and b =

Mb
∑

m=1

bS
m
⊗ bT

m
, (6)

with moderate ranks MA and Mb.

1In case of space-time problems, A is a fourth order tensor that can

be identified with a linear operator that links a second order tensor with

another second order tensor of the same size, that is A D. u = b ⇔
∑N(S )

jS =1

∑N(T )

jT =1
AiS jS iT jT u jS jT = biS iT .

2Indeed, assembly costs of linear operators involved in the alternated mini-

mization process of PGD algorithms are mostly related to matrix-vector prod-

ucts and linearly depend on the ranks MA and Mb .

Then, there are many ways to define PGD, the most used

being the Galerkin-based PGD and the minimal residual-based

PGD. However, for non-symmetric problems, convergence of

the decomposition constructed with a Greedy rank-one algo-

rithm has been proven only for minimal residual definition of

the PGD (in a finite dimensional setting in [4] or infinite di-

mensional setting in [21]). Since operator A associated with

elastodynamic problems is non-symmetric, we only consider

the minimal residual definition of the PGD. Thus, the a priori

low-rank approximation is searched among all rank-M tensors

as a minimizer of the residual norm. Classically, residual mini-

mization is performed using a canonical norm, that is

uM ∈ arg min
u⋆ ∈SM

∥

∥

∥b − A D. u⋆
∥

∥

∥

2

2
. (7)

2.3. Optimality of minimal residual PGD

Minimal residual approximation (7) yields an optimal rank-

M approximation in the sense that it minimizes the residual

norm. However, our aim is to find a priori the optimal rank-

M approximation (2) that minimizes the error defined with re-

spect to the target norm we have chosen. Therefore, for a given

rank M, one should ask if the minimal residual approxima-

tion (7) yields the best approximation (2). Here, we answer

with some heuristic arguments. Defining the operator norm as
∥

∥

∥A
∥

∥

∥

2
= max

x∈S
||x||2=1

∥

∥

∥A D. x
∥

∥

∥

2
, we have

∥

∥

∥A
∥

∥

∥

−1

2

∥

∥

∥b − A D. u⋆
∥

∥

∥

2
≤
∥

∥

∥u − u⋆
∥

∥

∥

2
≤
∥

∥

∥A−1
∥

∥

∥

2

∥

∥

∥b − A D. u⋆
∥

∥

∥

2
.

(8)

Inequality (8) means that if we find a rank-M minimizer

of the residual norm, it may yield a high error if the condition

number κ(A) =
∥

∥

∥A
∥

∥

∥

2

∥

∥

∥A−1
∥

∥

∥

2
is high. Then for ill-conditioned

problem, minimal residual PGD could require the computation

of more space-time modes than necessary to obtain an accurate

enough approximation with respect to the target norm.

Remark 2. From the computational point of view, similar al-

gorithms can be used for a posteriori and a priori constructions

of separated representations. To illustrate this point, we denote

by J(u) the functional involved in definitions (2) or (7). A first

class of algorithms can be set up by minimizing the functional

only with respect to the last mode in the current decomposition,

other modes being supposed to be known. That is, we suppose

uM−1 is known, and we look for the best rank-one enrichment

w ∈ S1 such that J(uM−1+w) is minimum, then uM = uM−1+w.

This is called progressive or Greedy rank-one algorithms. For a

posteriori decomposition, it yields the optimal rank-M approx-

imation defined by the direct minimization of the functional on

SM . For a priori decomposition, linear operator A also needs

to be rank-one (that is A = A1 ⊗A2). If this is not the case, pro-

gressive algorithms may converge to poorly accurate solutions

[4, 20]. Then for MA > 1, minimization must be performed with

respect to all modes at each iteration (as done in problem (7)) if

one wants to compute the optimal low-rank approximation. We

call this approach direct algorithms. With this approach, the

3



use of an alternating minimization algorithm requires the solu-

tions of linear systems of size MN(d)×MN(d) (with d = S or T)

that cannot be solved for high values of the decomposition rank

M. Then, different updating strategies are usually used in con-

junction with progressive construction [35, 36, 22]. In this pa-

per, we focus on direct and pure progressive constructions.

3. Algorithm based on ideal minimal residual formulation

In this section, we present an algorithm recently introduced

in [8] that allows finding a priori a quasi-optimal low-rank ap-

proximation with respect to a target metric.

3.1. Ideal norm for residual minimization

The main idea is to introduce a residual norm whose mini-

mization is equivalent to minimizing the error in the target met-

ric. That is, we are looking for a symmetric definite positive

operator N (defining the norm
∥

∥

∥ x
∥

∥

∥

N
=
√

x D. N D. x) such that

∥

∥

∥u − u⋆
∥

∥

∥

2
=
∥

∥

∥b − A D. u⋆
∥

∥

∥

N
. (9)

This yields N = (A D. A′)−1 (where A′ and A−1 denote trans-

pose and inverse operations respectively). Then, the optimal

rank-M decomposition (that is the POD of the space-time solu-

tion) can be defined as

uM ∈ arg min
u⋆ ∈SM

∥

∥

∥b − A D. u⋆
∥

∥

∥

2

(A D. A′)−1 . (10)

3.2. Direct construction with low-rank approximation of an aux-

iliary problem solution

Obviously, the norm involved in problem (10) is cumber-

some from a computational point of view. To avoid its explicit

calculation, we introduce an auxiliary variable y ∈ S, solution

of the problem

(

A D. A′
)

D. y = b − A D. uM . (11)

Introducing (11) in the stationary condition associated with

problem (10), one can derive a gradient-type algorithm that can

be viewed as an extension of algorithms introduced in [17, 14]

to nonlinear approximation in SM . This algorithm reads at a

given iteration (k + 1) : knowing u
(k)

M
∈ SM , find u

(k+1)

M
∈ SM

such that

y(k) =
(

A D. A′
)−1 D.

(

b − A D. u
(k)

M

)

(12a)

u
(k+1)

M
∈ arg min

u⋆ ∈SM

∥

∥

∥ u
(k)

M
+ A′ D. y(k) − u⋆

∥

∥

∥

2

2
(12b)

Note that if equation (12a) is solved exactly, then this al-

gorithm converges to the optimal rank-M approximation in one

iteration whatever the initialization u
(0)

M
. However, this solution

requires the same computational cost as the solution of equation

(5). Therefore, it has been proposed in [8] to introduce a pertur-

bation of this ideal approach. The idea is to compute a low-rank

approximation of
(

AD.A′
)−1 D.
(

b−A D. u
(k)

M

)

that can be controlled

with some precision. Then, convergence to a neighborhood of

the optimal approximation can be proven depending on the pre-

cision of the low-rank approximation of the auxiliary variable

[8]. Here, we use a slightly different approach. We propose

to compute a low-rank approximation yR ∈ SR of the auxiliary

variable at fixed rank R. Since the auxiliary problem is sym-

metric, we compute this approximation with the progressive

Galerkin PGD algorithm. Then, the direct algorithm for the a

priori computation of a quasi-optimal low-rank approximation

is called Ideal Minimal Residual PGD (denoted by (IMR)PGD

in short) and reads : given u
(k)

M
∈ SM , compute u

(k+1)

M
∈ SM such

that

r(k) = b − A D. u
(k)

M
, (13a)

y
(k)

R
= (G)PGD(A D. A′, r(k),R) , (13b)

u
(k+1)

M
∈ arg min

u⋆ ∈SM

∥

∥

∥u
(k)

M
+ A′ D. y

(k)

R
− u⋆

∥

∥

∥

2

2
, (13c)

where (G)PGD(A, b,M) gives a rank-M approximation of the

solution of the linear system with operator A and right hand

side b, computed with a progressive Galerkin PGD algorithm

[36].

Remark 3. The rank-R approximation yR of the solution y of

the auxiliary problem (11) is the progressive Galerkin PGD of

y. In practice, it is computed under the form

yR =

R
∑

r=1

βr yS

r
⊗ yT

r
(14)

with
∥

∥

∥ yS

r
⊗ yT

r

∥

∥

∥

A D. A′
= 1, for all r = 1 . . .R. Then, yR verifies the

following property [36] :

∥

∥

∥ y − yR

∥

∥

∥

2

A D. A′
=
∥

∥

∥ y
∥

∥

∥

2

A D. A′
−

R
∑

r=1

β2
r (15)

Remark 4. As explained in Remark 2, a direct algorithm for

classical PGDs, using alternating minimization algorithm, may

not be tractable since it requires alernated solutions of linear

systems whose size linearly depends on the rank M. An impor-

tant advantage of the proposed approach is that it does only

require solutions of linear systems of size N(d) × N(d) (with

d = S or T) and thus, it can be used even for high values of

decomposition rank M.

Remark 5. Computational costs associated with (IMR)PGD

algorithm are mainly related to the progressive PGD algorithm

used for the decomposition of the auxiliary problem’s solution.

Indeed, since (u
(k)

M
+ A′ D. y

(k)

R
) is already given in a low-rank

format, the cost of step (13c) is negligible compared to the cost

of step (13b).

3.3. Convergence of the algorithm at fixed auxiliary rank R

Convergence of algorithm (13) towards a controlled neigh-

borhood of the best rank-M approximation has been proven in

[8] under the following assumptions:

4



• at each iteration (k), the rank-R approximation y
(k)

R
of the

solution y(k) of the current auxiliary problem (12a) satis-

fies

∥

∥

∥ y(k) − y
(k)

R

∥

∥

∥

A D. A′
≤ δ
∥

∥

∥ y(k)
∥

∥

∥

A D. A′
with 0 < δ < 1

2
,

(16)

• and problem (13c) is solved with controlled precision.

In the present paper, y
(k)

R
is the fixed rank-R progressive

Galerkin PGD of y(k), and then, thanks to property (15) and

noting that
∥

∥

∥ y(k)
∥

∥

∥

A D. A′
=
∥

∥

∥u − u
(k)

M

∥

∥

∥

2
, we only ensure that

∥

∥

∥ y(k) − y
(k)

R

∥

∥

∥

A D. A′
= δ

(k)

R

∥

∥

∥ y(k)
∥

∥

∥

A D. A′
with 0 ≤ δ

(k)

R
< 1 ,

(17)

where δ
(k)

R
=

√

1 −
∑R

r=1(β
(k)
r )2

∥

∥

∥ u−u
(k)

M

∥

∥

∥

2

2

. Therefore, an adaptive procedure

allowing to find R such that δ
(k)

R
≤ δ should be defined in order

to ensure convergence of the algorithm (see the approach used

in [8]). However, we do not consider this aspect here since

convergence of the algorithm has been numerically observed

even for very small fixed rank R (typically R = 1, see section

6).

3.4. Error estimator

Thanks to property (17), we have

1

1+δ
(k)

R

∥

∥

∥ y
(k)

R

∥

∥

∥

A D. A′
≤
∥

∥

∥u − u
(k)

M

∥

∥

∥

2
≤ 1

1−δ
(k)

R

∥

∥

∥ y
(k)

R

∥

∥

∥

A D. A′
. (18)

Assuming that the auxiliary problem is solved with a reason-

able precision, that means δ
(k)

R
is small compared to 1, then

∥

∥

∥ y
(k)

R

∥

∥

∥

A D. A′
reflects the behavior of the true error

∥

∥

∥u − u
(k)

M

∥

∥

∥

2
.

A rigorous control of the algorithm would require the use of

error estimation methods for the auxiliary problem in order to

provide an upper bound of δ
(k)

R
. In practice, we here rely on a

criterion based on the stagnation of
∥

∥

∥ y
(k)

R

∥

∥

∥

A D. A′
in order to stop

the algorithm.

4. Extension to multi-field models

In this section, we extend definitions and algorithms pre-

sented in sections 2 and 3 to multi-field models. We consider

multi-field modeling of problems involving F scalar fields u1(x, t), . . . , uF(x, t)

defined in a space-time domain Ω × I. These fields can be re-

lated to different physics (various examples can be found in

[19, 32, 33, 6, 10]) or as illustrated in [9, 18], they can be dif-

ferent components of a vector field. Also, we allow different

approximation spaces for each field, that is the discrete repre-

sentation of a given field ui is stored in a second order tensor

ui ∈ R
N(i,S )⊗RN(i,T ) (where N(i, d) gives the size of the approx-

imation space related to the field i in the dimension d = S or T ).

4.1. Linear algebra on a product of tensor spaces

To shorten notations, we introduce the F-tuple {u} ∈ SF ,

where SF is a product of F tensor spaces. {u} can be viewed

as a vector whose components are the F second order tensors

ui ∈ R
N(i,S ) ⊗ RN(i,T ). That is,

{u} ∈ S
F ⇔ {u} ≡





















u1...
uF





















. (19)

Also, we introduce L(SF), the space of linear operators

from SF to SF . An element [A] ∈ L(SF) can be viewed as

a matrix whose components are tensors Ai j ∈ R
N(i,S )×N( j,S ) ⊗

R
N(i,T )×N( j,T ). That is,

[A] ∈ L(SF)⇔ [A] ≡





















A11 · · · A1F...
...

AF1 · · · AFF





















. (20)

We introduce the following operations :

{a} D. . {b} =

F
∑

i=1

(ai
D. bi) ,

[A] D. . {a} = {b} ⇔

F
∑

j=1

(Ai j
D. a j) = bi ,

where the additional point near the previously introduce D-

times contracted product “ D. ” is related to matrix-vector op-

erations between components of the tuples. The first operation

defines the natural inner product on SF .

4.2. Optimal approximation with respect to the target norm

Following approaches used in [19, 32, 6, 9, 18, 10], we in-

troduce a rank-M approximation3 of each second order tensor

ui. We denote this multi-field decomposition {u}M and define

the corresponding subset SF
M
⊂ SF as

S
F
M =















{u} ∈ S
F | ui =

M
∑

m=1

wS
im
⊗ wT

im
, i = 1 . . .F















. (21)

Then, we introduce a target norm in order to define the op-

timal decomposition. Here, we use the “canonical norm” of

F−tuples whose components are second order tensors defined

as

∥

∥

∥ {x}
∥

∥

∥

2
=

√

{x} D. . {x} . (22)

Thus, for problems involving F second-order tensors, the opti-

mal rank-M multi-field space-time decomposition with respect

to the target norm is defined as

{u}M ∈ arg min
{u}⋆ ∈SF

M

∥

∥

∥ {u} − {u}⋆
∥

∥

∥

2

2
. (23)

This is the a posteriori decomposition of multi-field problems.

3A different rank Mi could be used for each tensor ui.
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Remark 6. Notice that with the chosen norm (22), optimal de-

composition defined by (23) is equivalent to decomposition (2)

applied to each field ui. However, when the F-tuple {u} con-

tains different physical fields, the multi-field norm (22) involves

summation of quantities that are not homogeneous in terms of

physical units. Then, some weighting of the norm should be in-

troduced in order to preserve physical homogeneity of the multi-

field norm (see [10] for more details when the different fields

are displacement and velocity fields). Notice that this weight-

ing of the norms does not change the solution of problem (23).

4.3. Classical Minimal residual PGD

As for single field case, we can also introduce a priori de-

compositions. We suppose the F tensors ui are solutions of F

coupled linear equations. These equations can be recast in a

monolithic way as a unique block system. The multi-field lin-

ear system reads

[A] D. . {u} = {b} ⇔





















A11 · · · A1F...
...

AF1 · · · AFF





















D. .





















u1...
uF





















=





















b1...
bF





















, (24)

with















Ai j ∈ R
N(i,S )×N( j,S ) ⊗ RN(i,T )×N( j,T )

bi ∈ R
N(i,S ) ⊗ RN(i,T )

∀i, j = 1 . . .F

where [A] is an invertible operator. Multi-field PGD can be

efficiently applied when each block of the monolithic system is

of low-rank. That is each of the components of the operator [A]

and right hand side {b} admit low-rank representations of the

form

Ai j =

MA(i, j)
∑

m=1

AS

i jm
⊗ AT

i jm
and bi =

Mb(i)
∑

m=1

bS
im
⊗ bT

im
∀i, j = 1 . . . F

(25)

with moderate ranks MA(i, j) and Mb(i).

Then, following [10], we introduce a monolithic definition

of a priori decomposition of multi-field problems. This ap-

proach differs from [19, 32, 6] in the sense that we do not par-

tition the multi-field problem, thus preserving the better con-

vergence properties of monolithic approaches while allowing

different approximation spaces for each field. The decomposi-

tion is searched as a minimizer of the residual of the monolithic

problem, among all decompositions in SF
M

, that is

{u}M ∈ arg min
{u}⋆ ∈SF

M

∥

∥

∥ {b} − [A] D. . {u}⋆
∥

∥

∥

2

2
. (26)

4.4. Ideal minimal residual approach

However, as for single field case, the quality of classical

minimal residual-based decomposition depends on the condi-

tion number of the multi-field problem and do not give the op-

timal separated representation of rank M with respect to the

target metric. Thus, an ideal minimal residual decomposition is

introduced. In the multi-field case, this reads

{u}M ∈ arg min
{u}⋆ ∈SF

M

∥

∥

∥ {b} − [A] D. . {u}⋆
∥

∥

∥

2

([A] D. . [A]′)−1 . (27)

Figure 1: Geometry and boundary conditions.

Then, following section 3, we introduce an iterative scheme.

Mimicking the direct construction introduced for single field

case, we obtain the following iterative scheme in the multi-field

case : given {u}
(k)

M
∈ S

F
M

, compute {u}
(k+1)

M
∈ S

F
M

such that

{r}(k) = {b} − [A] D. . {u}
(k)

M
, (28a)

{y}
(k)

R
= (G)PGD-MF([A] D. . [A]′, {r}(k),R) , (28b)

{u}
(k+1)

M
= arg min

{u}⋆ ∈SF
M

∥

∥

∥ {u}
(k)

M
+ [A]′ D. . {y}

(k)

R
− {u}⋆

∥

∥

∥

2

2
, (28c)

where (G)PGD-MF([A], {b},M) gives a rank-M approxima-

tion of the solution of the multi-field linear system with op-

erator [A] and right hand side {b}, computed with a progressive

Galerkin PGD as implemented in [10].

Remark 7. Notice that in equation (28b), we use the same rank

R for all auxiliary fields. A more adaptive strategy would con-

sist in using a different rank Ri for each auxiliary field.

5. Application to elastodynamic models in space-time do-

main

In this section, we illustrate construction of separated rep-

resentations of operator [A] and right hand side {b} for elas-

todynamic models with two dimensions in space. A two-field

(displacement u(x, t) and velocity v(x, t)) weak formulation over

space-time domain is first described. Then, separated represen-

tations of [A] and {b} are introduced considering a tensor struc-

ture of the form 2D-space × 1D-time (see Figure 1).

We assume small perturbations of material domain Ω over

the time domain I =]0, T [ such that Ω does not evolve over

I. Dirichlet boundary conditions (we consider imposed dis-

placement ū and velocity v̄) are imposed on ∂Ωu × I. Neu-

mann conditions (we consider external load p) are applied on

∂Ωσ × I. Boundary is partitioned so that ∂Ω = ∂Ωu ∪ ∂Ωσ
and ∂Ωu ∩ ∂Ωσ = ∅. We suppose that ∂Ωu and ∂Ωσ do not

evolve in time. Initial state is known and described by initial

displacement u
0

and velocity v
0

defined on Ω.

Plain strain and linear elastic behavior of the medium are

assumed. Strain and stress tensors (ε and σ respectively) are

given by

ε = 1
2
(∇ ⊗ u + (∇ ⊗ u)′) and σ = λ tr(ε)I + 2µ ε , (29)
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where tr(ε) is the trace of ε, I is the identity matrix, and λ and

µ are Lamé’s constants. We denote by e the thickness of the

spatial domain.

5.1. Space-time weak formulation

We introduce the following function spaces :

U(ū) =
{

u : Ω × I → R
2 | u = ū on ∂Ωu × I + regularity

}

V(v̄) =
{

v : Ω × I → R
2 | v = v̄ on ∂Ωu × I + regularity

}

and the following forms :

M
(

u , v
)

=

∫

Ω

u · v dΩ, (30)

K
(

u , v
)

=

∫

Ω

σ(u) : ε(v) dΩ (with σ : ε =

2
∑

i, j=1

σi jεi j), (31)

F
(

v
)

=

∫

∂Ωσ

p · v dS . (32)

The elastodynamic problem is weakly formulated over the

space-time domain using the two-field Time Discontinuous Galerkin

(TDG) method, as proposed in [26]. Thus, the space-time do-

main is decomposed into subintervals called space-time slabs

: Ω × I =
⋃Nslab

i=1
Ω × Ii with Ii =]t+

i−1
, t−

i
[ where t+

0
= 0 and

t−
Nslab
= T . Then, the weak formulation reads : find u ∈ U(ū)

and v ∈ V(v̄) such that

A
(

{u, v}, {u⋆, v⋆}
)

= b
(

{u⋆, v⋆}
)

(33)

∀u⋆ ∈ U(0),∀v⋆ ∈ V(0),

where the space-time bilinear form A is given by

A
(

{u, v}, {u⋆, v⋆}
)

=

Nslab
∑

i=1

∫

Ii

M
(

ρ v̇ , v⋆
)

+ K
(

u , v⋆
)

dt

+

Nslab
∑

i=1

∫

Ii

K
(

u̇ − v , u⋆
)

dt

+

Nslab
∑

i=2

M
(

ρ v(x, t+i−1) − ρ v(x, t−i−1) , v⋆(x, t+i−1)
)

+

Nslab
∑

i=2

K
(

u(x, t+i−1) − u(x, t−i−1) , u⋆(x, t+i−1)
)

+M
(

ρ v(x, t+0 ) , v⋆(x, t+0 )
)

+ K
(

u(x, t+0 ) , u⋆(x, t+0 )
)

, (34)

and the linear operator b is given by

b
(

{u⋆, v⋆}
)

=

Nslab
∑

i=1

∫

Ii

F
(

v⋆
)

dt +M
(

ρ v
0
, v⋆(x, t+0 )

)

+ K
(

u0 , u⋆(x, t+0 )
)

.

(35)

5.2. 2D-Space × 1D-Time decomposition

We give here an illustration of separated representation of

bilinear and linear forms involved in (34) using a 2D-space

× 1D-time decomposition. In this case, there is no restriction

on the geometry of the spatial domain, nor on the supports of

Dirichlet boundary conditions.

All components of the displacement and velocity fields are

considered as independent fields, that is

u(x, t) =

2
∑

i=1

ui(x, t)e
i

and v(x, t) =

2
∑

i=1

vi(x, t)e
i
. (36)

To simplify, we discretize each component of the displacement

and velocity fields with the same approximation space. That is

for i = 1 or 2,

ui(x, t) = Φ(x) ⊗Ψ(t) D. ui + ūi(x, t) , (37)

vi(x, t) = Φ(x) ⊗Ψ(t) D. vi + v̄i(x, t) , (38)

where Φ(x) are continuous finite elements basis functions de-

fined on Ω (and vanishing on ∂Ωu) and Ψ(t) are piecewise con-

tinuous finite elements basis functions defined on I. Virtual

fields are discretized similarly for i = 1 or 2,

u⋆i (x, t) = Φ(x) ⊗ Ψ(t) D. u⋆i , (39)

v⋆i (x, t) = Φ(x) ⊗ Ψ(t) D. v⋆i . (40)

Then, introducing approximations (37) to (40) in the weak form

(34), we obtain the discrete problem in tensor format : find

u1 ∈ R
N(S ) ⊗RN(T ), u2 ∈ R

N(S ) ⊗RN(T ), v1 ∈ R
N(S ) ⊗RN(T ) and

v2 ∈ R
N(S ) ⊗ RN(T ) such that





































K
11
⊗ A K

12
⊗ A −K

11
⊗ B −K

12
⊗ B

K′
12
⊗ A K

22
⊗ A −K′

12
⊗ B −K

22
⊗ B

K
11
⊗ B K

12
⊗ B M

11
⊗ A 0

K′
12
⊗ B K

22
⊗ B 0 M

22
⊗ A





































D. .





























u1

u2

v1

v2





























= RHS ,

(41)

where operators defined on the spatial domain are classical stiff-

ness and mass matrices given by

K
11
=

∫

Ω

e

(

(λ + 2µ)
dΦ1(x)

dx1

⊗
dΦ1(x)

dx1

+ µ
dΦ1(x)

dx2

⊗
dΦ1(x)

dx2

)

dx1dx2 ,

K
22
=

∫

Ω

e

(

(λ + 2µ)
dΦ2(x)

dx2

⊗
dΦ2(x)

dx2

+ µ
dΦ2(x)

dx1

⊗
dΦ2(x)

dx1

)

dx1dx2 ,

K
12
=

∫

Ω

e

(

λ
dΦ

1
(x)

dx1

⊗
dΦ

2
(x)

dx2

+ µ
dΦ

1
(x)

dx2

⊗
dΦ

2
(x)

dx1

)

dx1dx2 ,

M
ii
=

∫

Ω

eρΦ
i
(x) ⊗ Φ

i
(x) dx1dx2 (i = 1, 2) ,

and operators in time are given by

A =

Nslab
∑

i=1

∫

Ii

Ψ(t) ⊗
dΨ(t)

dt
dt + Ψ(t+0 ) ⊗Ψ(t+0 ) ,

+

Nslab
∑

i=2

(

Ψ(t+i−1) ⊗ Ψ(t+i−1) −Ψ(t+i−1) ⊗Ψ(t−i−1)
)

,

B =

Nslab
∑

i=1

∫

Ii

Ψ(t) ⊗Ψ(t) dt .

See Appendix A for details on the definition of the right hand

side RHS .
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Figure 2: Test case description.

6. Numerical results

In this section, we investigate ability of space-time sepa-

rated representation to approximate the transient solution of an

elastodynamic problem, with decompositions of low rank. We

consider transient responses due to impact loads whose duration

varies from 0.01 to 1 ms. Comparisons between a posteriori

and a priori low-rank approximations are made, and conver-

gence of the new (IMR)PGD algorithm is analyzed.

6.1. Test-case description

The test-case describes the propagation of elastic waves in

a rectangular medium submitted to impact loads.

6.1.1. Geometry, material and boundary conditions

Spatial domain is fixed toΩ1×Ω2 = [0, 1]m × [0, 0.5]m and

thickness is e = 0.1m. Lamé’s constants λ and µ are given in

function of Young modulus E and Poisson’s coefficient ν with

E = 2 × 1011N/m2 and ν = 0.3. Density is taken as ρ = 8000

kg/m3. Simulations are performed until T = 10−3s. Also, null

displacement and velocity are imposed on the right side of the

medium and zero initial conditions are taken (see Figure 2). An

impact load is applied on the middle left side of the medium.

Its expression is given by

p(x1, x2, t) =















108
(

1 + sin( 2π
∆Tload

t − π
2
)
)

e
1

N/m2 ∀t < ∆Tload

0 ∀t ≥ ∆Tload

∀(x1, x2) ∈ {0} × [0.125, 0.375] .

We vary the time ∆Tload of application of the load from 0.01

to 1 ms (we choose ∆Tload = 0.01 − 0.05 − 0.2 − 1 ms).

6.1.2. Approximation spaces

Displacement and velocity fields are approximated with lin-

ear finite elements (continuous in space and piecewise continu-

ous in time). This introduces a first source of error compared to

the exact solution. Here, we do not consider this error and fix

it to the same value for all test cases. The discretization error

associated with the solutions {u} = (u1, u2)′ and {v} = (v1, v2)′

on a given mesh is calculated thanks to the following error in-

dicator :

errDIS C({u}) =

∥

∥

∥ {ue} − {u}
∥

∥

∥

2
∥

∥

∥ {ue}
∥

∥

∥

2

, (42)

where {ue} = (u1e, u2e)′ contains the values of the exact solution

calculated on a finer mesh. We choose discretization parame-

ters such that the discretization error related to the displacement

field is less than 4% for all test cases (see Table 1). Notice that

fixing the discretization error related to the displacement field

to a certain value does not necessary ensure that the discretiza-

tion error related to the velocity field is also smaller than this

value. One should use different approximation spaces for both

fields in order to be able to choose a particular error level for

each field. This may be possible within the present strategy but

we do not consider it here.

6.1.3. Space-time solutions

First, we compute space-time solutions with an incremen-

tal procedure in time. The solution obtained for the test case

∆Tload = 0.01 ms is displayed at given time instants on Figure

3. It shows propagation of elastic waves in the medium due to

the impact load. Displacement and velocity solutions are shown

in space-time domain on Figure 4 for all test cases. One can no-

tice that the transient solution is more and more localized over

the space-time domain as the duration of the impact decreases.

6.2. A posteriori low-rank approximation

Since space-time solutions {u} and {v} have been calculated

in a previous step, we can compute optimal low-rank approxi-

mations of these solutions a posteriori. These low-rank approx-

imations are the POD of the full space-time solutions. They are

calculated thanks to classical Singular Value Decomposition al-

gorithm (SVD).

6.2.1. Errors due to low-rank approximation

Low-rank approximations of the displacement and velocity

fields are calculated following definition (23). Then, we eval-

uate the decomposition error due to the rank-M approximation

{u}M (resp. {v}M) of the space space-time solution {u} (resp.

{v}) with the following indicator :

err({u}M) =

∥

∥

∥ {u} − {u}M
∥

∥

∥

2
∥

∥

∥ {u}
∥

∥

∥

2

. (43)

Decomposition errors obtained for all test cases are depicted in

Figure 5 in function of the decomposition rank M. One can no-

tice that higher decomposition ranks are needed in order to get

a given decomposition error, when the duration of the impact

decreases.

Remark 8. The length of the time interval (denoted T), and

consequently the number of waves reflections on boundary, has

not a strong influence on the approximability using low rank

approximations (detailed results can be found in [11]). This

means that low rank approximations will provide a better mem-

ory gain if we increase the length of the time interval.

6.2.2. Optimal memory gain

Memory gain related to storage requirements of a full space-

time solution compared to its low-rank approximation, strongly

depends on the size of the approximation space and the rank.
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∆Tload ∆t N(S ) × N(T ) errDIS C({u}) errDIS C({v})

(ms) (ms) (%) (%)

1 0.025 40 × 80 < 2 < 2

0.2 0.00625 544 × 320 < 2 < 5

0.05 0.0015625 8320 × 1280 < 2 < 9

0.01 0.000625 51520 × 3200 < 4 < 25

Table 1: Discretization parameters and associated discretization errors for all test cases. Parameters in space are fixed such that ∆x1 = ∆x2 = cL∆t where

cL =
√

E/ρ = 5000 m/s is the velocity of longitudinal waves.

t=0.04 ms t=0.2 ms

t=1 ms

Figure 3: Amplitude of the displacement field at given time instants for the test case ∆Tload = 0.01 ms.
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1 ms

0.2 ms

0.05 ms

0.01 ms

Figure 4: Space-time solutions for all test cases. Amplitude of displacement and velocity fields are shown.

Decomposition rank M Decomposition rank M 

Figure 5: Decomposition error associated with the optimal low-rank approximation calculated a posteriori (POD) in function of the decomposition rank M. Errors

obtained for all test cases and both displacement and velocity fields are shown for different ∆Tload . Discretization parameters are given in Table 1.
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We numerically found that the error between the discrete space-

time solution and its best approximation of rank M does not

depend on the size of the mesh, provided that the mesh is fine

enough [11]. For a given rank M, it is not necessary to choose

a too large approximation space. Doing so will not decrease

the error between the exact (continuous) solution and its (dis-

crete) rank-M approximation. Therefore, we introduce in this

section an ”optimal memory gain” that takes into account both

discretization and decomposition errors.

We propose to evaluate the memory gain related to the stor-

age requirements of a full space-time solution on a given mesh

and its low-rank approximation of same accuracy. To this end,

we are looking for the minimal decomposition rank M for which

decomposition error is smaller than discretization error (given

in Table 1). Then, we calculate the memory gain as the ratio

between the memory required to store the full solution and the

memory required to store its low-rank approximation of same

accuracy. That is, the optimal memory gain is defined as :

memory gain =
N(S ) × N(T )

M ×
(

N(S ) + N(T )
) (44)

where M is the minimal integer such that err({u}M) ≤ errDIS C({u}).

Memory gains obtained with the displacement field for all

test cases are summarized in Table 2. It shows that even if a

higher rank is needed (for decomposition error to be lower than

discretization error), memory gain gets better when duration

of impact decreases. This is due to the finer space-time mesh

needed at fixed discretization error in case of smaller duration

of impact load.

∆Tload M mem. gain

1 2 13

0.2 6 34

0.05 32 35

0.01 81 37

Table 2: Optimal memory gain factor associated with the space-time separated

representation of the displacement field. The rank M is the minimal integer

such that decomposition error err({u}M) is smaller than discretization error

errDISC ({u}).

Thus, for cases we treated, a posteriori space-time low-rank

representation allows decreasing memory required to store so-

lutions of transient elastodynamic models from more than one

order of magnitude4. Question is now : can we calculate good

approximations of these optimal decompositions without calcu-

lating and storing the full space-time solution in a preliminary

step ?

6.3. A priori low-rank approximations

We now construct low-rank approximations of the displace-

ment and velocity fields a priori, that is without knowing {u}

4Better gains (more than two orders of magnitude) were obtained by sepa-

rating spatial variables in addition to the time variable but these results are not

presented in the present paper where we only consider low-rank approximations

of second-order tensors.

and {v}. We compare accuracy of classical and ideal minimal

residual-based PGDs with the optimal low-rank approximation

computed a posteriori (that is the POD). The classical PGD

is computed with a direct algorithm which is an extension to

multi-field models of the algorithm called “Subspace iterations

algorithm” in [36]. It is denoted by (R)PGD-S and allows finding

the global minimizer defined in problem (26). For the compu-

tation of the ideal approach, pseudo-code is given in Algorithm

1. Convergence of this algorithm is studied in details in section

6.4 and we denote it by (IMR)PGD. It gives an approximation

of the decomposition defined in problem (27) whose accuracy

depends on the rank R of the approximation of the auxiliary

problem’s solution.

6.3.1. Influence of discretization parameters

First, we compare the accuracy of the obtained low-rank ap-

proximations at a fixed rank M = 10 for the test case ∆Tload =

0.2 ms. In order to exhibit the influence of the space-time

problem condition number (see section 2.3) on the decompo-

sition accuracy, calculations are made for different discretiza-

tion parameters. Results are summarized in Table 3. One can

notice that (R)PGD-S algorithm converges to a poorly accurate

low-rank approximation compared to the optimal decomposi-

tion given by the POD. Moreover, the accuracy of the decom-

position calculated with (R)PGD-S algorithm deteriorates as the

size of the discretization space increases. On the contrary, the

(IMR)PGD algorithm allows to find the optimal low-rank ap-

proximation with a very good accuracy. And accuracy of the

low-rank approximation obtained with (IMR)PGD is very less

affected by the size of the discretization space. Indeed, as ex-

plained in [8], the choice made for the ideal norm (used to mini-

mize the residual) implies that the space-time problem is ideally

conditioned.

6.3.2. Influence of impact loads duration

Then, we compare the accuracy of the low-rank approxi-

mations given by (IMR)PGD algorithm in function of the aux-

iliary rank R as the duration of the impact load decreases (we

use ∆Tload = 0.05 − 0.2 − 1 ms and discretization parameters

given in Table 1). The decomposition is calculated with the

(IMR)PGD algorithm for different values of decomposition rank

M (we take M = 1, 2, 4, 8, 16, 32, 64) and different values of

auxiliary rank R (we take R = 1, 2, 4, 8, 16). As can be noticed

on Figure 6, (IMR)PGD algorithm allows finding a very good

approximation of the optimal decomposition (given by POD)

with a very small number of auxiliary modes, even for high

decomposition rank M and small duration of impact (see the

points for M = 64 and ∆Tload = 0.05 ms). This means that

the auxiliary problem’s solution can be well approximated with

a very low-rank approximation, even for small duration of the

impact load. However, as it will be illustrated in the next sec-

tion, the convergence of (IMR)PGD algorithm strongly depends

on the auxiliary rank R and more iterations are needed for the

algorithm to converge when it is used with small values of R.

Remark 9. We also compared accuracy of classical Reduced

Order Models - ROMs, namely truncated modal basis and POD-

Snapshot approaches, with the best rank-M approximation of
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Decomposition rank M Decomposition rank M 

POD a-posteriori

(IMR)PGD

R=1

R=2

R=4

Figure 6: Influence of auxiliary rank R on the accuracy of the decompositions obtained a priori with (IMR)PGD in function of the decomposition rank M, compared

to decomposition errors obtained a posteriori with POD.
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err({u}10)

N(S ) × N(T ) POD (R)PGD-S (IMR)PGD

R=5 R=10 R=20 R=40

144 × 160 2.5e-03 3.5e-02 3.4e-03 2.9e-03 2.6e-03 2.5e-03

544 × 320 3.5e-03 3.9e-02 4.8e-03 3.9e-03 3.6e-03 3.5e-03

2112 × 640 3.6e-03 9.8e-02 4.4e-03 4.0e-03 3.8e-03 3.7e-03

8320 × 1280 3.6e-03 1.0e+00 4.4e-03 4.0e-03 3.7e-03 3.6e-03

err({v}10)

N(S ) × N(T ) POD (R)PGD-S (IMR)PGD

R=5 R=10 R=20 R=40

144 × 160 1.4e-02 1.3e-01 1.8e-02 1.6e-02 1.5e-02 1.4e-02

544 × 320 2.0e-02 1.4e-01 2.7e-02 2.4e-02 2.1e-02 2.1e-02

2112 × 640 2.2e-02 3.1e-01 3.0e-02 2.6e-02 2.3e-02 2.2e-02

8320 × 1280 2.1e-02 9.7e-01 4.5e-02 3.2e-02 2.4e-02 2.2e-02

Table 3: Comparison of decomposition errors obtained a posteriori (with POD) and a priori (with (R)PGD-S and (IMR)PGD for different auxiliary ranks R) in

function of discretization parameters. Errors are calculated for a fixed decomposition rank M = 10 and the test case ∆Tload = 0.2 ms.

the full space-time solution, in case of transient dynamic prob-

lems. Detailed results can be found in [11]. We numerically

showed that approximations obtained with classical ROMs are

less accurate than the best rank-M approximation defined in the

present paper. For transient dynamic cases we treated, these

approaches require to calculate and store almost all structural

modes (for the truncated modal basis approach) or snapshots at

nearly all time steps of the reference temporal mesh (for POD-

Snapshot approach) in order to get accurate approximations.

On the other hand, as shown in section 6.3.1, classical PGD al-

gorithms also fail to give an accurate rank-M approximation of

transient dynamic solutions since space-time operators of such

problems are ill-conditioned. For a given decomposition error,

classical minimal residual PGD requires to compute far more

space-time modes than necessary compared to the best rank-M

approximation. Then, the main interest of the (IMR)PGD algo-

rithm is to allow a priori calculation of a good approximation

of the best rank-M approximation without having to calculate

and store much more space-time modes than necessary.

6.4. Convergence of (IMR)PGD algorithm

In this section, we numerically study the convergence of

(IMR)PGD algorithm. We first describe the algorithm and its

parameters. Then, their influence on the convergence of the

algorithm is analyzed. A stopping criterion is finally proposed

and analyzed. Notice that, here, {u}M is used to denote the rank-

M approximation of a tuple whose components are the rank-

M approximations of the components of the displacement and

velocity fields, that is {u}M = (u1M, u2M , v1M, v2M)′.

6.4.1. Algorithm parameters

Pseudo-code for (IMR)PGD is given in Algorithm 1. The

algorithm depends on the following steps :

• Step (4) is used to give a rank-R approximation of the

auxiliary problem’s solution. It is computed with the

multi-field version of the progressive Galerkin-based PGD

algorithm described in [10].

• Step (5) gives an optimal rank-M approximation of a ten-

sor given in low-rank format (that is the tensor {u}M +

[A]′ D. . {y}R). Since this tensor is already given in low-

rank format, computational cost of this step is negligible

compared to the cost of the auxiliary step (4).

These two steps are related to minimization problems. Al-

gorithms used to solve these problems are stopped once a crite-

rion based on stagnation of the minimized functional is reached.

The value of the stopping criterion has not a decisive influence

on the accuracy of the decomposition {u}M obtained at the end

of Algorithm 1. A small number of iterations (typically less

than ten) can be used for the progressive computation of each

mode, see Appendix B for more details. In the following, we

fixed the value of these stopping criterions so that the numerical

error associated with the construction of the low-rank approx-

imations at step (4) and (5) of Algorithm 1 do not influence

accuracy of {u}M .

Algorithm 1 {u}M = (IMR)PGD([A], {b},M,R) – Direct con-

struction
1: {u}M = 0

2: for k = 1 to kmax do

3: {r} = {b} − [A] D. . {u}M
4: {y}R = (G)PGD-MF

(

[A] D. . [A]′, {r}, R
)

5: {u}M = SVD
(

{u}M + [A]′ D. . {y}R, M
)

6: Check convergence of {u}M
7: end for

Key parameters of Algorithm 1 as regards the convergence

of the algorithm are the auxiliary rank R and the decomposi-

tion rank M. To study the influence of these parameters on

the convergence of the algorithm, we compute the multi-field

error given by
∥

∥

∥ {u} − {u}
(k)

M

∥

∥

∥

2
at all iterations k. We recall

that this is the error we try to minimize for a given rank M.

Also, we compare this error with the value of
∥

∥

∥ {y}
(k)

R

∥

∥

∥

[A] D. . [A]′

obtained at all iterations k. As explained in subsection 3.4,
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the value of
∥

∥

∥ {y}
(k)

R

∥

∥

∥

[A] D. . [A]′
gives a good estimate of the error

∥

∥

∥ {u} − {u}
(k)

M

∥

∥

∥

2
, provided the auxiliary rank R is high enough.

For all calculations we made (see Figures 7 to 9), we observe

the same behavior of the algorithm: in a first stage, the error

decreases in a linear way as iterations increase, and then it stag-

nates around a particular value.

6.4.2. Influence of decomposition rank M

As can be noticed on Figure 7, the order of convergence of

the error does not depend on the decomposition rank M. Only

the value to which the error stagnates depends on M. This can

be easily understood by the fact that the error
∥

∥

∥ {u} − {u}M
∥

∥

∥

2
is

smaller for higher values of decomposition rank M. Then, the

number of iterations needed to reach stagnation of the error is

higher when computing decomposition of higher rank M.

6.4.3. Influence of auxiliary rank R

On the contrary, the order of convergence of the error de-

pends strongly on the auxiliary rank R. As can be observed on

Figure 8, higher the auxiliary rank R is, the faster the algorithm

converges. Indeed, using a higher number of auxiliary modes

yields a more accurate approximation of the auxiliary solution,

and then to a smaller number of algorithm iterations. Also, we

notice that the error reaches its stagnation value in very few

iterations provided the auxiliary rank R is high enough. As an

example, less than twenty iterations are necessary to reach stag-

nation of the error for the test case 1/∆Tload = 20 kHz using

R = 16 auxiliary modes for computing the decomposition of

rank M = 64.

6.4.4. Influence of discretization parameters

The convergence of the algorithm does not depend much on

the discretization parameters. The same order of convergence

and the same number of iterations necessary to reach stagnation

of the error are observed whatever the discretization parameters

are (see the convergence curves depicted in Figure 9).

6.4.5. Stopping criterion

As can be noticed on Figures 7 to 9, the value of
∥

∥

∥ {y}
(k)

R

∥

∥

∥

[A] D. . [A]′

reflects the behavior of the true error
∥

∥

∥ {u} − {u}
(k)

M

∥

∥

∥

2
as k in-

creases, provided the auxiliary rank R is high enough. Then,

to stop algorithm iterations, we use a heuristic criterion that

allows determining a number of iterations after which we can

consider there is stagnation of
∥

∥

∥ {y}
(k)

R

∥

∥

∥

[A] D. . [A]′
. However, we

may fail to detect stagnation of the error if a too small auxil-

iary rank R is used. Indeed, high oscillations of
∥

∥

∥ {y}
(k)

R

∥

∥

∥

[A] D. . [A]′

around its stagnation value are observed if the auxiliary rank R

is too small. These oscillations may be attenuated by choosing

adaptively the auxiliary rank R during iterations, as done in [8].

Remark 10. Our PGD computational technique is still at a

early stage of development and our implementation should be

optimized. Therefore, we did not compared calculation times

of our PGD algorithm with calculation times of the incremen-

tal solver. Nevertheless, we can compare complexity of both

approaches. To this end, we denote lin(n) the complexity5 as-

sociated with solution of a square linear system of size n. To

simplify, consider a single field problem discretized with nS de-

grees of freedom and nT time steps. Then, the order of mag-

nitude of the complexity associated with an incremental solu-

tion is nT × lin(nS ) (if we use an implicit time scheme as is

the case in the present paper). The most expensive step of the

(IMR)PGD algorithm is the computation of the rank-R approxi-

mation of the auxiliary problem’s solution (using a progressive

Galerkin PGD algorithm). This cost is due to kaux
max solutions

of two linear systems (one in space and an other in time). Ne-

glecting the cost of these linear systems assembly, the complex-

ity of one auxiliary step is thus of the order of magnitude of

R × kaux
max × (lin(nS ) + lin(nT )). This auxiliary step being com-

puted kmax times, we obtain kmax ×R× kaux
max × (lin(nS )+ lin(nT ))

for the order of magnitude of the complexity of the (IMR)PGD

algorithm. More details can be found in [11]. Assume now that

nS = nT = n, we see that the (IMR)PGD algorithm will be faster

than the incremental solver only if kmax × R × kaux
max << n/2.

This condition is not satisfied for all numerical experiments we

did and the complexity of the (IMR)PGD algorithm is only of

the order of magnitude of (or bigger than) the complexity of

the incremental solver. In fact, the potential of the (IMR)PGD

algorithm, in terms of computational time reduction, will be

revealed if we increase the problem dimensionality (by split-

ting spatial variables in addition to the time variable [9] or in

uncertainty quantification context [35]) or if multiple transient

dynamic simulations have to be performed (as is the case for

non-linear problems [30] or in optimization context [31]).

7. Conclusions and Perspectives

In this paper, we have illustrated the ability of space-time

separated representations to approximate the solution of elasto-

dynamic models with two dimensions in space. We show that

transient responses due to impact loads can be well approxi-

mated with decompositions of low rank.

The optimal low-rank approximation has first been defined

a posteriori with respect to a target norm. Using a classical

canonical norm, this optimal decomposition is simply the POD

of the full space-time solution. The aim of this paper was to

compute this optimal approximation a priori that is without

knowing the full space-time solution. To this end, we have ex-

tended to multi-field models an algorithm (called “Ideal Min-

imal Residual PGD”) introduced in [8] that allows finding a

priori a very good approximation of the best low-rank approxi-

mation with respect to the target norm.

The accuracy of the obtained decomposition depends on

the low-rank approximation of an auxiliary problem’s solution.

Numerical results have demonstrated the convergence of the al-

gorithm even for very small values of the auxiliary rank, show-

ing that the auxiliary problem’s solution can be well approxi-

5Notice that PGD algorithms preserve properties of spatial and temporal

operators such as sparsity. Therefore, we can use the same linear solver com-

plexity (denoted by lin(n)) to compare both approaches.

14



Iteration number k Iteration number k Iteration number k 

R=2

R=4

R=8

R=16

R=2

R=4

R=8

R=16

R=2

R=4

R=8

R=16

M=4

M=8

M=16

M=32

M=8

M=16

M=32

M=64

M=8

M=16

M=32

M=64

and
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Figure 7: Influence of decomposition rank M on the convergence of the multi-field (IMR)PGD algorithm.
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and
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Figure 8: Influence of auxiliary rank R on the convergence of the multi-field (IMR)PGD algorithm.
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Iteration number k 

R=5 R=10 R=20

144 x 160

544 x 320

2112 x 640

8320 x 1280

N(S) x N(T) 

and
(bold lines) (thin lines)

Figure 9: Influence of discretization parameters on the convergence of the multi-field (IMR)PGD algorithm. Errors are calculated for a fixed decomposition rank

M = 10 and the test case ∆Tload = 0.2 ms.

mated with a very small number of modes. However, conver-

gence of the algorithm strongly depends on this auxiliary rank

and more auxiliary modes should be used to decrease the num-

ber of iterations necessary for the algorithm to converge. Also,

the computed approximation of the auxiliary solution can be

used to provide an accurate lower bound of the low-rank ap-

proximation error with respect to the target norm, assuming the

auxiliary rank is high enough.

Current developments focus on finding an efficient proce-

dure to choose the auxiliary rank adaptively during the iterative

process, so that strict lower and upper bounds of the decomposi-

tion error can be calculated. Also, acceleration strategies based

on multi-grid methods and exploiting convergence property of

the algorithm are under investigations [38, 13].
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Appendix A. Right hand side derivation

In this section, details about the definition of the right hand

side of equation (41) are given. This right hand side is related

to Dirichlet conditions ū and v̄, to Neumann condition p and to

initial conditions u
0

and v
0
. It can be written in general form as

RHS =





























b
u0

1

b
u0

2

b
v0

1
+ b

p

1
− bū

1
− bv̄

1

b
v0

2
+ b

p

2
− bū

2
− bv̄

2





























. (A.1)

In order to identify each contribution to the right hand side, all

boundary conditions must be given in a low-rank format. If this

is not the case, truncated SVD could be first applied to the data.

Each component bi(x, t) of a given boundary field b(x, t)

(except initial conditions) are written under the following form

: for i = 1 or 2,

bi(x, t) =

Mb(i)
∑

m=1

bS
im(x) bT

im(t) with x ∈ ∂Ωu or ∂Ωσ, t ∈ I .

Then, the boundary fields are discretized as follows :

bi(x, t) =
(

Φ̃(x) ⊗Ψ(t)
)

D. bi with bi =

Mb(i)
∑

m=1

bS
im
⊗ bT

im
,

and introduced in the weak formulation (34). This allows iden-

tifying all contributions bσ̄
1

, bσ̄
2

, bū
1
, bū

2
, bv̄

1
, bv̄

2
due to external

loads, imposed displacement and velocity. In order to identify

contributions due to initial displacement and velocity b
u0

1
, b

u0

2
,

b
v0

1
, b

v0

2
, the following approximation of initial fields must be

introduced in the weak formulation (34) :

∀i = 1 . . .2, bi0(x) = Φ(x) . b
i0 with x ∈ Ω

Appendix B. Stopping criterion of the auxiliary PGD

In this section, details about the stopping criterion used to

stop the algorithm that computes the auxiliary low-rank approx-

imation at step (4) of Algorithm 1 are given. This step is com-

puted with the algorithm {y}R = (G)PGD-MF
(

[A] D. . [A]′, {r},R
)

that gives a rank-R approximation of the solution of the linear

system with operator [A] D. . [A]′ and right hand side {r}. This

algorithm is related to the minimization of the following func-

tional (see [10]):

Jaux :















SF → R

{y} 7→ 1
2
{y} D. . [A] D. . [A]′ D. . {y} − {y} D. . {r}

(B.1)

The decomposition is constructed in a progressive way (see

Remark 2). For a given decomposition {y}R−1 of rank R − 1,

the new rank-one enrichment {w} ∈ SF
1

is calculated such that

J({y}R−1 + {w}) is minimum and {y}R = {y}R−1 + {w}. This min-

imization problem is solved with an alternating minimization
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algorithm and a criterion based on stagnation of the functional

Jaux is used. At a given iteration (k), we calculate the following

criterion :

εaux(k) =
|Jaux({y}R−1 + {w}

(k)) − Jaux({y}R−1 + {w}
(k−1))|

Jaux({y}R−1 + {w}(k))

(B.2)

and we stop the iterative process once εaux(k) < εmax
aux .

Influence of the stopping value εmax
aux on the accuracy of de-

composition {u}M obtained for M = 10 and R = 10 at the end

of Algorithm 1 is illustrated in Table B.4. It shows the decom-

position error err({u}10) in function of stopping values εmax
aux and

for different discretization parameters. Also, the mean number

of alternating minimization iterations k
moy
aux necessary to reach

the stopping criterion during the computation of each auxiliary

mode is shown in parentheses in Table B.4. As can be noticed,

only a small number of iterations (less than ten) for the com-

putation of each auxiliary mode is sufficient to get the full con-

verged decomposition {u}10 with a quite good approximation.
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err({u}10) and k
moy
aux in parentheses

N(S ) × N(T ) εmax
aux =1e-01 εmax

aux =1e-03 εmax
aux =1e-05 εmax

aux =1e-07

144 × 160 3.6e-03(7) 3.0e-03(24) 3.3e-03(44) 2.9e-03(58)

544 × 320 5.0e-03(7) 4.5e-03(25) 4.0e-03(42) 4.0e-03(58)

2112 × 640 4.8e-03(7) 4.3e-03(25) 4.0e-03(43) 4.0e-03(58)

8320 × 1280 1.3e-02(8) 4.1e-03(24) 4.0e-03(44) 4.0e-03(54)

Table B.4: Influence of stopping criterion εmax
aux used at step (4) of Algorithm 1 on the accuracy of the obtained decomposition {u}10 for different values of discretiza-

tion parameters. k
moy
aux is the mean number of alternating minimization iterations necessary to reach the stopping criterion during the computation of each auxiliary

mode. Other parameters are maximum number of iterates kmax = 10, auxiliary rank R = 10 and test case ∆Tload = 0.2 ms.
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