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Abstract

This work deals with a semiparametric estimation of a count regression function m
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1 Introduction

Let (X1,Y7),(X2,Ys),...,(X,,Y,) be a sequence of ii.d. random variables
defined on N? x R and such that

where m is an unknown regression function and the ¢;’s are assumed to have
zero mean and finite variance. Parametric and nonparametric estimation of
the regression function m are classical problems. The continuous case has re-
ceived much more attention than the discrete one. Semiparametric approaches
have been considered by several authors as well. For a recent account of the
(multiplicative or additive) combinations of parametric and nonparametric
kernel estimators, see, e.g., Martins-Filho et al. (2008), Su and Ullah (2008),
Fan et al. (2009). While, nonparametric estimation of discrete functions such
as probability mass or count regression functions is definitely less popular.
An extension of the well known kernel technique has been investigated by
Kokonendji et al. (2007, 2009b).

In this paper we focus on the semiparametric estimation of the unknown count
regression function m given by (1). More precisely, we investigate the following
form:

m(z) =r(z; B)w(z) (2)
- my,(z; ), for x € N,

where r(+; 3) is a parametric function that depends on unknown parameter 3 =
(Bi,.-..,3,)", and w(-) is a nonparametric multiplicative correction function.
As shown later on, by splitting the estimation problem of the conditional
mean function m(z) = E(Y|X = z) up into a parametric procedure for r
and a kernel-based technique for w, we improve the asymptotic bias of the
proposed estimator.

The rest of this paper is organized as follows. Section 2 briefly recalls the
nonparametric count regression estimator of m and investigates its asymptotic
bias and variance expansions. In Section 3, we present our semiparametric
estimation of (2) for d = 1. The proposed estimator is constructed in two
steps: first, we use a generalized least squared criterion to find an estimate
B of the parameter [ in r(z;3); then a discrete associated kernel approach
(Kokonendji et al. 2007, 2009a) is used to provide a nonparametric estimator
of the multiplicative correction factor w(x; §) = m(x)/r(x; 3). The asymptotic
bias and variance of the obtained estimator are investigated and compared to
those of a nonparametric discrete associated kernel estimator. The extension
to higher dimension is tackled as well. Section 4 provides two applications on



real data, while proofs of all results of Section 3 are postponed to Section 5.

2 Nonparametric count regression estimator

In this section we summarize some asymptotic expansions of the nonpara-
metric count regression estimator introduced by Kokonendji et al. (2009b).
Indeed, suppose that we are interested in a count regression function m(z) =
E(Y|X = z) in which the r.v. Y and X belong to R and N respectively;
without loss of generality, we here present the univariate case with d = 1 (see
Section 3.3). Then, the well-known Nadaraya-Watson kernel estimate might
be extended to the case of count regression as follows

_ YK, (XG)
in() ; i1 Kon(X5)
where h = h(n) > 0 is an arbitrary sequence of smoothing parameters that
fulfills lim /(n) =0, while K;,(-) is a suitably chosen discrete associated
kernel function (e.g. Kokonendji et al., 2007). The kernel function K, ()
is itself a probability mass function (p.m.f.) with support S, that does not
depend on h and such that x € S,. Furthermore, we also impose the following
two conditions:

x €N, (3)

lim E(K,5) = , (4)
}llir% Var(K,n) =0, (5)

where K, is the discrete random variable whose p.m.f. is K, ;(-). See also
Abdous and Kokonendji (2009) for a review of discrete associated kernels and
asymptotic behaviour for discrete smoothing using (4) and (5).

To deal with derivatives of any count function g : N — R, we will use finite
differences instead of the usual differentiation on R. For & € N\ {0}, we will
put

{g(x+1)—g(z—1)}/2if z € N\ {0}

g(1) —¢g(0) if v =0.
(6)

For instance, it follows that the finite difference of second order is given by

g(k) (z) = {g(k’—l)(w)}(l) and g(l)(:v) —

{9(z +2) = 2g(x) + g(x — 2)}/4 if € N\ {0, 1}
9@ (x) = { {9(3) — 3¢(1) + 29(0)} /4 ifr=1 (7)
{9(2) —29(1) 4+ g(0)}/2 if 2 =0.



Note that the finite differences ¢*) are always defined no matter the smooth-
ness of g.

The following theorem presents the asymptotic bias and variance of the non-
parametric estimator m,(z) in (3).

Theorem 1 Let f be a p.m.f. of a discrete r.v. X defined on N. Assume
that f(z) = Pr(X = z) > 0 for a given x € N. Furthermore, suppose that the
bandwidth h = h(n) > 0 satisfies lim h =0 and that the discrete kernel K p(-)

fulfills assumptions (4)-(5). Then, the bias and variance of m,(x) admit the
following expansions

Bias{iiin(x)} = {m<2>(x) + 2m ) (x) <fm> (x)} Ww (i)w(h),

f
Var(Y|X = 1 )
Var{m, ()} = ‘”(n f| (m)_ z) {Pr(Kon = )} + 0 (n) , (9)

where &, mY) and m® are finite differences as defined in (6) and (7).

The proof is given in Section 5.

3 Semiparametric count regression estimator

Following Kokonendji et al. (2009a) for p.m.f., we here adapt the semipara-
metric approach of count regression function m in (1) using expression in (2)
with a parametric start r(-; 5) and a nonparametric correction function w(-).
In fact, given a sample (X;,Y;), ¢ = 1,...,n, it uses any parametric estima-
tion procedure to provide an estimation of 3 involved in 7(x; 3), and it serves
the nonparametric discrete associated kernel procedure to estimate the cor-
rection function w(x) = m(x)/r(z; B) by the following Nadaraya-Watson type
estimator

" YK, n(X;
=3 "< ) , zeN, (10)
i=1T Xuﬁ) Kx,h(Xj)

where 3 = (Bl, e ,ﬁp) is an estimate of [ constructed in the previous step

(by generalized least squared method for example). Upon combining these two
estimation steps, we end up with the following semiparametric estimator m,,
of m

() = (2 B)on(: B) = r(w; B) 3. —— (X (1)

(X B) S, Ken(X;)

W



Next, let us examine the asymptotic bias and variance of the proposed esti-
mator (11) and compare them to those of the traditional estimator (3). These
asymptotics will be tackled under two settings: known and unknown para-
metric functionr r(z; 3). Besides, we will investigate the multivariate case as
well.

3.1  Known parametric start

Suppose that based on a goodness-of-fit test or any a priori knowledge about
m we decide to fix the parametric start in (2) and put 7o(x) = r(z; 5p). Then,
by letting m(x) = ro(x)w(x) and by using the estimation procedure described
above, it is easy to see that a semiparametric estimate of m is given by

Vil (XG) ro(x)

mp(x) = ro(z Z S 1Kgch(X ) . ro(Xi)’

z € N. (12)

The following theorem exhibits the asymptotic expansions of m,(z)’s bias and
variance

Theorem 2 Let x be a given point in N satisfying f(x) = Pr(X = z) > 0.
Assume that the regression function satisfies m(x) = ro(z)w(x) with ro(z) =

r(z; By) being a fized start. Then, provided that h = h(n) — 0 for n — oo, the
estimator my,(z) verifies

Bias{n(0)} = o)) + 2o e) (1) oy} Vo)
r0(2) o0

Var(Y|X = z) RS 1

where f&), WM and W are finite differences as defined in (6) and (7).

Var{ﬁn(x)} =

Proof. See Section 5.

A comparison of the asymptotic expansions of the semiparametric estimator
m,, in (12) and the nonparametric discrete Nadaraya-Watson type estimator
my, in (3) shows that the leading terms in the variance expressions are iden-
tical, while the bias expressions are different. More precisely, since under the
assumption m(x) = ro(z)w(x) one has

m® = (row)® = rew® + rPw



m® = (row)® = rew® + 27w 4+ rPw,
it follows that the difference between the leading terms in Bias{m,(x)} and
Bias{m,(z)} is given by:

(1) ar h
{ré2)($)w(x) + 27"((]1)(a:)w(1)(23) + 27“(()1)(35)‘*‘)(35) <ff> (x)} V(2KI)

Unfortunately, the sign of this quantity can be either positive or negative.

3.2 Unknown parametric start

Next, let us consider the semiparametric count regression estimator m, in
(11) of m in (2) with an estimate 5 of § (still constructed by generalized
least squared method for example). In the situation where the parametric
function r(x; 3) is misspecified, the estimator B of B converges in probability
to a certain value 3y such that r(z; 3) is the best approximant to m(x) with
respect to the Kullback-Leibler distance

> m(z)log m(z)

= T(Zﬁ,ﬁ) = d{m()7r(7ﬂ)}

of r(z; B) from the true function m(z); see, for example, White (1982).

A Taylor expansion of the ratio r(x; B) /(X5 B) around [y provides

r(z; B
T(Xi§B)

~—

:exp{log 7*(1*’ B) — IOg T(Xz; B)}

. To(z) T 1, . ~
= oy | oK) —uo(@)F (8 = Bo) + 506 = fo) M, X:) (5 = fh) |,

where = denotes an asymptotic equivalent, and the matrix M (z, X;) is
M (z, X;) = vo() — vo(Xi) + {uo(x) — uo(X:)} {uo(Xs) — uo(2)}"

such that ug(z) and vg(x) are the gradient and the Hessian matrix with respect
to (3, respectively, evaluated in (3y. Using the above expansion, the estimator
m,, in (11) can be approximated as

i (z) = 70 (2) + An(2) + ;Bn(:v), (15)

where m? is the estimator in (12) with fixed start and the two others terms



are

z": [{uo(Xs) = uo(@) (3 = Bo)]ViKun(Xs) . @ fo)

Alr) =2 = Ron (X)) X )

(B = )M (2, X3)(B — Bo) Wi n(Xi) | r(w; o)
Balz) = 12:21 > Kan(X5) : . r(Xi; Bo)

We then formulate the following result.

Theorem 3 Let x be a given point in N satisfying f(x) = Pr(X = z) > 0.
Assume that the parametric function ro(x) = r(x;By) is the best approzi-
mant of the regression function m(x) under the Kullback-Leibler criterion,
with w(z) = m(x)/ro(x) being a multiplicative correction factor. Then, pro-
vided that n — oo and h = h(n) — 0, the estimator m,(z) in (11) satisfies

Bias (o)) = {1 (0) + o) (1) oy} Vo)

+0 (711) 1 o(h),

_ Var(z;Jé): ) (Pr(KCop = 2)}° + 0 <711) 7

where fO, WM and W are finite differences as defined in (6) and (7).

Var{?n\n(a:)}

Proof. See Section 5.

Looking at the previous theorem, the asymptotic bias and variance are the
same as in Theorem 2 for the case of the fixed start ry. Hence, the proposed
estimator m,, in (11) of m can once again be shown to be better or not than
the nonparametric one in (3). See, for example, Kokonendji et al. (2009a) for
some illustrations in the case of count data distributions.

3.8  Multivariate case

The multidimensional estimators (3) and (11) are easily obtained by using a
multiplicative d-univariate kernel

d
k
K:):,h(Xi) = H Kg[g;j,hk(Xik)7
k=1

with z = (z1,...,24)", h = (h1,..., ha)T, Xi = (X1, ., Xsa)” and K, (.
is a univariate discrete associated kernel satisfying (4) and (5) for all

~—



1,...,d. We now consider the d-dimensional discrete functions m(-), r(+; 3)
and w(-) in (2) with their corresponding partial finite differences in the sense of
(6) and (7), for example, g\"(z) = dg(x)/dx, and ¢\ () = 0%g(x)/(Ox,0m))
and so on.

The asymptotic bias and variance of the d-dimensional discrete Nadaraya-
Watson estimator replacing (8) and (9), respectively, are given by

(1)
Bias{iii,( ;z {mkk +2m;” (w) (f) <m>} Var(Kl )
1 h?+h:+... +h3
+0/(1) 4o (MAHE ),
N ~ Var(Y|X =) 2 1
Var{m,(z)} = 72 kl_[l{P /ka he = Tk)}+o (n) .

The corresponding expression for the bias of the new estimator given in The-
orem 3 is

k=1
1 hi+h3+ ...+ h3
o2 o)
+ n +0< hlhz...hd
while the variance is the same as that of the multidimensional discrete Nadaraya-

Watson estimator above. Similarly to that for univariate case, the change of
bias is clearly point out.

d (1)
Bias (i, (x)} = 5 3° {r0<x>w,ii’<x> + 2ro(0)wy (2) (@) (x >} Var(Ky)5,)

4 Applications

In this section two practical datasets of demography and economy are used
for applying the nonparametric and semiparametric discrete regression ap-
proaches in comparison with classical parametric regression models. The first
example concerns mortality rates (Copas and Haberman, 1983). For each age
x € N, a population of size s, is exposed to risk, associated to a number of
deaths d,. The crude death rates my(z) is calculated as

mo(z) = S TE€ N.



The frequency mortality rate is generally increasing with respect to the age,
having a small numbers of deaths at younger ages. The graduated values
obtained by applying a logistic model does not fit well to data (see Figure 1).
Indeed, the parametric model produces oversmoothing and, in particular, does
not succeed to describe the behaviour on the ages x € {42,44,45,46}. The
second example is a sales dataset with multiple y; at a given z; (Kokonendji
et al., 2009b). We analyse the amount of daily sales of a new product during
the 24 first days. The 151 observations (x;,y;), ¢ = 1,. .., 24, represent the day
x; and the corresponding mean of sales numbers y; € {yai, YBi, - -, ymi}- The
number of sale centres for each state (A, B, ..., H) is not available except for
the state H where this number is equal to one. We apply generalized linear
models (GLM) in comparison with nonparametric and semiparametric models
for fitting the sales data (Figure 2). The given examples indicate that the use of
continuous semiparametric model may provide fitted values at any point of the
real line numbers, while the predictor is an ordinal variable. This motivates
to recommend a discrete model that focuses on ordinal covariates and has
the same nature. Hence, the nonparametric correction in the two examples is
available only for discrete predictors.

For the discrete semiparametric estimator, the logistic model and GLM are
used as start functions. The measure of error used is the root mean squared

error RMSE defined as

RMSE — \/Z?:l(yj _3//;>2

n

where y; is the adjustement of the j-th observation y; and n is the number of
observations.

4.1  Parametric models

The GLM represents a normal model for the response variable Y; with a log-
arithmic link. It has a linear predictor based on a combination of explanatory
variables such as

Y; = 91 + 92]31' + ‘92 loga:z + €, ;€ N.
The nonlinear model corresponds to a logistic one for the situation of popu-

lation growth towards a limited value. It is given by

or

Yi = oL
1+exp{— < 293%2)}

+e;, T; € N.




The fixed effect parameter 0F is the asymptote towards which the population
grows. The parameter 6 is the midpoint and corresponds to the time at
which y; = 0F/2. The parameter 6% is the scale and represents the distance
on the time axis between the midpoint and the point where the response is

0f /(1 + e ).

4.2 Discrete associated kernel

For (z,a) € N x N and h > 0, the symmetric discrete triangular associated
kernel K, on support S, = {z,z £ 1,...,2 £+ a} has discrete probability
distribution given by

where P(a,h) = (2a+1)(a+1)" —23¢_, k". That kernel fulfills assumptions
(4) - (5). Note that a general discrete triangular associated kernel has been
proposed by Kokonendji and Zocchi (2010); the corresponding R package is
also available (see Senga Kiessé et al., 2010).

Concerning the regression estimators with discrete triangular associated ker-
nels, the optimal bandwidth parameter is selected by the cross-validation
method; refer to Kokonendji et al. (2009) for discrete case and, Hardle and
Marron (1985) for continuous one. For a given associated discrete kernel, the
optimal bandwidth is h., = argming,~o C'V (h) with

1 n
CV(h) = — 3 {Y; = (X )},
i=1
where m_;(Xish) = X0, YiKx, w(X;)/ X5 Kx, n(X;) is the leave-one-out

kernel estimator of m,,(X;;h). However, this method does not always con-
verge and, thus, other values of the bandwidth parameter h € {0.5,3.5} are
proposed to point out its influence on goodness-of-fit or discrete smoothness.
Here, this procedure is applied only for discrete nonparametric estimator but
some works are in progress on its development for discrete semiparametric
estimator. For the arm a € N, a value equals to 1 or 2 is sufficient because
the error connected to the adjustment is increasing with respect to the arm a
(Kokonendji et al., 2007); hence, we consider the discrete triangular associated
kernel a = 2.

10



4.8  Mortality rates

The Figure 1 and Table 1 present the results connected to death rates data. For
this dataset, the cross-validation procedure does not converge, consequently
we use the two values of h proposed previously. First, using semiparamet-
ric estimator with discrete triangular kernel a = 2, h = 0.5 provides the
best adjustement which corresponds to the smallest RMSE; the performance
of nonparametric and semiparametric approaches are closed and outperform
the parametric model. Then, by changing the bandwidth value in h = 3.5
improves the amount of smoothing provided by the two discrete associated
kernel estimators. Finally, the semiparametric estimator stays the best one in
comparison to the nonparametric and the difference between the performance
of the two estimators is more clear.

a=2, h=0.5 a=2, h=3.5
Crude death rates Crude death rates
o Nonp. kernel regr. (=} Nonp. kernel regr.
--e-- Semp. kernel regr. bd --e-- Semp. kernel regr. T
Logist. regr. 4 Logist. regr. 1
(=) (=) J
= =
o [
=
< = ==
g < =
D
[am)
I I
f S
o o
o o
o [
T T T T T T T T
35 45 55 65 35 45 55 65

Age Age

Fig. 1. Logistic regression, nonparametric and semiparametric regressions using sym-
metric discrete triangular associated kernels on death data

4.4 Sales data

The Figure 2 and Table 2 present the results corresponding to sales data.
For this example, the cross-validation method gives an optimal bandwidth
value h., = 0.132 for discrete nonparametric estimator; in comparison, we

11



Table 1
RMSE calculated from logistic model, nonparametric and semiparametric regression
estimators using discrete symmetric triangular associated kernels on mortality data

RMSE

Logistic Nonp. estimator Semip. estimator
with discrete triangular associated kernel a = 2
h=20.5
0.500 0.364 0.362

0.535 0.521

applied this value for the discrete semiparametric estimator completed by h =
3.5. Similarly to the previous example, the discrete semiparametric triangular
model with a = 2 and h = h., = 0.132 provides the better adjustment in term
of RMSE in comparison to nonparametric and parametric model. However,
both satisfying degree of smoothing and fitting are still obtained with h = 3.5.
Furthermore, the GLM and nonparametric regression model underestimate
and overestimate the y-values, respectively, contrary to the good adjustment
provided by the semiparametric kernel model.

Table 2
RMSE calculated from GLM, nonparametric and semiparametric regression estima-
tor using discrete symmetric triangular associated kernels on sales data

RMSE

GLM Nonp. estimator Semip. estimator

with discrete triangular associated kernel a = 2

hey = 0.132 h =0.132
2.427 3.002 2.215
h =35
3.286 2.479

12



a=2, h=0.132 a=2, h=3.5

Lo Lo
~ ~
Observed Observed
- o Nonp. kernel regr. o Nonp. kernel regr.
»Po - --- Semp. kernel regr. oo - --- Semp. kernel regr.
o _] - _— SLemMm o _J _— SLM
~ IS

15
|

Sales

Fig. 2. GLM, nonparametric and semiparametric regressions using symmetric dis-
crete triangular associated kernels on sales data

5 Proofs

5.1 Proof of Theorem 1

Let us rewrite the estimator m,(z) in (3), as follows

No(z; h)
Dn(x; h)’

mn(z) =

with Dy, (z;h) = n~" Y0_) Ko n(X;) and Ny (2;h) = n~ ' Y0, Vil 5(X;). The
convergence of D, (x;h) to f(z) is established by Abdous and Kokonendji
(2009; Theorem 2.4) and, similarly, the convergence of N, (z;h) to mf(z) can
de deduced. From here, following Bosq and Lecoutre (1987; p. 119-121), we

can write

13



) @)
() = () + s N ) = (mf) @)} = D) — ()
_ﬂtx){w; h) = (mf) (@) { Dl h) = f()}
N?% HD,(ash) = F@)}H1+ o1} as. (16)

The expectation of D, (z;h) can be approximated as

E{D,(r: 1)} =E{f(Ke)}
= FLBUCa)} + 5 Var(Ces) FO () +olh),

where f?) is the finite difference of second order as in (7). Similarly, for the
expectation of N, (z;h), we have

E{N,(z;h)} = E{Y1 K, ,(X1)}
= 3" m(2)f(2) Pr(Kpp = 2)

ZGSz

=E{(mf)(Ken)}
= (mf){E(Cen)} + ;Var(&,h)(mf)(” () + o(h),

Thus, under the condition (4) of discrete associated kernel, we obtain
1
E{D,(z;h)} — f(z) = §Va7"(ICx7h)f(2) (x) + o(h) (17)

and

E(N, (1)) — (mf)(@) = SVar(Cen)(mf)? @) +oh).  (18)

Next, we have

B[N, (x; h){ Dy (; h) — f(2)}]
= E ([N (25 h) = E{N, (25 h) [ Do (5 h) — E{D, (; 1) }?)
+ 2[E{Dy(2;h)} — f(2)]Cov{Dp(x; h), No(x; h)}
+E[{Dn(x;h) — f(x)}*]E{Np(; h)}
= O(1/n)* + O(1/n) + E{Dy(x;h) — f(2)’E{Ny(z;h)}. (19

To get the last inequality, we used the fact that

14



Cov{Dy(x;h), Nu(z;h)} = :Z[E{}/IKih(Xl)} - E{Yle,h(X1>}E{Kx,h(X2)}]
=0(1/n).
and
E([No (w5 h) — E{N,(x; h)})[Dn(w; h) — E{ Dy (w; h)}]?) = O(1/n)*.
Similar arguments enable to see that

E{Dy(x; h) — f(2)}’E{No(2; h)} — f(2)E[{No(z; h) — (mf)(x) {Dn(2; k) — f()}]
= 0(1/n) + o(h). (20)

Upon plugging the expansions (17)-(20) into (16), we end up with

(mf)@(x) mf@)(fﬂ)} Var(Kq.n)
() f(x) 2

Finally, to obtain (8), simply note that (mf)® = m® f + 2m® O £ m @),

E{m,(x)} —m(z) = { +O(1/n) + o(h).

As for the variance expansion (9), it follows from (16) that

Var{No(sh)} |, (mf)*(@)

Var{mu,(x)}= () i) Var{D,(z;h)}
L@ o i Do oL
2 Con Nulai 1), D ) + (n) (21)

The variance of D,,(z; h) might be written as follows

Var{D,(x;h)} Zf ) {Pr(K }—{Zf xh:y)}
yES IS
= NP = )Y — (@) + Rl ),
with
Ra(wih) =~ Y ) (Pr(Kap =)} + ()
yeSs\{z}
)+ 3 1)~ S PrKen =y)| - (22)

YES,

15



This quantity becomes negligible under the hypothesis (4) and (5) of discrete
associated kernel; i.e. for any x € N, R, (x;h) — 0 when n — oo and h =
h(n) — 0. Indeed, let y € S, \ {x} we can find a constant n = n(y) > 0 such
that

Pr (’C:c,h = y) S Pr(VCx,h - ZE| > 77)
E{(Kon — 2)*} = = [Var(Ken) + {E(Ken) — 23] — 0 as h — 0,

and for y = « we deduce the asymptotic modal probability Pr(K,, = z) — 1
when h — 0.

Similarly, the variance of N, (z;h) can be expressed

Var(N.(e:h)} = - 3 EOZIX) = ) @) (Pr(Kes = )

yESy
= { S E(MIX; = 2)/(2) Pr(Kes = z)}
z€Se
— :LIE(YﬂXl = 2)f(z){Pr(K,p = z)}?
LS RN = ) ) P = )

" yes\{=}

1

f@EMXy=2)+ > {f(y) — f@)}EMVi|X1 = y) Pr(Kes = y)

yESI

= PR = 2V ar(Y]X =) + m*(2))
() + Qulas ),

where

Qulast) =y 3 BN =) (0) Pk =)} + )

—NmA)@) + X)) ~ (mf) )} PriKes =)

YESy

The same arguments as those used for R, (z;h) in (22) might be used to show
that @, (z; h) goes to 0 as h — 0. Finally, the relationship in (21) together with
the above asymptotic expansions and the fact that Cov{N,(x; h), D,(x;h)} =
O(1/n) lead to the desired result (9). W
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5.2 Proof of Theorem 2

The proof follows the same lines as those of Theorem 1. In fact, we write
mn(z) = Hy(z;h)/F,(x;h) to establish an expression similar to (16) with

Ho (3 ) = 0 S0 (o) fro( Xo) P (X,) and By (23 h) = ! Sy Ko (X;) =
D, (x; h).

In order to express the expectation of m,(x), we first calculate

E{H,(2;h)} =ro(2)E[{ro(X1)} V1K, (X))]
=ro(z) Y {ro(2)} " f(2)m(z) Pr(Key = 2)

ZGSz

= ro(2)E{(wf)(Kan)}

= o) [(PHE(Ce)} + 5Var(Kap)(wh)® (@) + o(h)]

Thus, under condition (4) of discrete associated kernel, we get

E{Hy(z;h)} = (m[)(x) + ;Var(/Cx,h)ro(fv)(wf)(z) () + o(h).

In addition, we also have

ro(z)

Cov{F,(x;h), H,(z; h)} = E [{T0<X1)}_1Y1Kih(X1)]

ro(z)

E [{To(Xl)}fllex,h(Xl)} EA{K.n(X2)}
=0(1/n).

Hence, it suffices to use the same arguments as in the proof of Theorem 1 to
obtain the bias of m,(z).

As for the variance of m,(x), the proof being quite similar to that of m,(x)
in Theorem 1, details are therefore omitted.Hl

5.8 Proof of Theorem 3

In order to establish the results of Theorem 3, the difference B — By will be
expressed as an average of i.i.d. variables with mean zero plus remainder term
as in (23). Indeed, let P be the generating joint distribution of (X,Y’) and P,
its corresponding empirical distribution. We consider functional estimators
of B of the form (3 = T(P,) for which 3 = T(P) realizes the best approx-
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imant r(x; By) to m(xz) with respect to some distance measure, for instance
the Kullback-Leibler distance. We then introduce the influence function of
dimension p (of ()

I(X,Y) = Im(T{(1 - )P + eS(xy)} — T(P))/e.

which has zero mean and finite covariance matrix, and where J(x y) denotes
the unit point mass in (X, Y’). Hence, one has

n

n;3

where b/n can be considered as the bias of the estimator  and the last term
€n is such that E(e,) = O(n™?).

In addition, we note

o Tol@) | _ To(@) Moo (@) — ug(X)1T
U, = TO(Xi)KKx,h(Xl)? Vi T0<Xi>§/ZKx’h(Xz){ o) o(Xi)},
W; ro(Xi)Y;Kx’h(XZ)M( , Xi), Z; = Ky 0(X5),

and we then write U* = (1/n) 3, U; and the same for V*, W* and Z*.
Thus, it comes that m)(z) = U*/Z*, Au(x) = (6 — o)V*/Z* and B,(z) =
(B = Bo)"W*(B — o)/ Z".

Looking first to the expectation of the estimator m,, such that
1
E{my, ()} = {7, (v)} + B{Au(2)} + SE{Ba(2)}.

Let us recall that the expectation E{m?(z)} can be deduced from (13) of
Theorem 2 as E{m?(x)} = bias{m,(z)} + ro(z)w(z).

For A, (x), we reformulate it as shown in Eq. (16). Thus, to calculate E{ A, (z)},
we need E{(5 — 6o)V*}, E(Z*) and Cov{(3 — (3)V*, Z*}. Note that the ex-
pectation of Z* = D,,(z;h) is already found in the proof of Theorem 1. From
(23) and E{I(X;Y;)} = 0 for all i, we get

E{(F — 6o)V"} =n"E{Vil (X1, Y1)} +n "BE(V) + O(n"?)
=o(hn™") + O(n?).

Indeed, using both the discrete Taylor expansion and the condition (4) of the
discrete associated kernel, we have successively
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E{‘/l <X1Y1)} E ( ) YIKmh(Xl)I(Xlu}/i>{u0(x) _uo(Xl)}T

)
Z

z){uo(x) — uo(z nyzy

g Z PH(KCe = =) () ~ u«z)}”(ro)ég)

=r0(x) [to(x) — uo{E(Ken)}]" s{E(Ken)}
Fgro(@Var(Kes) ([uo(e) - uolBEKzn) ) sEK)) +olh)

Z—;To( War (K, )[{u }T(x)s(a:)+2{ugl>}T(x)S<1>(x)]+O(h)
=a(x) + o(h),

where a(z) = (=1/2)ro(z)Var(Kan) [{u6”}7 (@)s(x) + 2{ug} T (2)sWV(2)], g() =
E{I(X,Y)Y|X = z}, s(x) = f(x)q(z)/ro(x). Hence, under condition (5) on
the variance of K, ,, we have E{V11(X,Y1)} and E(V}) which are of order o(h).
Thus, in the reformulation of A, (z) as seen in (16), n 'a(z) takes the place

of mf such that

E{(B — fo)V"} = n~"a(x) = o(hn™") + O(n?).

Then, we express

Cov{(B — Bo)V*, 2"y =Cov(V*I*, Z*) + n~'Cov(bV*, Z*) + Cov(e,V*, Z*)
=o(hn™') + O(n™?),

where
Cov(V*I*, Z*) = n 'E(Z))E(Vi1;) + O(n™?),
n~'Cou(bV*, Z*) = n 'E(Z))E(V1) + O(n™?)
and E(V]) = o(h). In addition, from the decomposition of A, (x) as in (16),
we have R
E[(3 = B)V{Z" = f(2)}] = O(n"* +n") + o(h).
Finally, we obtain E(A,) = o(hn™' + h) + O(n™2 + n71).

In the same manner, we calculate the expectation E(B,) = o(hn™! + h) +
O(n™2 4+ n~'). We omit here to present all the calculus and we give only the
mains results. Firstly, we obtain

E{(B — Bo)W*(B — Bo)"} =n "Tr{E(W)E(LI])} + O(n™?)
=o(hn™') + O(n™?)
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and E(W;) = o(h). Then, we get
Cov{(B — Bo)W*(B = Bo)", 2"} = O(n~?).
Lastly, we find
E[{(B = B)W*(B = 60)" HZ" = f(2)}’] = O +n"") + o(h)

which appears in the decomposition of B, (z) as in (16). The previous term
allow to calculate E(B,,).

Finally, the expectation of the estimator 7, results in E{m,,(z)} = E{m? (z)}+
O(n~2+n~') + o(hn~! + h) which provides the desired result asymptotically.

From (15), we express the variance of m,(x) as

1
Var{m,(z)} =Var{m(z)} + Var{A,(z)} + ZVar{Bn(x)}
+Cov{my (), An(x)} + Cov{mi(z), B,(z)}
+;COU{AH($), Bn(x)}.
The expression of Var{m?(z)} is arleady found in (14) of Theorem 2. For the

variance of A,,, by establishing an expression of Var{A, (z)} similarly to (21),
it follows that we need to calculate

Var{(8 — Bo)V*} =E{(B — Bo) W*)*(B = Bo)"} + O(n~?)
=n"'"E(W)E(LI])E(B1)" +O(n™?)
=0(n"?) +o(h*n1).
Then, by taking into account the others terms resulting from the presentation

of the variance of A,(z) as in (21), it ensues that Var{A,(x)} = O(n™? +
n~) + o(h*n~! + n~1). Furthermore, it can be proved

Contma) An(o) =2 { TV - e o)
=o(hn™') + O(n™?)

because in the expression of E{m%A,} the more influential terms are

E(U*I*'V*) 4+ n E(U)E(VL) + O(n™?)
0 (hnil) +0(n™?)

E{U"(8 — o)V}

20



and Cov{U*(3—[,)V*, (Z*)?} which can be also shown to be of order o(hn~1)+
O(n™2).

For B,, without give the details here, it can proved that Var{B,(z)}

o(h*n=2)+0(n"%), Cov{m?(z), B,(x)} = o(hn~?)+0(n~?) and also C’ov{An(_x), B, (z)}

o(h’n~') + O(n™?).

Finally, we obtain Var{m,(z)} = Var{m2(z)} + O(n™2?) + o(hn™' + hn=2 +
h*n=2 + n~!') and it ensues the desired asymptotic result. B
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