
HAL Id: hal-00952445
https://hal.science/hal-00952445v3

Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DC Proximal Newton for Non-Convex Optimization
Problems

Alain Rakotomamonjy, Remi Flamary, Gilles Gasso

To cite this version:
Alain Rakotomamonjy, Remi Flamary, Gilles Gasso. DC Proximal Newton for Non-Convex Opti-
mization Problems. IEEE Transactions on Neural Networks, 2016. �hal-00952445v3�

https://hal.science/hal-00952445v3
https://hal.archives-ouvertes.fr

1

DC Proximal Newton for Non-Convex Optimization

Problems
A. Rakotomamonjy, R. Flamary, G. Gasso

Abstract—We introduce a novel algorithm for solving learning
problems where both the loss function and the regularizer are
non-convex but belong to the class of difference of convex (DC)
functions. Our contribution is a new general purpose proximal
Newton algorithm that is able to deal with such a situation.
The algorithm consists in obtaining a descent direction from an
approximation of the loss function and then in performing a
line search to ensure sufficient descent. A theoretical analysis is
provided showing that the iterates of the proposed algorithm
admit as limit points stationary points of the DC objective
function. Numerical experiments show that our approach is more
efficient than current state of the art for a problem with a
convex loss function and a non-convex regularizer. We have
also illustrated the benefit of our algorithm in high-dimensional
transductive learning problem where both loss function and
regularizers are non-convex.

Index Terms—Difference of convex functions, non-convex reg-
ularization, proximal Newton, sparse logistic regression.

I. INTRODUCTION

In many real-world application domains such as computa-

tional biology, finance or text mining, datasets considered for

learning prediction models are routinely large-scale and high-

dimensional raising the issue of model complexity control.

One way for dealing with such kinds of dataset is to learn

sparse models. Hence, a very large amount of recent works

in machine learning, statistics and signal processing have

addressed optimization problems related to sparsity issues.

One of the most popular algorithm for achieving sparse

models is the Lasso algorithm [1] also known as the Basis

pursuit algorithm [2] in the signal processing community.

This algorithm actually applies ℓ1-norm regularization to the

learning model. The choice of the ℓ1 norm comes from its

appealing properties which are convexity, continuity and its

ability to produce sparse or even the sparsest model in some

cases owing to its non-differentiability at zero [3], [4]. Since

these seminal works, several efforts have been devoted to

the development of efficient algorithms for solving learning

problems that consider sparsity-inducing regularizers [5]–[8].

However, ℓ1 regularizer presents some drawbacks such as

its inability, in certain situations to retrieve the true relevant

variables of a model [9], [10]. Since the ℓ1-norm regularizer

This work has been partly supported by the French ANR (09-EMER-001,
12-BS02-004 and 12-BS03-003).

AR is with LITIS EA 4108, Université de Rouen, France. alain.rakoto@insa-
rouen.fr
RF is with Lagrange laroratory, Université de Nice Sophia-Antipolis, CNRS,
Observatoire de la Côte d’Azur, F-06304 Nice, France. remi.flamary@unice.fr
GG is with LITIS EA 4108, INSA de Rouen, France. gilles.gasso@insa-
rouen.fr

is a continuous and convex surrogate of the ℓ0 pseudo-

norm, other kinds of regularizer which abandon the convexity

property, have been analyzed by several authors and they have

been proved to achieve better statistical property. Common

non-convex and non-differentiable regularizers are the SCAD

regularizer [10], the ℓp regularizer [11], the capped-ℓ1 and the

log penalty [12]. These regularizers have been frequently used

for feature selections or for obtaining sparse models [12]–[14].

While being statistically appealing, the use of these non-

convex and non-smooth regularizers poses some challenging

optimization problems. In this work, we propose a novel

efficient non-convex proximal Newton algorithm. Indeed, one

of the most frequently used algorithms for solving ℓ1-norm

regularized problem is the proximal gradient algorithm [15].

Recently, proximal Newton-type methods have been intro-

duced for solving composite optimization problems involving

the sum of a smooth and convex twice differentiable function

and a non-smooth convex function (typically the regularizer)

[16], [17]. These proximal Newton algorithms have been

shown to be substantially faster than their proximal gradient

counterpart. Our objective is thus to go beyond the state-of-

the-art by proposing an efficient proximal Newton algorithm

that is able to handle machine learning problems where the loss

function is smooth and possibly non-convex and the regularizer

is non-smooth and non-convex.

Based on this, we propose an effficient general proximal

Newton method for optimizing a composite objective function

f(x) + h(x) where both functions f and h can be non-

convex and belong to a large class of functions that can

be decomposed as the difference of two convex functions

(DC functions) [18]–[20]. In addition, we also allow h(x)
to be non-smooth, which is necessary for sparsity promoting

regularization. The proposed algorithm has a wide range of

applicability that goes far beyond the handling of non-convex

regularizers. Indeed, our global framework can genuinely

deal with non-convex loss functions that usually appear in

learning problems. To make concrete the DC Newton proximal

approach, we illustrate the relevance and the effectiveness

of the novel algorithm by considering a problem of sparse

transductive logistic regression in which the regularizer as

well as the loss related to the unlabeled examples are non-

convex. As far as our knowledge goes, this is the first work

that introduces such a model and proposes an algorithm for

solving the related optimization problem. In addition to this

specific problem, many non-convex optimization problems

involving non-convex loss functions and non-convex and non-

differentiable regularizers arise in machine learning e.g dictio-

nary learning [21], [22] or matrix factorization [23] problems.

2

In addition, several works have recently shown that non-

convex loss functions such as the Ramp loss which is a DC

function, lead to classifiers more robust to outliers [24], [25].

We thus believe that the proposed framework is of general

interest in machine learning optimization problems involving

this kind of losses and regularizers.

The algorithm we propose consists in two steps: first it seeks

a search direction and then it looks for a step-size in that

direction that minimizes the objective value. The originality

and main novelty we brought in this work is that the search

direction is obtained by solving a subproblem which involves

both an approximation of the smooth loss function and the

DC regularizer. Note that while our algorithm for non-convex

objective function is rather similar to the convex proximal

Newton method, non-convexity and non-differentiability raise

some technical issues when analysing the properties of the

algorithm. Nonetheless, we prove several properties related

to the search direction and provide convergence analysis of

the algorithm to a stationary point of the related optimization

problem. These properties are obtained as non-trivial extension

of the convex proximal Newton case. Experimental studies

show the benefit of the algorithm in terms of running time

while preserving or improving generalization performance

compared to existing non-convex approaches.

The paper is organized as follows. Section II introduces

the general optimization problem we want to address as well

as the proposed DC proximal Newton optimization scheme.

Details on the implementation and discussion concerning

related works are also provided. In Section III, an analysis of

the properties of the algorithm is given. Numerical experiments

on simulated and real-world data comparing our approach to

the existing methods are depicted in Section IV, while Section

V concludes the paper.

II. DC PROXIMAL NEWTON ALGORITHM

We are interested in solving the following optimization

problem

min
x∈Rd

F (x) := f(x) + h(x) (1)

with the following assumptions concerning the functions f and

h. f is supposed to be twice differentiable, lower bounded on

R
d and we suppose that there exists two convex functions f1

and f2 such that f can be written as a difference of convex

(DC) functions f(x) = f1(x) − f2(x). We also assume that

f1 verifies the L-Lipschitz gradient property

‖∇f1(x)−∇f1(y)‖ ≤ L‖x− y‖ ∀x,y ∈ domf1.

The DC assumption on f is not very restrictive since any

differentiable function f(·) with a bounded Hessian matrix

can be expressed as a difference of convex function [26].

The function h is supposed to be a lower-bounded, proper,

lower semi-continuous and its restriction to its domain is

continuous. We suppose that h that can also be expressed as

h(x) = h1(x) − h2(x) (2)

where h1 and h2 are both convex functions. As discussed in

the introduction, we focus our interest in situations where h

is non-convex and non-differentiable. As such h1 and h2 are

also expected to be non-differentiable. A large class of non-

convex sparsity-inducing regularizers can be expressed as a

DC function as discussed in [14]. This includes the classical

SCAD regularizer, the ℓp regularizer, the capped-ℓ1 and the

log penalty as above-mentioned.

Note that those assumptions on f and h cover a broad class

of optimization problems. Proposed approach can be applied

for sparse linear model estimation as illustrated in in Section

IV. But more general learning problems such as those using

overlapping nonconvex ℓp − ℓ1 (with p < 1) group-lasso as

used in [27] can also be considered. Our framework also

encompasses those of structured sparse dictionary learning or

matrix factorization [22], [28], sparse and low-rank matrix

estimation [29], [30], or maximum likekihood estimation of

graphical models [31], when the ℓ1 sparsity-inducing regular-

izer is replaced for instance by a more aggressive regularizer

like the log penalty or the SCAD regularizer.

A. Optimization scheme

For solving Problem (1) which is a difference of convex

functions optimization problem, we propose a novel iterative

algorithm which first looks for a search direction ∆x and then

updates the current solution. Formally, the algorithm is based

on the iteration

xk+1 = xk + tk∆xk

where tk and ∆xk are respectively a step size and the search

direction. Similarly to the works of Lee et al. [16], the search

direction is computed by minimizing a local approximation

of the composite function F (x). However, we show that by

using a simple approximation on f1, f2 and h2, we are able to

handle the non-convexity of F (x), resulting in an algorithm

which is wrapped around a specific proximal Newton iteration.

For dealing with the non-convex situation, we define the

search direction as the solution of the following problem

∆xk = argmin
∆x

f̃(xk +∆x) + h̃(xk +∆x) (3)

where f̃ and h̃ are the following approximations of respec-

tively f and h at xk. We define f̃(x) as

f̃(x) = f1(xk) +∇f1(xk)
⊤(x− xk) (4)

+
1

2
(x− xk)

⊤Hk(x− xk)

− f2(xk)− z⊤f2 (x− xk)

where zf2 = ∇f2(xk) and Hk is any positive definite

approximation of the Hessian matrix of f1 at current iterate.

We also consider

h̃(x) = h1(x)− h2(xk)− z⊤h2
(x− xk) (5)

where zh2
∈ ∂h2(xk), with the latter being the sub-differential

of h2 at xk.

Note that the first three summands in Equation (4) form

a quadratic approximation of f1(x) whereas the terms in the

third line of Equation (4) is a linear approximation of f2(x).
In the same spirit, h̃ is actually a majorizing function of h

3

Algorithm 1 DC proximal Newton algorithm

1: Initialize x0 ∈ domF
2: k = 0
3: repeat

4: compute zh2
∈ ∂h2(xk) and zf2 = ∇f2(xk)

5: update Hk (exactly or using a quasi-Newton approach)

6: vk ← ∇f1(xk)− zf2 − zh2

7: ∆xk ← prox
Hk

h1
(xk −H−1

k vk)− xk

8: compute the stepsize tk through backtracking starting

from tk = 1
9: xk+1 = xk + tk∆xk

10: k ← k + 1
11: until convergence criterion is met

since we have linearized the convex function h2 and h is a

difference of convex functions.

We are now in position to provide the proximal expression

of the search direction. Indeed, Problem (3) can be rewritten

as

argmin
∆x

1

2
∆x⊤Hk∆x+ h1(xk +∆x) + vk

⊤∆x (6)

with vk = ∇f1(xk)−zf2−zh2
. After some algebras given in

the appendix and involving optimality conditions of a proximal

Newton operator, we can show that

∆xk = proxHk

h1
(xk −H−1

k vk)− xk (7)

with by definition [15], [16]

proxHh1
(x) = argmin

y

1

2
‖x− y‖2H + h1(y)

where ‖x‖2H = x⊤Hx is the quadratic norm with metric H.

Interestingly, we note that the non-convexity of the initial

problem is taken into account only through the proximal

Newton operator and its impact on the algorithm, compared to

the convex case, is minor since it only modifies the argument

of the operator through vk.

Once the search direction is computed, the step size tk is

backtracked starting from tk = 1. Algorithm 1 summarizes the

main steps of the optimization scheme. Some implementation

issues are discussed hereafter while the next section focuses

on the convergence analysis.

B. Implementation’s tricks of the trade

The main difficulty and computational burden of our DC

proximal Newton algorithm resides in the computation of the

search direction ∆xk. Indeed, the latter needs the computation

of the proximal operator proxHk

h1
(xk−H

−1
k vk) which is equal

to

argmin
y

1

2
y⊤Hky+y⊤(vk −Hkxk)

︸ ︷︷ ︸

g(y)

+h1(y) (8)

We can note that Equation 8 represents a quadratic problem

penalized by h1. If h1(y) is a term which proximal operator

can be cheaply computed then, one can consider proximal

Table I
SUMMARY OF RELATED APPROACHES ACCORDING TO HOW f(x) AND

h(x) ARE DECOMPOSED IN f1 − f2 AND h1 − h2 . cvx AND ncvx

RESPECTIVELY STANDS FOR convex AND non-convex. − DENOTES THAT

THE METHOD THAT DOES NOT HANDLE DC FUNCTIONS. THE metric

COLUMN DENOTES THE FORM OF THE METRIC USED IN THE QUADRATIC

APPROXIMATION.

f(x) h(x) metric

Approach f1 f2 h1 h2 H

proximal gradient [15] cvx - cvx - L
2
I

proximal Newton [16] cvx - cvx - Hk

GIST [34] ncvx - cvx cvx L
2
I

SQP [35] cvx cvx cvx cvx L
2
I

our approach cvx cvx cvx cvx Hk

gradient algorithm or any other efficient algorithms for its

resolution [6], [32].

In our case, we have considered a forward-backward (FB)

algorithm [15] initialized with the previous value of the opti-

mal y. Note that in order to have a convergence guarantee, the

FB algorithm needs a stepsize smaller than 2
L

where L is the

Lipschitz gradient of the quadratic function. Again computing

L can be expensive and in order to increase the computational

efficiency of the global algorithm, we have chosen a strategy

that roughly estimates L according to the equation

‖∇g(y)−∇g(y′)‖2
‖y− y′‖2

In practice, we have found this heuristic to be slightly more

efficient than an approach which computes the largest eigen-

value of Hk by means of a power method [33]. Note that a

L-BFGS approximation scheme has been used in the numerical

experiments for updating the matrix Hk and its inverse.

While the convergence analysis we provide in the next sec-

tion supposes that the proximal operator is computed exactly,

in practice it is more efficient to approximately solve the search

direction problem, at least for the early iterations. Following

this idea, we have considered an adaptive stopping criterion

for the proximal operator subproblem.

C. Related works

In the last few years, a large amount of works have been

devoted to the resolution of composite optimization problem

of the form given in Equation (1). We review the ones that are

most similar to ours and summarize the most important ones

in Table I.

Proximal Newton algorithms have recently been proposed

by [16] and [17] for solving Equation (1) when both functions

f(x) and h(x) are convex. While the algorithm we propose

is similar to the one of [16], our work is strictly more general

in the sense that we abandon the convexity hypothesis on

both functions. Indeed, our algorithm can handle both convex

and non-convex cases and boils down to the algorithm of

[16] in the convex case. Hence, the main contribution that

differentiates our work to the work of Lee et al. [16] relies on

the extension of the algorithm to the non-convex case and the

theoretical analysis of the resulting algorithm.

Following the interest on sparsity-inducing regularizers,

there has been a renewal of curiosity around non-convex

4

optimization problems [12], [13]. Indeed, most statistically

relevant sparsity-inducing regularizers are non-convex [36].

Hence, several researchers have proposed novel algorithms for

handling these isssues.

We point out that linearizing the concave part in a DC

program is a crucial idea of DC programming and DCA that

were introduced by Pham Dinh Tao in the early eighties and

have been extensively developed since then [18], [19], [37].

In this work, we have used this same idea in a proximal

Newton framework. However, our algorithm is fairly different

from the DCA [19] as we consider a single descent step

at each iteration, as opposed to the DCA which needs a

full optimization of a minimization problem at each iteration.

This DCA algorithm has as special case, the convex concave

procedure (CCCP) introduced by Yuille et al. [26] and used

for instance by Collobert et. al [38] in a machine learning

context.

This idea of linearizing the (possibly) non-convex part of

Problem (1) for obtaining a search direction can also be

found in Mine and Fukushima [39]. However, in their case,

the function to be linearized is supposed to be smooth. The

advantage of using a DC program, as in our case, is that

the linearization trick can also be extended to non-smooth

function.

The works that are mostly related to ours are those proposed

by [34] and [35]. Interestingly, Gong et al. [34] introduced

a generalized iterative shrinkage algorithm (GIST) that can

handle optimization problems with DC regularizers for which

proximal operators can be easily computed. Instead, Lu [35]

solves the same optimization problem in a different way.

As the non-convex regularizers are supposed to be DC, he

proposes to solve a sequence of convex programs which at

each iteration minimizes

f̃(x) + h1(x) − h2(xk)− z⊤h2
(x− xk)

with

f̃(x) = f1(xk) +∇f1(xk)
⊤(x− xk) +

L

2
‖x− xk‖

2

Note that our framework subsumes the one of Lu [35] (when

considering unconstrained optimization problem). Indeed, we

take into account a variable metric Hk into the proximal

term. Thus, the approach of Lu can be deemed a particular

case of our method where Hk = L I at all iterations of the

algorithm. Hence, when f(x) is convex, we expect more

efficiency compared to the algorithms of [34] and [35] owing

to the variable metric Hk that has been introduced.

Very recently, Chouzenoux et al. [40] introduced a proximal

Newton-like algorithm for minimizing the sum of a twice

differentiable function and a convex function. They essentially

consider that the regularization term is convex while the loss

function may be non-convex. Their work can thus be seen as

an extension of the one of [41] to the variable metric Hk case.

Compared to our work, [40] do not impose a DC condition

on the function f(x). However, at each iteration, they need a

quadratic surrogate function at a point xk that majorizes f(x).
In our case, only the non-convex part is majorized through a

simple linearization.

III. ANALYSIS

Our objective in this section is to show that our algorithm

is well-behaved and to prove at which extents the iterates

{xk} converge to a stationary point of Problem (1). We first

characterize stationary points of Problem 1 with respects to

∆x and then show that all limit points of the sequence {xk}
generated by our algorithm are stationary points.

Throughout this work, we use the following definition of a

stationary point.

Definition 1: A point x⋆ is said to be a stationary point of

Problem (1) if

0 ∈ ∇f1(x
⋆)−∇f2(x

⋆) + ∂h1(x
⋆)− ∂h2(x

⋆)

Note that being a stationary point, as defined above, is a

necessary condition for a point x⋆ to be a local minimizer

of Problem (1).

According to the above definition, we have the following

lemma :

Lemma 1: Suppose H⋆ ≻ 0, x⋆ is a stationary point of

Problem (1) if and only if ∆x⋆ = 0 with

∆x⋆ = argmin
d

(v⋆)⊤d+
1

2
d⊤H⋆d+ h1(x

⋆ + d) (9)

and v⋆ = ∇f1(x
⋆) − z⋆f2 − z⋆h2

, z⋆f2 = ∇f2(x
⋆) and z⋆h2

∈
∂h2(x

⋆).
Proof : Let us start by characterizing the solution ∆x⋆.

By definition, we have ∆x⋆ + x⋆ = proxH⋆

h1
(x⋆ − H−1

⋆ v⋆)
and thus according to the optimality condition of the proximal

operator, the following equation holds

H⋆(x
⋆ −H−1

⋆ v⋆ −∆x⋆ − x⋆) ∈ ∂h1(∆x⋆ + x⋆)

which after rearrangement is equivalent to

z⋆h2
−H⋆∆x⋆ ∈ ∇f(x⋆) + ∂h1(∆x⋆ + x⋆) (10)

with ∇f(x⋆) = ∇f1(x
⋆) − ∇f2(x

⋆). This also means that

there exists a z⋆h1∆
∈ ∂h1(∆x⋆ + x⋆) so that

z⋆h2
−H⋆∆x⋆ −∇f(x⋆)− z⋆h1∆ = 0 (11)

Remember that by hypothesis, since x⋆ is a stationary point

of Problem (1), we have

0 ∈ ∇f(x⋆) + ∂h1(x
⋆)− ∂h2(x

⋆)

We now prove that if x⋆ is a stationary point of Problem

(1) then ∆x∗ = 0 by showing the contrapositive. Suppose

that ∆x⋆ 6= 0. ∆x⋆ is a vector that satisfies the optimality

condition (10) and it is the unique one according to properties

of the proximal operator. This means that the vector 0 is not

optimal for the problem (9) and thus it does not exist a vector

z⋆h10
∈ ∂h1(d+ x⋆) so that

z⋆h2
−H⋆d−∇f(x

⋆)− z⋆h10
= 0 (12)

with d = 0. Note that this equation is valid for any z⋆h2
chosen

in the set ∂h2(x
⋆) and the above equation also translates in

6 ∃, z⋆h10
∈ ∂h1(x

⋆) so that ∇f(x⋆) + z⋆h10
− z⋆h2

= 0, which

proves that x⋆ is not a stationary point of problem (1).

5

Suppose now that ∆x⋆ = 0, then according to the definition

of ∆x⋆ and the resulting condition (10), it is straightforward

to note that x⋆ satisfies the definition of a stationary point. �

Now, we proceed by showing that at each iteration, the

search direction ∆xk satisfies a property which implies that

for a sufficiently small step size tk, the search direction is a

descent direction.

Lemma 2: For xk in the domain of f and supposing that

Hk ≻ 0 then ∆xk is so that

F (xk+1) ≤ F (xk) + tk

(

v⊤
k ∆xk + h1(∆xk + xk)− h1(xk)

)

+O(t2k)

and

F (xk+1)− F (xk) ≤ −tk∆x⊤
k Hk∆xk +O(t2k) (13)

with vk = ∇f1(xk)− zf2 − zh2
.

Proof: For a sake of clarity, we have dropped the index k and

used the following notation. x := xk, ∆x := ∆xk , x+ :=
xk + tk∆xk. By definition, we have

F (x+)− F (x) = f1(x+)− f1(x)− f2(x+) + f2(x)

+ h1(x+)− h1(x)− h2(x+) + h2(x).

Then by convexity of f2, h2, h1 and for t ∈ [0, 1], we

respectively have

−z⊤f2(x+ − x) ≥ f2(x)− f2(x+),

−z⊤h2
(x+ − x) ≥ h2(x) − h2(x+)

and

h1(x+ t∆x) ≤ th1(x+∆x) + (1 − t)h1(x)

Plugging these inequalities in the definition of F (x+)−F (x)
gives :

F (x+)− F (x) ≤ f1(x+)− f1(x) + (1 − t)h1(x) (14)

+ th1(x +∆x)

−t(zf2 + zh2
)⊤∆x− h1(x)

≤ t∇f1(x)
⊤∆x+ th1(x+∆x)

− th1(x) − t(zf2 + zh2
)⊤∆x+O(t2)

which proves the first inequality of the lemma.

For showing the descent property, we demonstrate that the

following inequality holds

v⊤∆x+ h1(x+∆x)− h1(x)
︸ ︷︷ ︸

D

≤ −∆x⊤H∆x (15)

Since ∆x is the minimizer of Problem (6), the following

equation holds for t∆x and t ∈ [0, 1]:

1

2
∆x⊤H∆x+ h1(x+∆x) + v⊤∆x (16)

≤
t2

2
∆x⊤H∆x+ h1(x+ t∆x) + tv⊤∆x

≤
t2

2
∆x⊤H∆x+ (1− t)h1(x) + th1(x+∆x)

+tv⊤∆x

After rearrangement we have the inequality

v⊤∆x+ h1(x+∆x)− h1(x) ≤ −
1

2
(1 + t)∆x⊤H∆x

which is valid for all t ∈ [0, 1] and in particular for t = 1
which concludes the proof of inequality. By plugging this

result into inequality (14), the descent property holds. �

Note that the descent property is supposed to hold for

sufficiently small step size. In our algorithm, this stepsize tk
is selected by backtracking so that the following sufficient

descent condition holds

F (xk+1)− F (xk) ≤ αtkDk (17)

with α ∈ (0, 1/2). The next lemma shows that if the function

f1 is sufficiently smooth, then there always exists a step size

so that the above sufficient descent condition holds.

Lemma 3: For x in the domain of f and assuming that

Hk � mI with m > 0 and ∇f1 is Lipschitz with constant

L then the sufficient descent condition in Equation (17) holds

for all tk so that

tk ≤ min

(

1, 2m
1− α

L

)

Proof : This technical proof has been post-poned to the

appendix. �

According to the above lemma, we can suppose that if some

mild conditions on f1 are satisfied (smoothness and bounded

curvature) then, we can expect our DC algorithm to behave

properly. This intuition is formalized in the following property.

Proposition 1: Suppose f1 has a gradient which is Lipschitz

continuous with constant L and that Hk � mI for all k and

m > 0, then all the limit points of the sequence {xk} are

stationary points.

Proof : Let x⋆ be a limit point of the sequence {xk} then,

there exists a subsequence K so that

lim
k→K

xk = x⋆

At each iteration the step size tk has been chosen so as to

satisfy the sufficient descent condition given in Equation (17).

According to the above Lemma 3, the step size tk is chosen

so as to ensure a sufficient descent and we know that such

a step size always exists and it is always non-zero. Hence

the sequence {F (xk)} is a strictly decreasing sequence. As F
is lower bounded, the sequence {F (xk)} converges to some

limit. Thus, we have

lim
k→∞

F (xk) = lim
k→K

F (xk) = F (x⋆)

as F (·) is continuous. Thus, we also have

lim
k→K

F (xk+1)− F (xk) = 0

Now because each term F (xk+1)−F (xk) is negative, we can

also deduce from Equations (15) and (17) and the limit of

F (xk+1)− F (xk) that

lim
k→K

v⊤
k ∆xk+h1(xk+∆xk)−h1(xk) = lim

k→K
−∆x⊤

k Hk∆xk = 0

6

Since Hk is positive definite, this also means that

lim
k→K

∆xk = 0

Considering now that ∆xk is a minimizer of Problem (6), we

have

0 ∈ Hk∆xk+∂h1(xk+∆xk)+∇f1(xk)−∇f2(xk)−∂h2(xk)

Now, by taking limits on both side of the above equation for

k ∈ K, we have

0 ∈ ∂h1(x
⋆) +∇f1(x

⋆)− ∂h2(x
⋆)−∇f2(x

⋆)

Thus, x⋆ is a stationary point of Problem (1). �

The above proposition shows that under simple conditions

on f1, any limit point of the sequence {xk} is a stationary

point of F . Hence the proposition is quite general and applies

to a large class of functions. If we impose stronger constraints

on the functions f1, f2, h1 and h2, it is possible to leverage

on the technique of Kurdyka-Lojasiewicz (KL) theory [42],

recently developed for the convergence analysis of iterative

algorithms for non-convex optimization, for showing that the

sequence {xk} is indeed convergent. Based on the recent

works developed in Attouch et al. [42], [43], Bolte et al. [44]

and Chouzenoux et al. [40], we have carried out a convergence

analysis of our algorithm for functions F that satisfies the KL

property. However, due to the strong restrictions imposed by

the convergence conditions (for instance on the loss function

and on the regularizer) and for a sake of clarity, we have post-

poned such an analysis to the appendix.

IV. EXPERIMENTS

In order to provide evidence on the benefits of the proposed

approach for solving DC non-convex problems, we have

carried out two numerical experiments. First we analyze our

algorithm when the function f is convex and the regularizer

h is a non-convex and a non-differentiable sparsity-inducing

penalty. Second, we study the case when both f and h are

non-convex. All experiments have been run on a Notebook

Linux machine powered by a Intel Core i7 with 16 gigabytes

of memory. All the codes have been written in Matlab.

Note that for all numerical results, we have used a limited-

memory BFGS (L-BFGS) approach for approximating the

Hessian matrix Hk through rank-1 update. This approach is

well known for its ability to handle large-scale problems. By

default, the limited-memory size for the L-BFGS has been set

to 5.

A. Sparse Logistic Regression

We consider here f(x) as the following convex loss function

f(x) =

ℓ∑

i=1

log(1 + exp(−yia
⊤
i x))

where {ai, yi}
ℓ
i=1 are the training examples and their associ-

ated labels available for learning the model. The regularizer

we have considered is the capped-ℓ1 defined as h(x) =
h1(x)− h2(x) with

h1(x) = λ‖x‖1 and h2(x) = λ
(
‖x‖1 − θ

)

+
(18)

and the operator (u)+ = u if u ≥ 0 and 0 otherwise.

Note that here we focus on binary classification problems but

extension to multiclass problems can be easily handled by

using a multinomial logistic loss instead of a logistic one.

Since several other algorithms are able to solve the op-

timization problem related to this sparse logistic regression

problem as given by Equation (1), our objective here is to

show that the proposed DC proximal Newton is compu-

tationally more efficient than competitors, while achieving

equivalent classification performances. For this experiment,

we have considered as a baseline, a DCA algorithm [18]

and single competitor which is the recently proposed GIST

algorithm [34]. Indeed, this latter approach has already been

shown by the authors to be more efficient than several other

competitors including SCP (sequential convex programming)

[35], MultiStage Sparsa [45]. As shown in Table I, none of

these competitors handle second-order information for a non-

convex regularization term. But the computational advantage

brought by using this second order information has still to

be shown since in practice, the resulting numerical cost per

iteration is more important in our approach because of the

metric term Hk. As second-order methods usually suffer more

for high-dimensionality problems, the comparison has been

carried out when the dimensionality d is very large. Finally,

a slight advantage has been provided to GIST as we consider

its non-monotone version (more efficient than the monotone

counterpart) whereas our approach decreases the objective

value at each iteration. Although DC algorithm as described

in section II-C has already been shown to be less efficient

than GIST in [46], we have still reported its results in order

to confirm this tendency. Note that for the DC approach, we

allowed a maximum of 20 DC iterations.

1) Toy dataset: We have firstly evaluated the baseline DC

algorithm, GIST and our DC proximal Newton on a toy dataset

where only few features are relevant for the discrimination

task. The toy problem is the same as the one used by [47].

The task is a binary classification problem in R
d. Among these

d variables, only T of them define a subspace of Rd in which

classes can be discriminated. For these T relevant variables,

the two classes follow a Gaussian pdf with means respectively

µ and −µ and covariance matrices randomly drawn from

a Wishart distribution. µ has been randomly drawn from

{−1,+1}T . The other d − T non-relevant variables follow

an i.i.d Gaussian probability distribution with zero mean and

unit variance for both classes. We have respectively sampled

N , and nt = 5000 number of examples for training and

testing. Before learning, the training set has been normalized

to zero mean and unit variance and test set has been rescaled

accordingly. The hyperparameters λ and θ of the regularization

term (18) have been roughly set so as to maximize the perfor-

mance of the GIST algorithm on the test set. We have chosen

to initialize all algorithms with zero vector (x0 = 0) and

we terminate them if the relative change of two consecutive

objective function values is less than 10−6.

7

Reported performances and running times averaged over

30 trials are depicted in Table II for two different settings

of the dimensionality d and the number of training exam-

ples N . We note that for both problems our DC proximal

Newton is computationally more efficient than GIST, with

respect to the stopping criterion we set, while the recognition

performances of both approaches are equivalent. As expected

and as discussed above, the DC algorithm is substantially

slower than GIST and our approach. Interestingly, we can

remark that the competing algorithms do not reach similar

objective values. This means that despite having the same

initialization to the null vector, all methods have a different

trajectories during optimization and converge to a different

stationary point. Although we leave the full understanding of

this phenomenon to future works, we conjecture that this is

due to the primal-dual nature of the DC algorithm [37] which

is in contrast to the first-order primal descent of GIST.

2) Benchmark datasets: The same experiments have been

carried out on real-world high-dimensional learning problems.

These datasets are those already used by [34] for illustrating

the behaviour of their GIST algorithm. Here, the available

examples are split in a training and testing set with a ratio

of 80%− 20% and hyperparameters have been roughly set to

maximize performance of GIST.

From Table III, we can note that while almost equivalent,

recognition performances are sometimes statistically better for

one method than the other although there is no clear winner.

From the running time point of view, our DC proximal Newton

always exhibits a better behaviour than GIST. Indeed, its

running time is always better, regardless of the dataset, and

the difference in efficiency is statistically significantly better

for 4 out of 5 datasets. In addition, we can note that in

some situations, the gain in running time reaches an order of

magnitude, clearly showing the benefit of a proximal Newton

approach. Note that the baseline DC approach is slower than

our DC proximal Newton except for one dataset where it

converges faster than all methods. For this dataset, the DC

algorithm needed only very few DC iterations explaining its

fast convergence.

B. Sparse Transductive Logistic Regression

In this other experiment, we show an example of situation

where one has to deal with a non-convex loss function as

well as a non-convex regularizer, namely : sparse transductive

logistic regression. The principle of transductive learning is to

leverage unlabeled examples during the training step. This is

usually done by using a loss function for unlabeled examples

that enforces the decision function to lie in regions of low

density. A way to achieve this is the use of a symmetric

loss function which penalizes unlabeled examples lying in the

margin of the classifier. It is well known that this approach,

also known as low density separation, leads to non-convex

data fitting term on the unlabeled examples [48]. For instance,

Joachims [49] has considered a Symmetric Hinge loss for the

unlabeled examples in their transductive implementation of

SVM. Collobert et al. [38] extended this idea of symmetric

Hinge loss into a symmetric ramp loss, which has a plateau

on its top. In order to have a smooth transductive loss, Chapelle

et al [48] used a symmetric sigmoid loss.

For our purpose the transductive loss function is required to

be differentiable. Hence we propose the following symmetric

differentiable loss that can be written as a difference of convex

function

T (u) = 1− g1(u)− g2(u)

where g1(u) = 1
τ
(g(u) − g(u + τ)), g2(u) = g1(−u) and

g(u) = log(1+exp(−u)). Note that g(u) is a convex function

as depicted in Figure 1 and combinations of shifted and

reversed versions of g(u) lead to g1 and g2. τ is a parameter

that modifies the smoothness of T (·). From the expression

of g1 and g2, it is easy to retrieve the difference of convex

functions form of T (u) = T1(u) − T2(u) with T1(u) = 1 +
1
τ
(g(u+ τ) + g(−u+ τ)) and T2(u) = 1

τ
(g(u) + g(−u)).

The transductive loss T (·) as well as g1 and g2 and their

components are illustrated in Figure 1.

According to this definition of the transductive loss, for our

experiments, we have used the following loss involving all

training examples

f(x) =

ℓ∑

i=1

log(1 + exp(−yia
⊤
i x)) + γ

ℓu∑

j=1

T (b⊤
j x) (19)

{ai, yi} being the labeled examples and {bj} the unlabeled

ones and γ is an hyperparameter that balances the weight

of both losses. As previously the capped-ℓ1 serves as a

regularizer.

1) Toy dataset: In order to illustrate the benefit of our

sparse transductive approach, we have considered the same

toy dataset as in the previous subsection and the same experi-

mental protocol. However, we have considered only 5 relevant

variables, sampled 100 training examples and 5000 testing

examples. In addition, we have considered 10000 unlabeled

examples. The total number of variables is varying. We have

compared the recognition performance of 3 algorithms : the

above-described capped-ℓ1 sparse logistic regression, the non-

sparse transductive SVM (TSVM) of [48]1 and our sparse

transductive logistic regression.

Evolution of the recognition rate of these algorithms with

respects to the number of variables in the learning problem

is depicted in Figure 2. Interestingly, when the number of

variables is small enough, all algorithms perform equivalently.

Then, as the number of (noisy) variables increases, the trans-

ductive SVM suffers a drop of performances. It seems more

beneficial in this case to consider a model that is able to select

relevant variables as our capped-ℓ1 sparse logistic regression

still performs good. Best performances are obtained using our

DC formulation introduced for solving the sparse transductive

logistic regression problem which is able to remove noisy

variables and take advantage of the unlabeled examples.

2) Benchmark datasets: We have also analyzed the ben-

efit of using unlabeled examples in high-dimensional learn-

ing problems. For this experiment, all the hyperparame-

ters of all models have been cross-validated. For instance,

1we used the code available on the author’s website.

8

Table II
COMPARISON BETWEEN DCA, GIST AND OUR DC PROXIMAL NEWTON ON TOY PROBLEMS WITH INCREASING NUMBER OF RELEVANT VARIABLES.
PERFORMANCES REPORTED IN BOLD ARE STATISTICALLY SIGNIFICANTLY DIFFERENT THAN THEIR COMPETITOR COUNTERPART ACCORDING TO A

WILCOXON SIGNED RANK TEST WITH A P-VALUE AT 0.001. A MINUS SIGN IN THE RELATIVE OBJECTIVE VALUE INDICATES THAT THE DC PROXIMAL

NEWTON APPROACH PROVIDES LARGER OBJECTIVE VALUE THAN GIST. THE HYPERPARAMETERS λ AND θ HAVE BEEN CHOSEN SO AS TO MAXIMIZE

PERFORMANCES OF GIST.

d= 2000, N= 100000, λ = 2.00 θ = 0.20

Class. Rate (%) Time (s) Obj Val (%)
T DCA GIST DC-PN DCA GIST DC-PN Rel. Diff

50 92.18±0.0 92.18±0.0 91.94±0.0 255.40±0.0 95.42±0.0 70.17±0.0 -6.646
100 91.84±1.9 91.84±1.9 91.78±1.9 117.07±21.4 60.02±9.9 44.42±12.0 -1.095
500 91.52±0.8 91.52±0.8 91.50±0.8 137.85±14.1 57.41±5.2 46.87±13.0 -0.339

1000 91.69±0.7 91.69±0.7 91.69±0.7 148.97±9.9 61.18±6.4 49.05±15.6 -0.198

d= 10000, N= 5000, λ = 2.00 θ = 2.00

Class. Rate (%) Time (s) Obj Val (%)
T DCA GIST DC-PN DCA GIST DC-PN Rel. Diff

50 88.55±2.5 88.53±2.5 88.57±2.5 96.28±30.4 48.82±11.5 26.54±2.3 0.025
100 87.81±2.8 87.76±2.8 87.81±2.8 72.55±7.6 38.30±6.6 24.27±2.5 0.016
500 81.82±0.9 81.78±0.9 81.82±0.9 71.91±6.0 33.73±2.7 21.67±0.9 0.004

1000 76.23±0.9 76.20±0.9 76.23±0.9 74.41±7.9 32.79±3.2 21.59±0.9 0.007

Table III
COMPARISON BETWEEN DCA, GIST AND OUR DC PROXIMAL NEWTON ON REAL-WORLD BENCHMARK PROBLEMS. THE FIRST COLUMNS OF THE

TABLE PROVIDE THE NAME OF THE DATASETS, THEIR STATISTICS. PERFORMANCES REPORTED IN BOLD ARE STATISTICALLY SIGNIFICANTLY DIFFERENT

THAN THEIR COMPETITOR COUNTERPART ACCORDING TO A WILCOXON SIGNED RANK TEST WITH A P-VALUE AT 0.001. A MINUS SIGN IN THE

RELATIVE OBJECTIVE VALUE INDICATES THAT THE DC PROXIMAL NEWTON APPROACH PROVIDES LARGER OBJECTIVE VALUE THAN GIST.

Class. Rate (%) Time (s) Obj Val (%)
dataset N d DCA GIST DC-PN DCA GIST DC-PN Rel. Diff

la2 2460 31472 91.32±0.9 91.67±0.9 91.81±0.9 36.61±11.5 45.86±26.4 21.74±11.9 -165.544
sports 6864 14870 97.86±0.4 97.94±0.3 97.94±0.3 88.99±70.8 161.45±162.6 23.76±13.7 -95.215
classic 5675 41681 96.93±0.6 97.33±0.5 97.38±0.5 3.44±3.8 31.60±11.7 17.44±7.6 -418.789
ohscal 8929 11465 87.05±0.6 87.99±0.6 89.27±0.6 320.39±134.5 44.78±21.6 19.13±25.1 -85.724

real-sim 57847 20958 95.16±0.3 96.28±0.2 96.05±0.2 63.81±96.3 382.70±813.1 23.14±9.3 -105.902

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

g(u)

g(u+τ)
g

1
(u)

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

g(−u)

g(−u+τ)
g

2
(u)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T(u)
g

1
(u)

g
2
(u)

Figure 1. Example of a non-convex smooth transductive loss function T (·) obtained with τ = 1 as well as its components. (left) g1(u), (middle) g2(u),
(right) DC decomposition of T (u).

λ, θ (parameters of the capped ℓ1) and γ have been re-

spectively searched among the sets {0.2, 2}, {0.2, 2} and

{0.005, 0.001, 0.005, 0.01}. averaged results over 10 trials are

reported in Table IV. Note that the results of the transductive

SVM of [48] have not been reported because the provided

code was not able to provide a solution in a reasonable amount

of time. Results in Table IV show that being able to handle

non-convex loss functions, related to the transductive loss and

non-convex sparsity-inducing regularizers helps in achieving

better performances in accuracy. Again, we can remark that the

benefits of unlabeled examples are compelling especially when

few labeled examples are in play. Differences in performances

are indeed statistically significant for most datasets. In order

to further evaluate the accuracy of the proposed method in

very high-dimensional setting, we have run the comparison on

the URL dataset. This dataset involves about 3.106 features

and we have learned a decision function using only 1000
training examples and 40000 unlabelled examples. Although

difference in performances is not significant, leveraging on

unsupervised examples helps in improving accuracy. Note that

for this problem, the average running times of our DC-based

sparse logistic regression and the DC-based sparse transductive

regression are respectively about 500 and 700 seconds. This

shows that the proposed approach allows to handle large-scale

9

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of variables

R
ec

og
ni

tio
n

R
at

e

TSVM
Sparse Logistic
Sparse Transductive

Figure 2. Recognition rate of different algorithms that are either sparse,
transductive or both with respects to the number of variables in the problem,
the number of relevant variables being 5.

Table IV
COMPARING THE RECOGNITION RATE OF A SPARSE LOGISTIC

REGRESSION AND A SPARSE TRANSDUCTIVE LOGISTIC REGRESSION BOTH

WITH CAPPED-ℓ1 REGULARIZER. ℓ AND ℓu RESPECTIVELY DENOTES THE

NUMBER OF LABELED AND UNLABELED EXAMPLES.

Class. Rate (%)
dataset d ℓ ℓu Sparse Log Sparse Transd.

la2 31472 61 2398 67.65±2.6 70.23±3.1
sports 14870 85 6778 81.26±5.0 88.15±4.4

classic 41681 70 5604 72.74±4.3 86.97±2.2

ohscal 11465 55 8873 70.35±2.4 73.39±3.6

real-sim 20958 723 57124 88.81±0.3 88.91±1.4

url 3.23×106 1000 40000 86.64±5.8 87.39±6.0

and very high-dimensional learning problems.

V. CONCLUSIONS

This paper introduced a general proximal Newton algorithm

that optimizes the composite sum of functions. A specificity

of the approach is its ability to deal with the non-convexity of

both terms while one of these terms is in addition allowed

to be non-differentiable. While most of the works in the

machine learning and optimization communities have been

addressing these non-differentiability and non-convexity issues

separately, there exists a number of learning problems such as

sparse transductive learning that require efficient optimization

scheme on non-convex and non-differentiable functions. Our

algorithm is based on two steps: the first one looks for a

search direction through a proximal Newton step while the

second one performs a line search on that direction. We also

provide in this work the proof that the iterates generated by

this algorithm behaves correctly in the sense that limit points

of the sequences are stationary points. Numerical experiments

show that the second order information used in our algorithm

through the matrix Hk allow faster convergence than proximal

gradient based descent approaches for non-convex regulariz-

ers. One of the strength of our framework is its ability to

handle non-convexity on both the smooth loss function and

the regularizer. We have illustrated this ability by learning a

sparse transductive logistic regression model.

For the sake of reproducible research, the code source of

the numerical simulation will be freely available on the authors

website.

VI. APPENDIX

A. Details on the proximal expression of ∆xk

We provide in this paragraph the steps for obtaining Equa-

tion (7) from Equation (6).

Remind that for a lower semi-continuous convex function

h1, the proximal operator is defined as [15]

y⋆ = proxHh1
(x) = argmin

y

1

2
‖y − x‖2H + h1(y)

y⋆ can be characterized by the optimality condition of the

optimization problem which is

−H(y⋆ − x) ∈ ∂h1(y
⋆)

The search direction is provided by Equation (6) which we

remind is

argmin
∆x

1

2
∆x⊤Hk∆x+ h1(xk +∆x) + vk

⊤∆x

By posing z = xk+∆x, we can equivalently look at a shifted

version of this problem:

zk = argmin
z

1

2
(z− xk)

⊤Hk(z− xk) + h1(z) + v⊤
k (z− xk)

Optimality condition of this problem is

−Hk(zk − (xk −H−1
k vk)) ∈ ∂h1(zk)

Hence, according to the optimality condition of the proximal

operator, we have

zk = proxHh1
(xk −H−1

k vk)

and thus

∆xk = proxHh1
(xk −H−1

k vk)− xk

which is Equation (7).

B. Lemma 3 and proof

Lemma 3 : For x in the domain of f and assuming that

Hk � mI with m > 0 and ∇f1 is Lipschitz with constant L
then the sufficient condition in Equation (17) holds for all tk
so that

tk ≤ min

(

1, 2m
1− α

L

)

Proof : Recall that x+ := xk+ tk∆xk. By definition, we have

F (x+)− F (x) = f1(x+)− f1(x) − f2(x+) + f2(x)

+ h1(x+)− h1(x)− h2(x+) + h2(x).

Then by convexity of f2, h2 and h1, we derive that (see

equation (14))

F (x+)− F (x) ≤ f1(x+)− f1(x) + (1− t)h1(x)

+ th1(x+∆x)− (zf2 + zh2
)⊤(t∆x)

− h1(x)

According to a Taylor-Laplace formulation, we have :

f1(x+)− f1(x) =

∫ 1

0

∇f1(x+ st∆x)⊤(t∆x)ds

10

thus, we can rewrite

F (x+)− F (x) ≤

∫ 1

0

∇f1(x+ st∆x)⊤(t∆x)ds−th1(x)

+ th1(x+∆x)− (zf2 + zh2
)⊤(t∆x)

≤

∫ 1

0

(

∇f1(x+ st∆x)−∇f1(x)
)⊤

(t∆x)ds

+ th1(x+∆x) +∇f1(x)
⊤(t∆x)

− (zf2 + zh2
)⊤(t∆x) − th1(x)

≤ t
(∫ 1

0

(

∇f1(x+ st∆x) −∇f1(x)
)⊤

(∆x)ds

+ h1(x+∆x) +∇f1(x)
⊤(∆x)

− (zf2 + zh2
)⊤(∆x) − h1(x)

)

Then using Cauchy-Schwartz inequality and the fact that f1
is gradient Lipschitz of constant L, we have :

F (x+)− F (x) ≤ t
(∫ 1

0

stL‖∆x‖22ds

+ h1(x+∆x) +∇f1(x)
⊤(∆x)

− (zf2 + zh2
)⊤(∆x)− h1(x)

)

≤ t
(tL

2
‖∆x‖22

+ h1(x+∆x) +∇f1(x)
⊤(∆x)−

(zf2 + zh2
)⊤(∆x) − h1(x)

)

≤ t
(tL

2
‖∆x‖22

+ h1(x+∆x)− h1(x)+v⊤
k (∆x)

)

≤ t
(tL

2
‖∆x‖22 +D

)

Now, if t is so that

t ≤ 2m
1− α

L

then

Lt

2
‖∆x‖22 ≤ m(1− α)‖∆x‖22

= (1− α)∆x⊤(mI)∆x

≤ (1− α)∆x⊤H∆x

≤ −(1− α)D

where the last inequality comes from the descent property.

Now, we plug this inequality back and get

t
(tL

2
‖∆x‖22 +D

)

≤ t
(

− (1 − α)D +D
)

= tαD

which concludes the proof that for all

t ≤ min
(

1, 2m
1− α

L

)

we have

F (x+)− F (x) ≤ tαD

C. Convergence property for F satisfying the KL property

Proposition 1 provides the general convergence property

of our algorithm that applies to a large class of functions.

Stronger convergence property (for instance, the convergence

of the sequence {xk} to a stationary point of F (x)) can be

attained by restricting the class of functions and by imposing

further conditions on the algorithms and some of its parame-

ters. For instance, by considering functions F (x) that satisfy

the so-called Kurdyka-Lojasiewiszc property, convergence of

the sequence can therefore be established.

Proposition 2: Assume the following assumptions:

• hypotheses on f and h given in section II are satisfied

• h is continuous and defined over Rd

• Hk is so that Hk � mI for all k and m > 0.

• F is coercive and it satisfies the Kurdyka-Lojasiewicz

property,

• h2 verifies the L2-Lipschitz gradient property, and thus

there exists constant Lh2

‖u−v‖2 ≤ Lh2
‖x−y‖2 u ∈ ∂h2(x) and v ∈ ∂h2(y)

• at each iteration, Hk is so that the function f̃1(z,xk) =
f1(xk)+∇f1(xk)

⊤(z−xk)+
1
2‖z−xk‖

2
Hk

is a majorant

approximation of f1(·) i.e

f1(z) ≤ f̃1(z,xk) ∀z

• there exists an α̃ ∈ (0, 1] so that at each iteration the

condition

F (xk+1) ≤ (1 − α̃)F (xk) + α̃F (zk)

holds. Here, zk is equal to xk + ∆x as defined in

Appendix A.

Under the above assumptions, the sequence {xk} generated

by our algorithm (1), converge to a critical point of F = f+h.

Before stating the proof, let us note that these conditions

are quite restrictive and thus it may limit the scope of the

convergence property. For instance, the hypothesis on h2 holds

for the SCAD regularizer but does not hold for the capped-ℓ1
penalty. We thus leave for future works the development of

an adaptation of this proximal Newton algorithm for which

convergence of the sequence {xk} holds for a larger class of

regularizers and loss functions.

Proof: The proof of convergence of sequence {xk} strongly

relies on Theorem 4.1 in [40]. Basically, this theorem states

that sequences {xk} generated by an algorithm minimizing a

function F = f + h with h being convex and F satisfying

Kurdyka-Lojasiewicz property converges to a stationary point

of F under the above assumptions. The main difference

between our framework and the one in [40] is that we

consider a non-convex function h(x). Hence, for a sake of

brevity, we have given in what follows only some parts of

the proofs given in [40] that needed to be reformulated due

to the non-convexity of h(x).

i) sufficient decrease property. This property provides similar

guarantee than Lemma 4.1 in [40]. This property easily derives

11

from Equations (17) and (15). Combining these two equations

tells us that

F (xk+1)− F (xk) ≤ −αtk∆x⊤H∆x

where by definition, we have xk+1 = xk + tk∆x. Thus, we

get

F (xk+1)− F (xk) ≤ −
α

tk
‖xk+1 − xk‖

2
Hk

≤ −
αm

tk
‖xk+1 − xk‖

2
2

≤ −αm‖xk+1 − xk‖
2
2

which proves that a sufficient decrease occurs at each iteration

of our algorithm. In addition, because xk+1 − xk = tk∆x =
tk(zk − xk), we also have

F (xk+1) ≤ F (xk)− αmt2‖zk+1 − xk‖
2
2 (20)

where t is the smallest tk we may encounter. According to

Lemma 3, we know that t > 0.

ii) convergence of F (zk) remind that we have defined zk
as (see appendix A)

zk = argmin
z

1

2
(z− xk)

⊤Hk(z− xk) + h1(z) + v⊤
k (z− xk)

which is equivalent, by expanding vk and adding constant

terms, to

min
z

1

2
(z− xk)

⊤Hk(z− xk) + f1(xk) +∇f1(xk)
⊤(z − xk)

− f2(xk)−∇f2(xk)
⊤(z− xk)

− h2(xk)− ∂h2(xk)
⊤(z− xk)

+ h1(z)

Note that the terms in the first line of this minimization

problem majorize f1 by hypotheses and the terms in the second

and third lines respectively majorizes −f2 and −h2 since

they are concave function. When we denotes as Q(z,xk) the

objective function of the above problem, we have

F (zk) ≤ Q(zk,xk) < Q(xk,xk) = F (xk) (21)

where the first inequality holds because Q(z,xk) majorizes

F (z), the second one holds owing to the minimization. Com-

bining this last equation with the assumption on F (xk+1), we

have

α̃−1
(
F (xk+1)− (1− α̃)F (xk)

)
≤ F (zk) ≤ F (xk)

This last equation allows us to conclude that if F (xk) con-

verges to a real ξ, then F (zk) converges to ξ.

iii) bounding subgradient at F (zk)
A subgradient zF of F at a given zk is by definition

zF = ∇f1(zk)−∇f2(zk) + zh1,zk − zh2,zk

where zh1,zk ∈ ∂h1(zk) and zh2,zk ∈ ∂h2(zk). Hence, we

have

‖zF ‖ ≤‖∇f1(zk)−∇f1(xk)‖+ ‖∇f2(zk)−∇f2(xk)‖

+ ‖zh2,zk − zh2
‖

+ ‖∇f1(xk)−∇f2(xk) + zh1,zk − zh2
‖

In addition, owing to the optimality condition of zk, the

following hold

Hk(zk − xk) = ∇f1(xk)−∇f2(xk) + zh1,zk − zh2

Hence, owing to the Lipschitz gradient hypothesis of f1 and

f2 and the hypothesis on h2, there exists a constant µ > 0
such that

‖zF ‖ ≤ µ‖zk − xk‖ (22)

REFERENCES

[1] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-

nal of the Royal Statistical Society, vol. 58, no. 1, pp. 267–288, 1996.
[2] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis

pursuit,” SIAM Journal Scientific Comput., vol. 20, no. 1, pp. 33–61,
1999.

[3] Y. Li and S.-I. Amari, “Two conditions for equivalence of 0-norm
solution and 1-norm solution in sparse representation,” Neural Networks,

IEEE Transactions on, vol. 21, no. 7, pp. 1189–1196, Jul. 2010.
[4] D. Donoho, “For most large underdetermined systems of linear equa-

tions, the minimal ℓ1 solution is also the sparsest solution,” Communi-

cation in Pure and Applied Mathematics, vol. 59, no. 6, pp. 797–829,
2006.

[5] S. Shevade and S. Keerthi, “A simple and efficient algorithm for
gene selection using sparse logistic regression,” Bioinformatics, vol. 19,
no. 17, pp. 2246–2253, 2003.

[6] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[7] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “An improved glmnet for l1-
regularized logistic regression,” The Journal of Machine Learning Re-

search, vol. 13, pp. 1999–2030, Jun. 2013.
[8] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Convex optimization

with sparsity-inducing norms,” in Optimization for Machine Learning,
S. Sra, S. Nowozin, and S. Wright, Eds. MIT Press, 2011.

[9] H. Zou, “The adaptive lasso and its oracle properties,” Journal of the

American Statistical Association, vol. 101, no. 476, pp. 1418–1429,
2006.

[10] J. Fan and R. Li, “Variable selection via nonconcave penalized like-
lihood and its oracle properties,” Journal of the American Statistical

Association, vol. 96, no. 456, pp. 1348–1360, 2001.
[11] K. Knight and W. Fu, “Asymptotics for lasso-type estimators,” Annals

of Statistics, vol. 28, no. 5, pp. 1356–1378, 2000.
[12] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted

ℓ1 minimization,” J. Fourier Analysis and Applications, vol. 14, no. 5-6,
pp. 877–905, 2008.

[13] L. Laporte, R. Flamary, S. Canu, S. Dejean, and J. Mothe, “Nonconvex
regularizations for feature selection in ranking with sparse svm,” Neural

Networks and Learning Systems, IEEE Transactions on, vol. 25, no. 6,
pp. 1118–1130, 2014.

[14] G. Gasso, A. Rakotomamonjy, and S. Canu, “Recovering sparse signals
with a certain family of non-convex penalties and dc programming,”
IEEE Trans. Signal Processing, vol. 57, no. 12, pp. 4686–4698, 2009.

[15] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-Point Algorithms for Inverse Problems in

Science and Engineering, H. H. Bauschke, R. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds. Springer-Verlag, 2011,
pp. 185–212.

[16] J. Lee, Y. Sun, and M. Saunders, “Proximal newton-type methods for
convex optimization,” in Advances in Neural Information Processing

Systems, Lake Tahoe, NV, Dec. 2012, pp. 836–844.
[17] S. Becker and J. Fadili, “A quasi-newton proximal splitting method,” in

Advances in Neural Information Processing Systems, Lake Tahoe, NV,
Dec. 2012, pp. 2618–2626.

[18] H. A. Le Thi and T. Pham Dinh, “The dc (difference of convex functions)
programming and dca revisited with dc models of real world nonconvex
optimization problems,” Annals of Operations Research, vol. 133, no.
1-4, pp. 23–46, 2005.

[19] T. Pham Dinh and H. A. Le Thi, “Convex analysis approach to dc
programming: Theory, algorithms and applications,” Acta Mathematica

Vietnamica, vol. 22, no. 1, pp. 287–355, 1997.
[20] F. Akoa, “Combining dc algorithms (dcas) and decomposition techniques

for the training of nonpositive semidefinite kernels,” Neural Networks,

IEEE Transactions on, vol. 19, no. 11, pp. 1854–1872, Nov 2008.

12

[21] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods for
sparse hierarchical dictionary learning,” in Proceedings of International

Conference on Machine Learning, Tel Aviv, Israel, Jun. 2010, pp. 487–
494.

[22] A. Rakotomamonjy, “Direct optimization of the dictionary learning
problem,” IEEE Trans. on Signal Processing, vol. 61, no. 12, pp. 5495–
5506, 2013.

[23] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix
factorization,” in Advances in neural information processing systems,
no. Vancouver, BC, Dec., 2004, pp. 1329–1336.

[24] S. Ertekin, L. Bottou, and C. Giles, “Nonconvex online support vector
machines,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 33, no. 2, pp. 368–381, 2011.

[25] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading convexity for
scalability,” in Proceedings of the Twenty-third International Conference

on Machine Learning (ICML 2006). ACM Press, 2006, pp. 201–208.

[26] A. L. Yuille, A. Rangarajan, and A. Yuille, “The concave-convex
procedure (cccp),” Advances in neural information processing systems,
vol. 2, pp. 1033–1040, Vancouver, BC, Dec. 2002.

[27] N. Courty, R. Flamary, and D. Tuia, “Domain adaptation with regular-
ized optimal transport,” in Machine Learning and Knowledge Discovery

in Databases. Springer, Nancy, France, Sep. 2014, pp. 274–289.

[28] R. Jenatton, G. Obozinski, and F. Bach, “Structured sparse principal
component analysis.” in Proceedings of the International Conference on

Artificial Intelligence and Statistics, Y. W. Teh and D. M. Titterington,
Eds., vol. 9, Chia, Italy, May 2010, pp. 366–373.

[29] E. Richard, P.-A. Savalle, and N. Vayatis, “Estimation of simultaneously
sparse and low rank matrices.” in Proceedings of the International

Conference in Machine Learning. Omnipress, Edinburgh, Scotland,
Jun. 2012.

[30] Y. Deng, Q. Dai, R. Liu, Z. Zhang, and S. Hu, “Low-rank structure learn-
ing via nonconvex heuristic recovery,” Neural Networks and Learning

Systems, IEEE Transactions on, vol. 24, no. 3, pp. 383–396, 2013.

[31] K. Zhong, E.-H. Yen, I. S. Dhillon, and P. K. Ravikumar, “Proximal
quasi-newton for computationally intensive l1-regularized m-estimators,”
in Advances in Neural Information Processing Systems 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds.
Curran Associates, Inc., Montreal, Canada, Dec. 2014, pp. 2375–2383.

[32] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse
reconstruction: application to compressed sensing and other inverse
problems,” IEEE Journal of Selected Topics in Signal Processing:

Special Issue on Convex Optimization Methods for Signal Processing,
vol. 1, no. 4, pp. 586–598, 2007.

[33] G. Golub and C. Van Loan, Matrix computations. Johns Hopkins
University Press, 1996, vol. 3.

[34] P. Gong, C. Zhang, Z. Lu, J. Huang, and Y. Jieping, “A general iterative
shrinkage and thresholding algorithm for non-convex regularized opti-
mization problems,” in Proceedings of the 30th International Conference

on Machine Learning, Atlanta, Georgia, Jun. 2013, pp. 37–45.

[35] Z. Lu, “Sequential convex programming methods for a class of struc-
tured nonlinear programming,” ArXiv:1210.3039, Tech. Rep., 2012.

[36] P.-L. Loh and M. J. Wainwright, “Regularized m-estimators with
nonconvexity: Statistical and algorithmic theory for local optima,” in
Advances in Neural Information Processing Systems 26, C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds., Lake
Tahoe, NV, Dec 2013, pp. 476–484.

[37] T. Pham Dinh and H. A. Le Thi, “Dc optimization algorithms for solving
the trust region subproblem,” SIAM Journal of Optimization, vol. 8, pp.
476–505, 1998.

[38] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Large scale transductive
svms,” Journal of Machine Learning Research, vol. 7, pp. 1687–1712,
2006.

[39] H. Mine and M. Fukushima, “A minimization method for the sum of a
convex function and a continuously differentiable function,” Journal of

Optimization Theory and Applications, vol. 33, no. 1, pp. 9–23, 1981.

[40] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “Variable metric forward–
backward algorithm for minimizing the sum of a differentiable function
and a convex function,” Journal of Optimization Theory and Applica-

tions, vol. 162, no. 1, pp. 107–132, 2014.

[41] S. Sra, “Scalable nonconvex inexact proximal splitting,” in Advances in

Neural Information Processing Systems, Lake Tahoe, NV, Dec. 2012,
pp. 530–538.

[42] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternat-
ing minimization and projection methods for nonconvex problems: an
approach based on the Kurdyka-Lojasiewicz inequality,” Mathematics of

Operations Research, vol. 35, no. 2, pp. 438–457, 2010.

[43] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward–
backward splitting, and regularized gauss–seidel methods,” Mathemati-

cal Programming, vol. 137, no. 1-2, pp. 91–129, 2013.
[44] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized

minimization for nonconvex and nonsmooth problems,” Mathematical

Programming, vol. 146, no. 1-2, pp. 459–494, 2014.
[45] T. Zhang, “Analysis of multi-stage convex relaxation for sparse regular-

ization,” Journal of Machine Learning Researc, vol. 11, pp. 1081–1107,
2010.

[46] A. Boisbunon, R. Flamary, and A. Rakotomamonjy, “Active set strategy
for high-dimensional non-convex sparse optimization problems,” in
Acoustics, Speech and Signal Processing (ICASSP), IEEE International

Conference on. IEEE, Firenze, Italy, May 2014, pp. 1517–1521.
[47] A. Rakotomamonjy, R. Flamary, G. Gasso, and S. Canu, “ℓp−ℓq penalty

for sparse linear and sparse multiple kernel multi-task learning„” IEEE

Trans. on Neural Networks, vol. 22, no. 8, pp. 1307–1320, 2011.
[48] O. Chapelle and A. Zien, “Semi-supervised classification by low density

separation,” in Proceedings of the Tenth International Workshop on

Artificial Intelligence and Statistic, Barbados, Jan. 2005, pp. 57–64.
[49] T. Joachims, “Transductive inference for text classification using svms,”

in Proceedings of The 16th International Conference on Machine

Learning, vol. 99, Bled, Slovenia, Jun. 1999, pp. 200–209.

