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This work deals with a semiparametric estimation of a count regression function m that can be represented as a product of an unknown discrete parametric function r and an unknown discrete "smooth" function ω. We propose an estimation procedure in two steps: first, we construct an approximation r of r, then we use a discrete associated kernel method to estimate non-parametrically the multiplicative correction factor ω = m/ r. The asymptotic and small-sample properties of the proposed estimator are investigated. Its comparison with the classical Nadaraya-Watson type count regression estimator shows that an improvement in terms of bias is achieved.

Introduction

Let (X 1 , Y 1 ), (X 2 , Y 2 ), . . . , (X n , Y n ) be a sequence of i.i.d. random variables defined on N d × R and such that

Y i = m(X i ) + i , (1) 
where m is an unknown regression function and the i 's are assumed to have zero mean and finite variance. Parametric and nonparametric estimation of the regression function m are classical problems. The continuous case has received much more attention than the discrete one. Semiparametric approaches have been considered by several authors as well. For a recent account of the (multiplicative or additive) combinations of parametric and nonparametric kernel estimators, see, e.g., [START_REF] Martins-Filho | A class of improved parametrically guided nonparametric regression estimators[END_REF], [START_REF] Su | Nonparametric prewhitening estimators for conditional quantiles[END_REF], [START_REF] Fan | Local quasi-likelihood with a parametric guide[END_REF]. While, nonparametric estimation of discrete functions such as probability mass or count regression functions is definitely less popular. An extension of the well known kernel technique has been investigated by [START_REF] Kokonendji | Discrete triangular distributions and non-parametric estimation for probability mass function[END_REF]Kokonendji et al. ( , 2009b)).

In this paper we focus on the semiparametric estimation of the unknown count regression function m given by (1). More precisely, we investigate the following form:

m(x) = r(x; β)ω(x)

(2) = : m ω (x; β), for x ∈ N d , where r(•; β) is a parametric function that depends on unknown parameter β = (β 1 , . . . , β p ) T , and ω(•) is a nonparametric multiplicative correction function. As shown later on, by splitting the estimation problem of the conditional mean function m(x) = E(Y |X = x) up into a parametric procedure for r and a kernel-based technique for ω, we improve the asymptotic bias of the proposed estimator.

The rest of this paper is organized as follows. Section 2 briefly recalls the nonparametric count regression estimator of m and investigates its asymptotic bias and variance expansions. In Section 3, we present our semiparametric estimation of (2) for d = 1. The proposed estimator is constructed in two steps: first, we use a generalized least squared criterion to find an estimate β of the parameter β in r(x; β); then a discrete associated kernel approach [START_REF] Kokonendji | Discrete triangular distributions and non-parametric estimation for probability mass function[END_REF](Kokonendji et al. , 2009a) ) is used to provide a nonparametric estimator of the multiplicative correction factor ω(x; β) = m(x)/r(x; β). The asymptotic bias and variance of the obtained estimator are investigated and compared to those of a nonparametric discrete associated kernel estimator. The extension to higher dimension is tackled as well. Section 4 provides two applications on real data, while proofs of all results of Section 3 are postponed to Section 5.

Nonparametric count regression estimator

In this section we summarize some asymptotic expansions of the nonparametric count regression estimator introduced by Kokonendji et al. (2009b). Indeed, suppose that we are interested in a count regression function m(x) = E(Y |X = x) in which the r.v. Y and X belong to R and N respectively; without loss of generality, we here present the univariate case with d = 1 (see Section 3.3). Then, the well-known Nadaraya-Watson kernel estimate might be extended to the case of count regression as follows

m n (x) = n i=1 Y i K x,h (X i ) n j=1 K x,h (X j ) , x ∈ N, (3) 
where h = h(n) > 0 is an arbitrary sequence of smoothing parameters that fulfills lim n→∞ h(n) = 0, while K x,h (•) is a suitably chosen discrete associated kernel function (e.g. [START_REF] Kokonendji | Discrete triangular distributions and non-parametric estimation for probability mass function[END_REF]. The kernel function K x,h (•) is itself a probability mass function (p.m.f.) with support S x that does not depend on h and such that x ∈ S x . Furthermore, we also impose the following two conditions:

lim h→0 E(K x,h ) = x, (4) 
lim h→0 V ar(K x,h ) = 0, (5) 
where K x,h is the discrete random variable whose p.m.f. is K x,h (•). See also [START_REF] Abdous | Consistency and asymptotic normality for discrete associated kernel estimator[END_REF] for a review of discrete associated kernels and asymptotic behaviour for discrete smoothing using (4) and (5).

To deal with derivatives of any count function g : N → R, we will use finite differences instead of the usual differentiation on R. For k ∈ N \ {0}, we will put

g (k) (x) = {g (k-1) (x)} (1) and g (1) (x) =      {g(x + 1) -g(x -1)}/2 if x ∈ N \ {0} g(1) -g(0) if x = 0.
(6) For instance, it follows that the finite difference of second order is given by

g (2) (x) =              {g(x + 2) -2g(x) + g(x -2)}/4 if x ∈ N \ {0, 1} {g(3) -3g(1) + 2g(0)}/4 if x = 1 {g(2) -2g(1) + g(0)}/2 if x = 0. ( 7 
)
Note that the finite differences g (k) are always defined no matter the smoothness of g.

The following theorem presents the asymptotic bias and variance of the nonparametric estimator m n (x) in (3).

Theorem 1 Let f be a p.m.f. of a discrete r.v. X defined on N. Assume that f (x) = Pr(X = x) > 0 for a given x ∈ N. Furthermore, suppose that the bandwidth h = h(n) > 0 satisfies lim n→∞ h = 0 and that the discrete kernel K x,h (•) fulfills assumptions (4)-( 5). Then, the bias and variance of m n (x) admit the following expansions

Bias{ m n (x)} = m (2) (x) + 2m (1) (x) f (1) f (x) V ar(K x,h ) 2 +O 1 n +o(h), (8) 
V ar{ m n (x)} = V ar(Y |X = x) nf (x) {Pr(K x,h = x)} 2 + o 1 n , (9) 
where f (1) , m (1) and m (2) are finite differences as defined in ( 6) and ( 7).

The proof is given in Section 5.

Semiparametric count regression estimator

Following Kokonendji et al. (2009a) for p.m.f., we here adapt the semiparametric approach of count regression function m in (1) using expression in (2) with a parametric start r(•; β) and a nonparametric correction function ω(•).

In fact, given a sample (X i , Y i ), i = 1, . . . , n, it uses any parametric estimation procedure to provide an estimation of β involved in r(x; β), and it serves the nonparametric discrete associated kernel procedure to estimate the correction function ω(x) = m(x)/r(x; β) by the following Nadaraya-Watson type estimator

ω n (x; β) = n i=1 Y i K x,h (X i ) r(X i ; β) n j=1 K x,h (X j ) , x ∈ N, (10) 
where β = ( β 1 , . . . , β p ) T is an estimate of β constructed in the previous step (by generalized least squared method for example). Upon combining these two estimation steps, we end up with the following semiparametric estimator m n of m

m n (x) = r(x; β) ω n (x; β) = r(x; β) n i=1 Y i K x,h (X i ) r(X i ; β) n j=1 K x,h (X j ) . (11) 
Next, let us examine the asymptotic bias and variance of the proposed estimator (11) and compare them to those of the traditional estimator (3). These asymptotics will be tackled under two settings: known and unknown parametric functionr r(x; β). Besides, we will investigate the multivariate case as well.

Known parametric start

Suppose that based on a goodness-of-fit test or any a priori knowledge about m we decide to fix the parametric start in (2) and put r 0 (x) = r(x; β 0 ). Then, by letting m(x) = r 0 (x)ω(x) and by using the estimation procedure described above, it is easy to see that a semiparametric estimate of m is given by

m n (x) = r 0 (x) ω n (x) = n i=1 Y i K x,h (X i ) n j=1 K x,h (X j ) × r 0 (x) r 0 (X i ) , x ∈ N. ( 12 
)
The following theorem exhibits the asymptotic expansions of m n (x)'s bias and variance

Theorem 2 Let x be a given point in N satisfying f (x) = Pr(X = x) > 0.

Assume that the regression function satisfies m(x) = r 0 (x)ω(x) with r 0 (x) = r(x; β 0 ) being a fixed start. Then, provided that

h = h(n) → 0 for n → ∞, the estimator m n (x) verifies Bias{ m n (x)} = r 0 (x)ω (2) (x) + 2r 0 (x)ω (1) (x) f (1) f (x) V ar(K x,h ) 2 +O 1 n + o(h), (13) 
V ar m n (x) = V ar(Y |X = x) nf (x) {Pr(K x,h = x)} 2 + o 1 n , (14) 
where f (1) , ω (1) and ω (2) are finite differences as defined in ( 6) and (7).

Proof. See Section 5.

A comparison of the asymptotic expansions of the semiparametric estimator m n in (12) and the nonparametric discrete Nadaraya-Watson type estimator m n in (3) shows that the leading terms in the variance expressions are identical, while the bias expressions are different. More precisely, since under the assumption m(x) = r 0 (x)ω(x) one has

m (1) = (r 0 ω) (1) = r 0 ω (1) + r (1) 0 ω m (2) = (r 0 ω) (2) = r 0 ω (2) + 2r
(1) 0 ω (1) + r

(2) 0 ω, it follows that the difference between the leading terms in Bias{ m n (x)} and Bias{ m n (x)} is given by:

r (2) 0 (x)ω(x) + 2r (1) 0 (x)ω (1) (x) + 2r (1) 0 (x)ω(x) f (1) f (x) V ar(K x,h ) 2 .
Unfortunately, the sign of this quantity can be either positive or negative.

Unknown parametric start

Next, let us consider the semiparametric count regression estimator m n in (11) of m in ( 2) with an estimate β of β (still constructed by generalized least squared method for example). In the situation where the parametric function r(x; β) is misspecified, the estimator β of β converges in probability to a certain value β 0 such that r(x; β 0 ) is the best approximant to m(x) with respect to the Kullback-Leibler distance

x∈N m(x) log m(x) r(x; β) =: d {m(•), r(•; β)} of r(x; β)
from the true function m(x); see, for example, [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF].

A Taylor expansion of the ratio r(x; β)/r(X i ; β) around β 0 provides

r(x; β) r(X i ; β) = exp{log r(x; β) -log r(X i ; β)} . = r 0 (x) r 0 (X i ) 1 -{u 0 (X i ) -u 0 (x)} T ( β -β 0 ) + 1 2 ( β -β 0 ) T M (x, X i )( β -β 0 ) ,
where .

= denotes an asymptotic equivalent, and the matrix M (x,

X i ) is M (x, X i ) = v 0 (x) -v 0 (X i ) + {u 0 (x) -u 0 (X i )} {u 0 (X i ) -u 0 (x)} T
such that u 0 (x) and v 0 (x) are the gradient and the Hessian matrix with respect to β, respectively, evaluated in β 0 . Using the above expansion, the estimator m n in (11) can be approximated as

m n (x) . = m 0 n (x) + A n (x) + 1 2 B n (x), (15) 
where m 0 n is the estimator in ( 12) with fixed start and the two others terms are

A n (x) = n i=1 [{u 0 (X i ) -u 0 (x)} T ( β -β 0 )]Y i K x,h (X i ) n j=1 K x,h (X j ) × r(x; β 0 ) r(X i ; β 0 ) , B n (x) = n i=1 {( β -β 0 ) T M (x, X i )( β -β 0 )}Y i K x,h (X i ) n j=1 K x,h (X j ) × r(x; β 0 ) r(X i ; β 0 ) .
We then formulate the following result.

Theorem 3 Let x be a given point in N satisfying f (x) = Pr(X = x) > 0.

Assume that the parametric function r 0 (x) = r(x; β 0 ) is the best approximant of the regression function m(x) under the Kullback-Leibler criterion, with ω(x) = m(x)/r 0 (x) being a multiplicative correction factor. Then, provided that n → ∞ and h = h(n) → 0, the estimator m n (x) in ( 11) satisfies

Bias{ m n (x)} = r 0 (x)ω (2) (x) + 2r 0 (x)ω (1) (x) f (1) f (x) V ar(K x,h ) 2 +O 1 n + o(h), V ar m n (x) = V ar(Y |X = x) nf (x) {Pr(K x,h = x)} 2 + o 1 n ,
where f (1) , ω (1) and ω (2) are finite differences as defined in ( 6) and ( 7).

Proof. See Section 5.

Looking at the previous theorem, the asymptotic bias and variance are the same as in Theorem 2 for the case of the fixed start r 0 . Hence, the proposed estimator m n in (11) of m can once again be shown to be better or not than the nonparametric one in (3). See, for example, Kokonendji et al. (2009a) for some illustrations in the case of count data distributions.

Multivariate case

The multidimensional estimators (3) and ( 11) are easily obtained by using a multiplicative d-univariate kernel

K x,h (X i ) = d k=1 K [k] x k ,h k (X ik ), with x = (x 1 , . . . , x d ) T , h = (h 1 , . . . , h d ) T , X i = (X i1 , . . . , X id ) T and K [k]
x k ,h k (•) is a univariate discrete associated kernel satisfying (4) and ( 5) for all k = 1, . . . , d. We now consider the d-dimensional discrete functions m(•), r(•; β) and ω(•) in (2) with their corresponding partial finite differences in the sense of ( 6) and (7), for example, g

(1)

k (x) = ∂g(x)/∂x k and g (2) kl (x) = ∂ 2 g(x)/(∂x k ∂x l )
and so on.

The asymptotic bias and variance of the d-dimensional discrete Nadaraya-Watson estimator replacing ( 8) and ( 9), respectively, are given by

Bias{ m n (x)} = 1 2 d k=1    m (2) kk (x) + 2m (1) k (x)   f (1) k f   (x)    V ar(K [k] x k ,h k ) +O 1 n + o h 2 1 + h 2 2 + . . . + h 2 d h 1 h 2 . . . h d , V ar{ m n (x)} = V ar(Y |X = x) nf (x) d k=1 {Pr(K [k] x k ,h k = x k )} 2 + o 1 n .
The corresponding expression for the bias of the new estimator given in Theorem 3 is

Bias{ m n (x)} = 1 2 d k=1    r 0 (x)ω (2) kk (x) + 2r 0 (x)ω (1) k (x)   f (1) k f   (x)    V ar(K [k] x k ,h k ) +O 1 n + o h 2 1 + h 2 2 + . . . + h 2 d h 1 h 2 . . . h d ,
while the variance is the same as that of the multidimensional discrete Nadaraya-Watson estimator above. Similarly to that for univariate case, the change of bias is clearly point out.

Applications

In this section two practical datasets of demography and economy are used for applying the nonparametric and semiparametric discrete regression approaches in comparison with classical parametric regression models. The first example concerns mortality rates [START_REF] Copas | Non-parametric graduation using kernel methods[END_REF]. For each age x ∈ N, a population of size s x is exposed to risk, associated to a number of deaths d x . The crude death rates m 0 (x) is calculated as

m 0 (x) = d x s x , x ∈ N.
The frequency mortality rate is generally increasing with respect to the age, having a small numbers of deaths at younger ages. The graduated values obtained by applying a logistic model does not fit well to data (see Figure 1). Indeed, the parametric model produces oversmoothing and, in particular, does not succeed to describe the behaviour on the ages x ∈ {42, 44, 45, 46}. The second example is a sales dataset with multiple y i at a given x i (Kokonendji et al., 2009b). We analyse the amount of daily sales of a new product during the 24 first days. The 151 observations (x i , y i ), i = 1, . . . , 24, represent the day x i and the corresponding mean of sales numbers y i ∈ {y Ai , y Bi , . . . , y Hi }. The number of sale centres for each state (A, B, . . ., H) is not available except for the state H where this number is equal to one. We apply generalized linear models (GLM) in comparison with nonparametric and semiparametric models for fitting the sales data (Figure 2). The given examples indicate that the use of continuous semiparametric model may provide fitted values at any point of the real line numbers, while the predictor is an ordinal variable. This motivates to recommend a discrete model that focuses on ordinal covariates and has the same nature. Hence, the nonparametric correction in the two examples is available only for discrete predictors.

For the discrete semiparametric estimator, the logistic model and GLM are used as start functions. The measure of error used is the root mean squared error RMSE defined as

RM SE = n j=1 (y j -y j ) 2 n ,
where y j is the adjustement of the j-th observation y j and n is the number of observations.

Parametric models

The GLM represents a normal model for the response variable Y i with a logarithmic link. It has a linear predictor based on a combination of explanatory variables such as

y i = θ 1 + θ 2 x i + θ 2 log x i + e i , x i ∈ N.
The nonlinear model corresponds to a logistic one for the situation of population growth towards a limited value. It is given by

y i = θ L 1 1 + exp - x i -θ L 2 θ L 3 + e i , x i ∈ N.
The fixed effect parameter θ L 1 is the asymptote towards which the population grows. The parameter θ L 2 is the midpoint and corresponds to the time at which y i = θ L 1 /2. The parameter θ L 3 is the scale and represents the distance on the time axis between the midpoint and the point where the response is θ L 1 /(1 + e -1 ).

Discrete associated kernel

For (x, a) ∈ N × N and h > 0, the symmetric discrete triangular associated kernel K a;x,h on support S a;x = {x, x ± 1, . . . , x ± a} has discrete probability distribution given by

K a;x,h (z) = (a + 1) h -|z -x| h P (a, h) , ∀z ∈ S a;x ,
where P (a, h) = (2a + 1)(a + 1) h -2 a k=0 k h . That kernel fulfills assumptions (4) -( 5). Note that a general discrete triangular associated kernel has been proposed by [START_REF] Kokonendji | Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions[END_REF]; the corresponding R package is also available (see Senga [START_REF] Senga Kiessé | The R package for general discrete triangular distributions[END_REF].

Concerning the regression estimators with discrete triangular associated kernels, the optimal bandwidth parameter is selected by the cross-validation method; refer to Kokonendji et al. (2009) for discrete case and, [START_REF] Hardle | Optimal bandwidth selection in nonparametric regression function estimation[END_REF] for continuous one. For a given associated discrete kernel, the optimal bandwidth is h cv = arg min h>0 CV (h) with

CV (h) = 1 n n i=1 {Y i -m -i (X i ; h)} 2 , where m -i (X i ; h) = n j =i Y j K X i ,h (X j )/ n j =i K X i ,h (X j )
is the leave-one-out kernel estimator of m n (X i ; h). However, this method does not always converge and, thus, other values of the bandwidth parameter h ∈ {0.5, 3.5} are proposed to point out its influence on goodness-of-fit or discrete smoothness. Here, this procedure is applied only for discrete nonparametric estimator but some works are in progress on its development for discrete semiparametric estimator. For the arm a ∈ N, a value equals to 1 or 2 is sufficient because the error connected to the adjustment is increasing with respect to the arm a [START_REF] Kokonendji | Discrete triangular distributions and non-parametric estimation for probability mass function[END_REF]; hence, we consider the discrete triangular associated kernel a = 2.

Mortality rates

The Figure 1 and Table 1 present the results connected to death rates data. For this dataset, the cross-validation procedure does not converge, consequently we use the two values of h proposed previously. First, using semiparametric estimator with discrete triangular kernel a = 2, h = 0.5 provides the best adjustement which corresponds to the smallest RMSE; the performance of nonparametric and semiparametric approaches are closed and outperform the parametric model. Then, by changing the bandwidth value in h = 3.5 improves the amount of smoothing provided by the two discrete associated kernel estimators. Finally, the semiparametric estimator stays the best one in comparison to the nonparametric and the difference between the performance of the two estimators is more clear. 

Sales data

The Figure 2 and Table 2 present the results corresponding to sales data.

For this example, the cross-validation method gives an optimal bandwidth value h cv = 0.132 for discrete nonparametric estimator; in comparison, we Fig. 2. GLM, nonparametric and semiparametric regressions using symmetric discrete triangular associated kernels on sales data 5 Proofs

Proof of Theorem 1

Let us rewrite the estimator m n (x) in (3), as follows [START_REF] Abdous | Consistency and asymptotic normality for discrete associated kernel estimator[END_REF]Theorem 2.4) and, similarly, the convergence of N n (x; h) to mf (x) can de deduced. From here, following [START_REF] Bosq | Théorie de l'Estimation Fonctionnelle[END_REF]p. 119-121), we can write

m n (x) = N n (x; h) D n (x; h) , with D n (x; h) = n -1 n j=1 K x,h (X j ) and N n (x; h) = n -1 n i=1 Y i K x,h (X i ). The convergence of D n (x; h) to f (x) is established by
m n (x) = m(x) + 1 f (x) {N n (x; h) -(mf )(x)} - (mf )(x) f 2 (x) {D n (x; h) -f (x)} - 1 f 2 (x) {N n (x; h) -(mf )(x)}{D n (x; h) -f (x)} + N n (x; h) f 3 (x) {D n (x; h) -f (x)} 2 {1 + o(1)} a.s. ( 16 
)
The expectation of D n (x; h) can be approximated as

E{D n (x; h)} = E{f (K x,h )} = f {E(K x,h )} + 1 2 V ar(K x,h )f (2) (x) + o(h),
where f (2) is the finite difference of second order as in (7). Similarly, for the expectation of N n (x; h), we have

E{N n (x; h)} = E{Y 1 K x,h (X 1 )} = z∈Sx m(z)f (z) Pr(K x,h = z) = E{(mf )(K x,h )} = (mf ){E(K x,h )} + 1 2 V ar(K x,h )(mf ) (2) (x) + o(h),
Thus, under the condition (4) of discrete associated kernel, we obtain

E{D n (x; h)} -f (x) = 1 2 V ar(K x,h )f (2) (x) + o(h) (17) 
and

E{N n (x; h)} -(mf )(x) = 1 2 V ar(K x,h )(mf ) (2) (x) + o(h). (18) 
Next, we have

E[N n (x; h){D n (x; h) -f (x)} 2 ] = E [N n (x; h) -E{N n (x; h)}][D n (x; h) -E{D n (x; h)}] 2 + 2[E{D n (x; h)} -f (x)]Cov{D n (x; h), N n (x; h)} + E[{D n (x; h) -f (x)} 2 ]E{N n (x; h)} = O(1/n) 2 + O(1/n) + E{D n (x; h) -f (x)} 2 E{N n (x; h)}. (19) 
To get the last inequality, we used the fact that

Cov{D n (x; h), N n (x; h)} = 1 n [E{Y 1 K 2 x,h (X 1 )} -E{Y 1 K x,h (X 1 )}E{K x,h (X 2 )}] = O(1/n). and E [N n (x; h) -E{N n (x; h)}][D n (x; h) -E{D n (x; h)}] 2 = O(1/n) 2 .
Similar arguments enable to see that

E{D n (x; h) -f (x)} 2 E{N n (x; h)} -f (x)E[{N n (x; h) -(mf )(x)}{D n (x; h) -f (x)}] = O(1/n) + o(h). (20) 
Upon plugging the expansions ( 17)-( 20) into ( 16), we end up with

E{ m n (x)} -m(x) = (mf ) (2) (x) f (x) - mf (2) (x) f (x) V ar(K x,h ) 2 + O(1/n) + o(h).
Finally, to obtain (8), simply note that (mf

) (2) = m (2) f + 2m (1) f (1) + mf (2) .
As for the variance expansion (9), it follows from ( 16) that

V ar{ m n (x)} = V ar{N n (x; h)} f 2 (x) + (mf ) 2 (x) f 4 (x) V ar{D n (x; h)} -2 (mf )(x) f 3 (x) Cov{N n (x; h), D n (x; h)} + o 1 n . (21) 
The variance of D n (x; h) might be written as follows

V ar {D n (x; h)} = 1 n y∈Sx f (y) {Pr(K x,h = y)} 2 - 1 n    y∈Sx f (y) Pr(K x,h = y)    2 = 1 n f (x){Pr(K x,h = x)} 2 - 1 n f 2 (x) + R n (x; h), with R n (x; h) = 1 n y∈Sx\{x} f (y) {Pr(K x,h = y)} 2 + 1 n f 2 (x) - 1 n   f (x) + y∈Sx {f (y) -f (x)} Pr(K x,h = y)   2 . ( 22 
)
This quantity becomes negligible under the hypothesis (4) and ( 5) of discrete associated kernel; i.e. for any x ∈ N, R n (x; h) → 0 when n → ∞ and h = h(n) → 0. Indeed, let y ∈ S x \ {x} we can find a constant η = η(y) > 0 such that

Pr (K x,h = y) ≤ Pr(|K x,h -x| > η) ≤ 1 η 2 E{(K x,h -x) 2 } = 1 η 2 [V ar(K x,h ) + {E(K x,h ) -x} 2 ] → 0 as h → 0,
and for y = x we deduce the asymptotic modal probability Pr(K x,h = x) → 1 when h → 0.

Similarly, the variance of N n (x; h) can be expressed

V ar{N n (x; h)} = 1 n y∈Sx E(Y 2 1 |X 1 = y)f (y){Pr(K x,h = y)} 2 - 1 n    z∈Sx E(Y 1 |X 1 = z)f (z) Pr(K x,h = z)    2 = 1 n E(Y 2 1 |X 1 = x)f (x){Pr(K x,h = x)} 2 + 1 n y∈Sx\{x} E(Y 2 1 |X 1 = y)f (y){Pr(K x,h = y)} 2 - 1 n   f (x)E(Y 1 |X 1 = x) + y∈Sx {f (y) -f (x)}E(Y 1 |X 1 = y) Pr(K x,h = y)   2 = 1 n f (x){Pr(K x,h = x)} 2 {V ar(Y |X = x) + m 2 (x)} - 1 n (mf ) 2 (x) + Q n (x; h),
where

Q n (x; h) = 1 n y∈Sx\{x} E(Y 2 |X = x)f (y) {Pr(K x,h = y)} 2 + 1 n (mf ) 2 (x) - 1 n   (mf )(x) + y∈Sx {(mf )(y) -(mf )(x)} Pr(K x,h = y)   2 .
The same arguments as those used for R n (x; h) in ( 22) might be used to show that Q n (x; h) goes to 0 as h → 0. Finally, the relationship in (21) together with the above asymptotic expansions and the fact that Cov{N n (x; h), D n (x; h)} = O(1/n) lead to the desired result (9).

Proof of Theorem 2

The proof follows the same lines as those of Theorem 1. In fact, we write m n (x) = H n (x; h)/F n (x; h) to establish an expression similar to ( 16) with

H n (x; h) = n -1 n i=1 {r 0 (x)/r 0 (X i )}Y i K x,h (X i ) and F n (x; h) = n -1 n j=1 K x,h (X j ) = D n (x; h).
In order to express the expectation of m n (x), we first calculate

E{H n (x; h)} = r 0 (x)E[{r 0 (X 1 )} -1 Y 1 K x,h (X 1 )] = r 0 (x) z∈Sx {r 0 (z)} -1 f (z)m(z) Pr(K x,h = z) = r 0 (x)E{(ωf )(K x,h )} = r 0 (x) (ωf ){E(K x,h )} + 1 2 V ar(K x,h )(ωf ) (2) (x) + o(h) .
Thus, under condition (4) of discrete associated kernel, we get

E{H n (x; h)} = (mf )(x) + 1 2 V ar(K x,h )r 0 (x)(ωf ) (2) (x) + o(h).
In addition, we also have

Cov{F n (x; h), H n (x; h)} = r 0 (x) n E {r 0 (X 1 )} -1 Y 1 K 2 x,h (X 1 ) - r 0 (x) n E {r 0 (X 1 )} -1 Y 1 K x,h (X 1 ) E {K x,h (X 2 )} = O(1/n).
Hence, it suffices to use the same arguments as in the proof of Theorem 1 to obtain the bias of m n (x).

As for the variance of m n (x), the proof being quite similar to that of m n (x) in Theorem 1, details are therefore omitted.

Proof of Theorem 3

In order to establish the results of Theorem 3, the difference β -β 0 will be expressed as an average of i.i.d. variables with mean zero plus remainder term as in (23). Indeed, let P be the generating joint distribution of (X, Y ) and P n its corresponding empirical distribution. We consider functional estimators of β of the form β = T (P n ) for which β = T (P ) realizes the best approx-imant r(x; β 0 ) to m(x) with respect to some distance measure, for instance the Kullback-Leibler distance. We then introduce the influence function of dimension p (of β)

I(X, Y ) = lim →0 [T {(1 -)P + δ (X,Y ) } -T (P )]/ ,
which has zero mean and finite covariance matrix, and where δ (X,Y ) denotes the unit point mass in (X, Y ). Hence, one has

β -β 0 = 1 n n i=1 I(X i , Y i ) + b n + n , (23) 
where b/n can be considered as the bias of the estimator β and the last term

n is such that E( n ) = O(n -2 ).
In addition, we note

U i = r 0 (x) r 0 (X i ) Y i K x,h (X i ), V i = r 0 (x) r 0 (X i ) Y i K x,h (X i ){u 0 (x) -u 0 (X i )} T , W i = r 0 (x) r 0 (X i ) Y i K x,h (X i )M (x, X i ), Z i = K x,h (X i ),
and we then write U * = (1/n) n i=1 U i and the same for V * , W * and Z * . Thus, it comes that m

0 n (x) = U * /Z * , A n (x) = ( β -β 0 )V * /Z * and B n (x) = ( β -β 0 ) T W * ( β -β 0 )/Z * .
Looking first to the expectation of the estimator m n such that

E{ m 0 n (x)} . = E{ m 0 n (x)} + E{A n (x)} + 1 2 E{B n (x)}.
Let us recall that the expectation E{ m 0 n (x)} can be deduced from (13) of Theorem 2 as E{ m 0 n (x)} = bias{ m n (x)} + r 0 (x)ω(x).

For A n (x), we reformulate it as shown in Eq. ( 16). Thus, to calculate E{A n (x)}, we need E{( β -β 0 )V * }, E(Z * ) and Cov{( β -β 0 )V * , Z * }. Note that the expectation of Z * = D n (x; h) is already found in the proof of Theorem 1. From (23) and E{I(X i Y i )} = 0 for all i, we get

E{( β -β 0 )V * } = n -1 E{V 1 I(X 1 , Y 1 )} + n -1 bE(V 1 ) + O(n -2 ) = o(hn -1 ) + O(n -2 ).
Indeed, using both the discrete Taylor expansion and the condition (4) of the discrete associated kernel, we have successively

E{V 1 I(X 1 Y 1 )} = E r 0 (x) r 0 (X 1 ) Y 1 K x,h (X 1 )I(X 1 , Y 1 ){u 0 (x) -u 0 (X 1 )} T = z r 0 (x) r 0 (z) K x,h (z){u 0 (x) -u 0 (z)} T f (z) y yI(z, y)g(y|z) = r 0 (x) z Pr(K x,h = z){u 0 (x) -u 0 (z)} T f (z)q(z) r 0 (z) = r 0 (x) [u 0 (x) -u 0 {E(K x,h )}] T s{E(K x,h )} + 1 2 r 0 (x)V ar(K x,h ) [u 0 (x) -u 0 {E(K x,h )}] T s{E(K x,h )} (2) + o(h) = - 1 2 r 0 (x)V ar(K x,h ) {u (2) 0 } T (x)s(x) + 2{u (1) 0 } T (x)s (1) (x) + o(h) = a(x) + o(h), where a(x) = (-1/2)r 0 (x)V ar(K x,h ) {u (2) 0 } T (x)s(x) + 2{u (1) 0 } T (x)s (1) (x) , q(x) = E{I(X, Y )Y |X = x}, s(x) = f (x)q(x
)/r 0 (x). Hence, under condition (5) on the variance of K x,h , we have E{V 1 I(X 1 Y 1 )} and E(V 1 ) which are of order o(h). Thus, in the reformulation of A n (x) as seen in ( 16), n -1 a(x) takes the place of mf such that

E{( β -β 0 )V * } -n -1 a(x) = o(hn -1 ) + O(n -2 ).
Then, we express

Cov{( β -β 0 )V * , Z * } = Cov(V * I * , Z * ) + n -1 Cov(bV * , Z * ) + Cov( n V * , Z * ) = o(hn -1 ) + O(n -2 ),
where Cov(V * I * , Z * ) = n -1 E(Z 1 )E(V 1 I 1 ) + O(n -2 ), n -1 Cov(bV * , Z * ) = n -1 bE(Z 1 )E(V 1 ) + O(n -2 ) and E(V 1 ) = o(h). In addition, from the decomposition of A n (x) as in ( 16), we have E[( β -β 0 )V * {Z * -f (x)} 2 ] = O(n -2 + n -1 ) + o(h). Finally, we obtain E(A n ) = o(hn -1 + h) + O(n -2 + n -1 ).

In the same manner, we calculate the expectation E(B n ) = o(hn -1 + h) + O(n -2 + n -1 ). We omit here to present all the calculus and we give only the mains results. Firstly, we obtain E{( β -β 0 )W * ( β -β 0 ) T } = n -1 T r{E(W 1 )E(I 1 I T 1 )} + O(n -2 ) = o(hn -1 ) + O(n -2 ) and E(W 1 ) = o(h). Then, we get Cov{( β -β 0 )W * ( β -β 0 ) T , Z * } = O(n -2 ).

Lastly, we find

E[{( β -β 0 )W * ( β -β 0 ) T }{Z * -f (x)} 2 ] = O(n -2 + n -1 ) + o(h)
which appears in the decomposition of B n (x) as in ( 16). The previous term allow to calculate E(B n ).

Finally, the expectation of the estimator m n results in E{ m n (x)} = E{ m 0 n (x)}+ O(n -2 + n -1 ) + o(hn -1 + h) which provides the desired result asymptotically. The expression of V ar{ m 0 n (x)} is arleady found in ( 14) of Theorem 2. For the variance of A n , by establishing an expression of V ar{A n (x)} similarly to (21), it follows that we need to calculate V ar{( β -β 0 )V * } = E{( β -β 0 )(W * ) 2 ( β -β 0 ) T } + O(n -2 ) = n -1 E(W 1 )E(I 1 I T 1 )E(B 1 ) T + O(n -2 ) = O(n -2 ) + o(h 2 n -1 ).

Then, by taking into account the others terms resulting from the presentation of the variance of A n (x) as in (21), it ensues that V ar{A n (x)} = O(n -2 + n -1 ) + o(h 2 n -1 + n -1 ). Furthermore, it can be proved

Cov{ m 0 n (x), A n (x)} = E U * ( β -β 0 )V * (V * ) 2 -E{ m 0 n (x)}E{A n (x)} = o(hn -1 ) + O(n -2 )
because in the expression of E{ m 0 n A n } the more influential terms are

E U * ( β -β 0 )V * = E(U * I * V * ) + n -1 bE(U 1 )E(V 1 ) + O(n -2 ) = o hn -1 + O(n -2 )
and Cov{U * ( β-β 0 )V * , (Z * ) 2 } which can be also shown to be of order o(hn -1 )+ O(n -2 ).

For B n , without give the details here, it can proved that V ar{B n (x)} = o(h 2 n -2 )+O(n -2 ), Cov{ m 0 n (x), B n (x)} = o(hn -2 )+O(n -2 ) and also Cov{A n (x), B n (x)} = o(h 2 n -1 ) + O(n -2 ).

Finally, we obtain V ar{ m n (x)} = V ar{ m 0 n (x)} + O(n -2 ) + o(hn -1 + hn -2 + h 2 n -2 + n -1 ) and it ensues the desired asymptotic result.

Fig. 1 .

 1 Fig. 1. Logistic regression, nonparametric and semiparametric regressions using symmetric discrete triangular associated kernels on death data

From ( 15 2

 152 ), we express the variance of m n (x) asV ar{ m n (x)} . = V ar{ m 0 n (x)} + V ar{A n (x)} + 1 4 V ar{B n (x)} +Cov{ m 0 n (x), A n (x)} + Cov{ m 0 n (x), B n (x)} + 1 Cov{A n (x), B n (x)}.
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