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Abstract

Abstract: We propose an appropriate nonparametric regression on a sin-

gle count regressor using a recent discrete kernel approach. We adapt the

Nadaraya-Watson estimator to this discrete kernel for smoothing the regres-

sion function on count data. Some properties are studied; in particular,

the bandwidth selection is investigated through the cross-validation method.

The proposed regression, in addition to being simple, easy to implement

and effective, outperforms the competing usual regressions for small and

moderate sample sizes. Using simulations and two examples from real life,

the importance and the performance of discrete kernels are pointed out and

compared with the optimal continuous kernel.

Key words and phrases: Count data, cross-validation, discrete kernel esti-

mator, discrete triangular distribution, nonparametric regression.
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1 Introduction

Let (xi, yi), i = 1, . . . , n, be a sample of observations in N × R, where N denotes

the non-negative integers set and R is the real line. Without any specification of
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distributions and in the absence of an evident relation between these observations,

the most natural nonparametric regression model of yi on xi is

yi = m(xi) + ei, (1)

where yi denotes the observation of a real random variable Yi, xi is the observation

of the count explanatory variable (or regressor) Xi, ei is the disturbance term from

the real random variable εi satisfying commonly E(εi) = 0 and var(εi) = σ2,

and m : N → R is the unknown regression function on count data that we will

call regression count function for brevity. That function can be represented as

m(xi) = E(Yi|Xi = xi) for a random effect. We are interested in estimating

or (discrete) smoothing this regression count function m by taking into account

especially its counting structure.

Setting apart the ‘frequency (or naif) estimator’, there is some literature on

nonparametric smoothing of discrete variables or functions dating back to the pio-

neering work of Aitchison and Aitken (1976); however, the corresponding discrete

kernels are essentially for categorial data or finite discrete distributions. Bierens

and Hartog (1988) proposed regression models which take the form of a polyno-

mial of a linear function of the regressors with discrete explanatory variables. A

non-appropriate but always used way of smoothing the regression count function

m in (1) is simply to consider the count regressor as continuous and then apply

one of the numerous techniques of nonparametric estimation of the regression

continuous function (see, for example, Chen, 2000b; Collomb, 1981; Gasser and

Müller, 1979; Michels, 1992). Regrettably, the particular structure of counting

of the regressor is not taken into account. Recently, in the particular situation

of the so-called nonparametric binomial regression where the response variable

Yi follows the binomial distribution B{Ni, m(xi)} at each covariate xi, Okumura

and Naito (2004, 2006a) needed to transform the discrete variable x before us-

ing the well-known symmetric kernel estimator of Nadaraya (1964) and Watson

(1964) for regression function on continuous data. An extension of this method

for multinomial data is also given by Okumura and Naito (2006b).

In this paper we use the discrete analog of the continuous kernel estimator,

introduced by Kokonendji et al. (2007b) and Senga Kiessé (2008), for estimat-

ing the regression count function m in (1) without transforming the count (or

discrete) explanatory variable. That is done by adapting the (continuous) esti-

mator of Nadaraya-Watson to the discrete case, which is one of the oldest and

simplest weighted estimators for nonparametric regression function. We attempt

to illustrate the necessity of this procedure and its capacity for producing better

explanations of real data by means of simulations and also two examples.

For the first example, a sales data set (Table 1), we analyse the number of a

new product sold per day during the 25 first days. The 160 observations (xi, yi),
i = 1, . . . , 25, represent the day xi of the sales and the corresponding mean num-

bers yi ∈ {yAi, yBi, . . . , yHi} of sales. The number of sale centres for each state
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(A,B, . . . , H) is not available except for the state H which is just one. Note that

x1 = 0 represents the first day of the product in the market and its sale results

only from a previous advertising campaign; x2, x3, . . . represent the other days

when the sales of the product are results also from informal advertisings of the

customers. Because of the novelty of the product, we note that at the beginning

there is a fast increase in the mean number of sales up to x5 in general. After that,

the mean number of sales starts to decrease, which can be a result of a limited

number of customers or the lack of success of the product. We also observe that

after the date x14 there are some missing data from some centres. The aim of this

type of study is to have a policy for the advertising campaign which in general is

very expensive.

(Tables 1, 2 and Figure 1 about here)

The second example (Table 2) concerns the study of average daily fat (kg/day)

yields from milk of a single cow for each of the 35 first weeks (McCulloch, 2001,

p. 40-45). The quantity of fat in the milk increases during the first fourteen weeks

and decreases after. The fitted curves for two generalized linear models (see also

McCullagh and Nelder, 1989) are presented in Figure 1. In fact, the first represents

a normal model for the log-transformed response variable Yi with an identity link

and the second represents a normal model for the response variable Yi with a

logarithmic link. Both have the same linear predictor β0 +β1xi +β2 log xi, where

xi denotes the week. We can see that neither model fits well to the data although

there is an improvement for the log link model. In particular, they do not detect

the plateau associated with observations x = 19, 20, . . . , 27. We will compare

these results with those obtained by our new nonparametric regression.

The rest of the paper is arranged as follows. Section 2 reviews the recent dis-

crete kernel methods to make the paper self-contained as possible. In Section 3,

we define the associated discrete kernel estimator for regression count function

from the Nadaraya-Watson estimator and give some properties. In particular, we

establish a result on the pointwise squared error and the bandwidth selection is

made by adapting the least-squares cross-validation method. The new procedure

is illustrated through simulations and the two motivating examples in Section 4.

Furthermore, some comparisons are pointed out within discrete kernels and also

with the optimal continuous kernel (see Epanechnikov, 1969). Section 5 con-

cludes the paper and also suggests some extensions and future research topics.

2 Discrete kernel methods

We briefly recall the more recent discrete kernel methods for estimating (or smooth-

ing) a probability mass function (pmf) on N. Such methods are basic for regression

function on count data. See, for example, Izenman (1991) for continuous cases.
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Let X1, . . . , Xn be independent observations from a count distribution with an un-

known pmf f(x) := Pr(Xi = x), the discrete kernel estimator of f is expressed

as

f̃n(x) =
1

n

n∑

i=1

Kx,h (Xi) =
1

n

n∑

i=1

K (Xi; x, h) , x ∈ N. (2)

Given x ∈ N and h > 0, the associated discrete kernel Kx,h(·) = K(·; x, h) of

f̃n(x) ≡ f̃n(x; h) connecting to a discrete random variable Kx,h on its support ℵx

(not depending on h) is such that ℵx ∩ N 6= ∅, ∪xℵx ⊇ N, var(Kx,h) < ∞ and we

also have:

lim
h→0

E(Kx,h) = x, (3)

lim
h→0

var(Kx,h) = 0. (4)

That definition unifies the notion of associated kernel that might be either contin-

uous or discrete (Senga Kiessé, 2008). Furthemore, the first two conditions on the

supports N of the unknown pmf and ℵx can be changed by ∅ 6= ℵx ⊆ N. Then,

the conditions (3) and (4) are important because they allow to obtain the point-

wise convergence of the discrete kernel estimator (2). In fact, the basic relation

in (3) reflects one of the main differences from the continuous symmetric case

where the kernel functions are centred in 0 by using the ratio (x − Xi)/h, and

such that Kx,h(·) = (1/h)K{(x−·)/h}. This condition (3) clearly points out that

the discrete kernel estimator f̃n of f defined by (2) is a kind of variable kernel

estimate by giving a general form K. It also allows for more flexibility to con-

struct different (associated) discrete kernels from any discrete ditribution K. So,

we shall distinguish two families of discrete kernels satisfying E(Kx,h) = x + h
or E(Kx,h) = x. It is implicitly used in asymmetric continuous cases by Chen

(1999, 2000a) and then by Scaillet (2004). It should be noted that all (associated)

kernels satisfying (3) share the property that the shape of the kernels changes ac-

cording to the value of the target x. This associated discrete kernel (or varying

kernel shape) changes the amount of smoothing applied to the asymmetric kernel

since its variance var(Kx,h) may or may not depend on the target x as we move

away from the boundary. According to the behaviour of the variance with respect

to the expectation at each target, the (associated) discrete kernels can be under-

dispersed (i.e. var(Kx,h) < E(Kx,h)), equidispersed (i.e. var(Kx,h) = E(Kx,h))
or overdispersed (i.e. var(Kx,h) > E(Kx,h)). The last condition (4) insures an

asymptotic behaviour equivalent to the frequency estimator for the discrete kernel

estimator f̃n of f defined by (2).

Thus, we deduce several properties of the discrete kernel estimator f̃n of the

unknown count distribution f as follows. Up to the normalizing constant C̃ =∑
x∈N

f̃n(x), we assume that x 7→ f̃n(x) is a pmf. Then, we have:

E{f̃n(x)} =
∑

y∈ℵx∩N

Kx,h(y)f(y) =
∑

y∈ℵx

f(y) Pr(Kx,h = y) = E{f(Kx,h)}. (5)
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This leads to approximate the pointwise bias using the discrete Taylor expansion

(see, for example, Schumaker, 1981, p. 343) as

bias{f̃n(x)} = E{f(Kx,h)} − f(x)

= f{E(Kx,h)} − f(x) +
1

2
var(Kx,h)f

(2)(x) + o(h), (6)

where f (2) is the finite difference of second order

f (2)(x) =





{f(x + 2) − 2f(x) + f(x − 2)}/4 if x ∈ N \ {0, 1}

{f(3) − 3f(1) + 2f(0)}/4 if x = 1

{f(2) − 2f(1) + f(0)}/2 if x = 0

(7)

which is recursively obtained through the finite difference of order k ∈ N \ {0}:

f (k)(x) = {f (k−1)(x)}(1) and f (1)(x) =

{
{f(x + 1) − f(x − 1)}/2 if x ∈ N \ {0}

f(1) − f(0) if x = 0.

(8)

Here, it is not necessary to suppose certain regularity or differentiability on f be-

cause it is a pmf and the finite difference substitute the derivation of the continuous

case. The pointwise variance can be expressed as

var
{

f̃n(x)
}

=
1

n

∑

y∈ℵx

f(y) {Pr(Kx,h = y)}2 −
1

n

{
∑

z∈ℵx

f(z) Pr(Kx,h = z)

}2

=
1

n
f(x) {1 − f(x)} {Pr(Kx,h = x)}2 + Rn(x; h), (9)

with

Rn(x; h) =
1

n




∑

y∈ℵx\{x}

f(y) {Pr(Kx,h = y)}2 + {f(x) Pr(Kx,h = x)}2




−
1

n

{
∑

z∈ℵx

f(z) Pr(Kx,h = z)

}2

.

Under the condition (4) of the associated discrete kernel, we can verify that Rn(x; h) =
o(1/n).

Remark 1. For nonparametric estimator in (2), a relative efficiency between

two (associated) discrete kernels K1
x,h and K2

x,h with E(K1
x,h) = E(K2

x,h) can be

measured via (6) in terms of the difference between their variances var(K1
x,h)−

var(K2
x,h) for discrete kernels.
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Since the mean integrated squared error

MISE(n, h, K, f) =
∑

x∈N

var{f̃n(x)} +
∑

x∈N

bias2{f̃n(x)}

of the estimator f̃n of f defined in equation (2) is the common measure of accuracy

for an estimator, we can establish the following result of convergence (see Senga

Kiessé, 2008):

Theorem 2.1 Let f be a pmf on N with limx→∞ f(x) = 0. Then, the nonpara-

metric estimator in (2) with an associated discrete kernel satisfies

MISE ≤
C1

n

∑

x∈N

{Pr(Kx,h = x)}2+
∑

x∈N

[
f{E(Kx,h)} − f(x) +

1

2
var(Kx,h)f

(2)(x)

]2

,

with C1 = fmax{1− fmin} ≤ 1. Furthermore, for n → ∞ and h = h(n) → 0, we

have MISE(n, h,K, f) → 0 if

1

n

∑

x∈N

{Pr(Kx,h = x)}2 → 0 and

∑

x∈N

[
f{E(Kx,h)} − f(x) +

1

2
var(Kx,h)f

(2)(x)

]2

→ 0.

Remark 2. The MISE of the ’frequency estimator’ (with the Dirac kernel

type) given by (1/n)
∑

x∈N
f(x){1 − f(x)} = (1/n)

{
1 −

∑
x∈N

f 2(x)
}

may be

considered as the reference for the convergence of discrete kernel estimators.

Presented below are two examples of usual and competitive families of dis-

crete kernels taken from Senga Kiessé (2008). Figure 2 gives a quick glance at the

set and we summarize the main properties in Table 3. Note here that, in general,

the choice of (discrete) kernel function is not asymptotically very important, such

as frequency estimator; but in small and moderate samples, the kernel structure

may play a more crucial role in approximating the sample distribution, especially

for count random variables.

Example 2.1 (Binomial). Consider the binomial distribution B(N, p), N ∈ N,

p ∈ [0, 1]. The binomial kernel Bx,h follows the binomial distribution B{x +
1, (x+h)/(x+1)} =: Bx,h with h ∈ (0, 1] and ℵx = {0, 1, . . . , x+1}. From Re-

mark 1, it is better in the class of the so-called standard asymmetric discrete ker-

nels Kx,h, such as Poisson and negative binomial, having exactly E(Kx,h) = x+h
and ∪xℵx = N but they do not satisfy (4). This is because it is underdispersed:
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var(Bx,h) = (x + h)(1− h)/(x + 1) < x + h. Hence, from (2), the corresponding

binomial kernel estimator of f is

f̃B
n (x) =

1

n

n∑

i=1

(x + 1)!

Xi!(x + 1 − Xi)!

(
x + h

x + 1

)Xi
(

1 − h

x + 1

)x+1−Xi

, x ∈ N

with Xi ≤ x + 1. Its pointwise variance can be deduced from (9) as

var{f̃B
n (x)} =

(1 − h)2

n
f(x){1 − f(x)}

(
x + h

x + 1

)2x

+ RB
n (x; h),

with RB
n (x; h) 9 0 when n → ∞ and h = h(n) → 0. For the pointwise bias, a

direct calculus gives

bias{f̃B
n (x)} = f(x)

{
(1 − h)

(
x + h

x + 1

)x

− 1

}
+

∑

y∈ℵx\{x}

f(y)Bx,h(y)

which does not tend to 0 when n → ∞ and h = h(n) → 0. Thus, it follows

that f̃B
n does not converge in the sense of MISE. However, Senga Kiessé (2008)

showed that the estimator f̃B
n of f can be better (in the sense of MISE) than the

frequency estimator for some finite sample sizes.

This estimator and all others of the class are not subject to boundary bias. Fur-

themore, the target x is not the mean of the corresponding asymmetric kernel, but

rather its mode. For the choice of the optimal bandwidth we use the well-known

procedure of cross-validation.

(Figure 2 and Table 3 about here)

Example 2.2 (Discrete triangular). The discrete triangular distributions, intro-

duced by Kokonendji et al. (2007b), are useful to construct a family of symmetric

discrete kernel estimators for a pmf. For given (a, x, h) ∈ N × N × (0,∞),
the associated discrete triangular kernel Ta;x,h is defined through the pmf of its

corresponding random variable Ta;x,h on ℵa;x = {x, x ± 1, . . . , x ± a} as

Pr(Ta;x,h = y) =
(a + 1)h − |y − x|h

P (a, h)
, y ∈ ℵa;x,

where P (a, h) = (2a + 1)(a + 1)h − 2
∑a

k=0 kh is the normalizing constant.

The three parameters are such that a denotes the arm and is fixed, x = E(Ta;x,h)
is the center and represents the target, and h is the order which corresponds to

the bandwidth. The particular case T0;x,h provides the Dirac random variable at

x. From (2), the class of discrete triangular kernel estimators is given, for fixed

a 6= 0, as

f̃Ta

n (x) =
1

n

n∑

i=1

(a + 1)h − |Xi − x|h

(2a + 1)(a + 1)h − 2
∑a

k=0 kh
, x ∈ N.
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Its pointwise variance can be written from (9) as

var{f̃Ta

n (x)} =
1

n
f(x) {1 − f(x)}

{
(a + 1)h

P (a, h)

}2

+ RTa

n (x; h),

with limh→0(a + 1)h/P (a, h) = 1 and RTa

n (x; h) → 0 when n → ∞ and

h = h(n) → 0. While its pointwise bias can be directly obtained by using (6)

as follows:

bias{f̃Ta

n (x)} =
1

2
V (a, h)f (2)(x) + o(h),

where f (2) is as given in (7) and

V (a, h) = var(Ta;x,h) = {a(2a + 1)(a + 1)h+1/3 − 2
a∑

k=0

kh+2}/P (a, h) (10)

tends to 0 when h → 0. The condition (4) holds for Ta;x,h and we can therefore

apply Theorem 2.1 to get the convergence of f̃Ta

n in the sense of MISE.

From Remark 1, Ta1;x,h is more efficient than Ta2;x,h when a1 < a2. However, for

fixed a 6= 0, these discrete triangular kernel estimators induce a boundary bias on

the left of N because the set ∪xℵa;x = {−a, . . . ,−1}∪N contains strictly the sup-

port N of the unknown pmf f . An original solution is proposed by Kokonendji,

Senga Kiessé and Zocchi (2007) to solve this situation while preserving the struc-

ture of the local symmetry of the associated discrete kernel around every target.

The bandwidth selection is here made essentially by cross-validation method.

3 Nadaraya-Watson discrete estimator

Following the (continuous) weighted estimator of Nadaraya (1964) and Watson

(1964), the discrete analog for m in (1) is here defined by

m̂n(x) =
n∑

i=1

ωx(Xi)Yi, x ∈ N,

where

ωx(Xi) =
Kx,h(Xi)∑n

i=1 Kx,h(Xi)
= ωx,h(Xi) (11)

represents the weight such that
∑n

i=1 ωx,h(Xi) = 1 with the convention 0/0 = 0,

and Kx,h(·) denotes an associated discrete kernel as given in (2). The bandwidth

h ≡ h(n,K) determines the (discrete) smoothness of the estimate. For an appro-

priate discrete kernel, very small bandwidths almost reproduce the data while ex-

tremely large bandwidths yield a constant estimate for the regression count func-

tion.
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For investigating the bias and variance of the discrete kernel estimator m̂n(x) ≡
m̂n(x; h) of m, it is common to write m̂n(x) as the ratio:

m̂n(x) = Nn(x; h)/Dn(x; h),

with

Dn(x; h) =
1

n

n∑

i=1

Kx,h(Xi) = f̃n(x) and Nn(x; h) =
1

n

n∑

i=1

YiKx,h(Xi).

The expressions of the expectation and the variance of Dn(x; h) are given in (6)

and (9), respectively, where f is assumed to be the unknown pmf of any Xi. Then,

from m(x) = E(Yi|Xi = x), we may write successively:

E{Nn(x; h)} = E{Y1Kx,h(X1)} =
∑

z∈ℵx

m(z)f(z) Pr(Kx,h = z)

= E{(mf)(Kx,h)}

= (mf){E(Kx,h)} +
var(Kx,h)

2
(mf)(2)(x) + o(h),

with (mf)(2) = m(2)f +2m(1)f (1) +mf (2). By using the conditional expectations

of Yi and of Y 2
i on Xi, we calculate the variance of Nn(x; h) as follows:

var{Nn(x; h)} =
1

n

∑

y∈ℵx

E(Y 2
1 |X1 = y)f(y){Pr(Kx,h = y)}2

−
1

n

{
∑

z∈ℵx

E(Y1|X1 = z)f(z) Pr(Kx,h = z)

}2

=
1

n

{
E(Y 2

1 |X1 = x) − f(x)E2(Y1|X1 = x)
}

f(x) {Pr(Kx,h = x)}2

+ rn(x; h), (12)

with

rn(x; h) =
1

n

∑

y∈ℵx\{x}

E(Y 2
1 |X1 = y)f(y){Pr(Kx,h = y)}2

+
1

n
{E(Y1|X1 = x)f(x) Pr(Kx,h = x)}2

−
1

n





∑

z∈ℵx\{x}

E(Y1|X1 = z)f(z) Pr(Kx,h = z)





2

.
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3.1 Mean squared error

We here formulate a result on the mean squared error

MSE(x) = var {m̂n(x)} + bias2 {m̂n(x)} , x ∈ N,

of the estimator m̂n of the regression count function m connecting to the pmf f
of the regressor.

Proposition 3.1 For x ∈ N, let m(x) = E(Y |X = x) and f(x) = Pr(X = x)
defined on N → R. As n → ∞ and h = h(n) → 0, for all x such that f(x) 6= 0,

the nonparametric regression estimator m̂n(x) of m(x) with an associated dis-

crete kernel possesses the following bias and variance:

bias{m̂n(x)} =

{
m(2)(x) + 2m(1)(x)

(
f (1)

f

)
(x)

}
var(Kx,h)

2
+ O(1/n)2 + o(h)

and

var{m̂n(x)} =
E(Y 2

1 |X1 = x) − f(x)E2(Y1|X1 = x)

nf(x)
{Pr(Kx,h = x)}2 + o

(
1

n

)
.

Then, we have

MSE(x) =

{
m(2)(x) + 2m(1)(x)

(
f (1)

f

)
(x)

}2
var2(Kx,h)

4

+
E(Y 2

1 |X1 = x) − f(x)E2(Y1|X1 = x)

nf(x)
{Pr(Kx,h = x)}2 + o

(
h2 +

1

n

)
.

Proof. From Bosq and Lecoutre (1987; p. 119-121) for continuous case with here

g = mf , we can write

m̂n(x) = m(x) +
Nn(x; h) − g(x)

f(x)
−

g(x){Dn(x; h) − f(x)}

f2(x)

−
{Nn(x; h) − g(x)}{Dn(x; h) − f(x)}

f 2(x)

+
Nn(x; h)

f 3(x)
{Dn(x; h) − f(x)}2{1 + o(1)} p.s. (13)

with Dn(x; h) = n−1
∑n

i=1 Kx,h(Xi) and Nn(x; h) = n−1
∑n

i=1 YiKx,h(Xi). Un-

der the condition (3) of the associated discrete kernel, we get

E{Dn(x; h)} − f(x) =
var(Kx,h)

2
f (2)(x) + o(h)

10



and

E{Nn(x; h)} − (mf)(x) =
var(Kx,h)

2
(mf)(2)(x) + o(h),

with (mf)(2) = m(2)f + 2m(1)f (1) + mf (2). Furthermore, we can show that

E[Nn(x; h){Dn(x; h) − f(x)}2] = O(1/n)2 + O(1/n)

+ E{Dn(x; h) − f(x)}2
E{Nn(x; h)}.

Thus, we obtain

E{m̂n(x)} − m(x) =

{
(mf)(2)(x)

f(x)
−

mf (2)(x)

f(x)

}
var(Kx,h)

2

+
E{Dn(x; h) − f(x)}2

E{Nn(x; h)}

f3(x)

−
f(x)E[{Nn(x; h) − g(x)}{Dn(x; h) − f(x)}]

f3(x)
+ O(1/n)2 + o(h).

Then, in the previous expression we express

E{Dn(x; h) − f(x)}2
E{Nn(x; h)} − f(x)E[{Nn(x; h) − g(x)}{Dn(x; h) − f(x)}]

= O(1/n)2 + o(h),

which finally leads to

bias{m̂n(x)} =

{
m(2)(x) + 2m(1)(x)

(
f (1)

f

)
(x)

}
var(Kx,h)

2
+O(1/n)2+o(h).

(14)

For the variance of m̂n, from (13), we obtain:

var{m̂n(x)} =
var{Nn(x; h)}

f2(x)
+

g2(x)

f4(x)
var{Dn(x; h)}

− 2
g(x)

f3(x)
cov{Nn(x; h), Dn(x; h)} + o

(
1

n

)
.

By using the variance of Nn in (12), var{Dn(x; h)} = O(1/n) and cov{Nn(x; h), Dn(x; h)} =
O(1/n), we get

var{m̂n(x)} =
E(Y 2

1 |X1 = x) − f(x)E2(Y1|X1 = x)

nf(x)
{Pr(Kx,h = x)}2+o

(
1

n

)
.

(15)

The expressions of the expectation (14) and the variance (15) of m̂n(x) allow

to deduce the mean squared error at x ∈ N. ¥

11



We can apply the previous result to binomial and associated discrete triangular

kernels as in Examples 2.1 and 2.2.

Hence, the global error can be investigated through the MISE. For a practical

comparison of the amount of nonparametric regression obtained by some discrete

or continuous kernels (with a given bandwidth h), we will use the well-known

coefficient of determination, R2, which quantifies the proportion of variation of

the response variables yi explained by the non-intercept regressor xi:

R2 =

∑n

i=1(ŷi − y)2

∑n

i=1(yi − y)2
, (16)

with ŷi = m̂n(xi; h), y = n−1(y1 + . . . + yn) and

1

n

n∑

i=1

(yi − y)2 =
1

n

n∑

i=1

(ŷi − y)2 +
1

n

n∑

i=1

(yi − ŷi)
2.

3.2 Bandwidth selection

In this context of discrete kernel regression on count data, the bandwidth selection

is also obtained by the well-known least-squares cross-validation method (see, for

example, Hardle and Marron, 1985). In fact, for a given associated discrete kernel,

the optimal bandwidth is hcv = arg minh>0 CV (h) with

CV (h) =
1

n

n∑

i=1

{Yi − m̂−i(Xi; h)}2M(Xi), (17)

where m̂−i(Xi; h) =
∑n

j 6=i YjKXi,h(Xj)/
∑n

j 6=i KXi,h(Xj) is the leave-one-out

kernel estimator of m̂n(Xi; h) and 0 ≤ M(·) ≤ 1 is a weight to avoid difficulties

caused by dividing by zero or by the slow convergence rate caused by boundary

effects.

Note that, for practical use of the weight M(·) in (17), we can consider M(Xi) =
ωXi,h(Xi) ≡ M(Xi; h) defined by (11) and depending on h.

4 Illustrations with discussion

In this section we present a simulation study and we apply the discrete kernel

estimator m̂ to both data sets of Tables 1 and 2. In order to analyse and then

compare the effects of discrete and continuous kernels, we complete Example

2.1 with two other discrete kernels, Poisson and negative binomial, and we add

the optimal continuous kernel of Epanechnikov (1969). Indeed, the Poisson and

negative binomial kernels are standard asymmetric discrete kernels on the same

support ℵx = N with h > 0 such that

Px,h(z) =
(x + h)ze−(x+h)

z!
, z ∈ N,

12



and

NBx,h(z) =
(x + z)!

x!z!

(
x + h

2x + 1 + h

)z (
x + 1

2x + 1 + h

)x+1

, z ∈ N,

respectively. As for the Epanechnikov kernel, it is defined by

KE(z) =
3

4
(1 − z2), z ∈ [−1, 1].

For the following illustrations, and given (discrete or continuous) kernel, we first

determine a bandwidth using generally the cross-validation procedure with the

weight M ≡ 1. Then, we calculate the corresponding (weigthed) coefficient of

determination R2. Finally, we give some plots using linear interpolation between

the regression points. We do not examine here the model diagnostics in terms of

the residual study. However, we will use sometimes the term of better fit in the

sense of MISE if the bandwidth is selected by the cross-validation method.

4.1 Simulation study

The regression count function considered is

m(x) =
2x

x!
, x ∈ N.

Table 4 contains the optimal average integrated squared errors and their standard

errors for the estimators based on 1000 replications. For each simulation, the op-

timal discrete smoothing bandwidths are given by the cross-validation method.

The optimal integrated squared errors are determined by using the optimal band-

widths. The results in Table 4 show that the associated discrete triangular kernels

with small arms perform much better than the binomial and the Epanechnikov

ones, even if the sample size is so large. We do not recommend the use of Poisson

and negative binomial kernels because they are neither underdispersed nor satis-

fied (4). Finally, we note that the simulated average integrated squared errors of

the best discrete and continuous kernel estimators are closed as the sample size n
increased.

(Table 4 about here)

4.2 Average daily fat

Table 5 and Figure 3 present the corresponding results for the nonparametric

regressions for the data in Table 2. The associated discrete triangular kernel

with a = 2, hcv = 0.1 and R2 = 99.140% represents the most interesting re-

sults (in both senses of MISE and R2) among all these nonparametric regres-

sions. Then, we have the binomial (R2 = 97.179%) and the Epanechnikov

13



(R2 = 96.967%). These three kernels point out the plateau associated with obser-

vations xi = 19, 20, . . . , 27. Note that the Poisson and negative binomial kernels

do not detect this behaviour, similarly to the generalized linear models discussed

in the Introduction; they underestimate or overestimate most of the y-values.

For these data with both single regressor and endogenous observations, we

note that the nonparametric regression by the discrete triangular kernel with a = 1
gives a better fit in both senses of MISE and R2, but not in the sense of better

representation (or regression curve) because it almost reproduces the data. So,

we improve the (discrete) smoothing by taking other values of the arm a which

is a free parameter and depends on the user. However, for the associated dis-

crete triangular kernel with a = 2, we also obtained a smoother regression curve

(or representation) by changing the value of the discrete smoothing parameter

(h = 0.5 with R2 = 97.321%). For a = 4, the associated discrete triangular

kernel provides R2 ∈ {96.445, 93.101, 90.126, 88.843} according to the values of

the bandwidths h ∈ {0.1, 0.3, 0.7, 1}, respectively. This shows that the obtained

regression curves are smoother while the R2 does not change too much. (We omit

here to present their corresponding tables and figures.) The main question here

is to find an optimal arm when we use discrete triangular kernels for getting a

smoother regression curve with a better R2 associated to the optimal bandwidth,

which is an open problem.

(Table 5 and Figure 3 about here)

In general, if the optimal bandwidth hcv gives an optimal nonparametric re-

gression in the sense of R2 (and therefore MISE). Use of other values of the

discrete smoothing parameter h may also give a good fit in the sense of R2 and a

smoother curve or representation, providing broader choice for h according to the

purpose of the user.

4.3 Sales data

Table 6 and Figure 4 show the results for the nonparametric regressions for the

data in Table 1, obtained by discrete kernels (triangular with a ∈ {1, 2}, binomial,

Poisson and negative binomial) and the Epanechnikov kernel.

(Table 6 and Figure 4 about here)

Among discrete kernels, the discrete triangular with a ∈ {1, 2} and binomial

kernels give the best results for the nonparametric regressions in both senses of

MISE and R2 which are around 95%, 92% and 80%, respectively. Again the

Poisson and negative binomial kernel regressions either underestimate (x < 10)

or overestimate (x > 10) the y-values. Omitting the six strange values (with ∗),

14



the R2 values increase for all the kernels but the order of performance remains the

same as the previous results.

The R2 value for the (continuous) Epanechnikov kernel is smaller than the R2

value for the discrete triangular. So, the associated discrete triangular kernels are

more appropriate for this data set.

5 Concluding remarks

In this work, we have introduced an appropriate and efficient nonparametric re-

gression on a single count regressor (1). The discrete kernels used are easy to im-

plement and directly applicable to the count variable without any transformation.

According to the discrete kernels, in particular binomial and associated discrete

triangular with small arms, simulation results and both data sets demonstrate the

usefulness of the proposed method which is the best one or competitive with re-

spect to the optimal continuous kernel regression. Since there is not for instance

an optimal associated discrete kernel, one of the reasons of these good fits comes

from the small variance and also the finite support of these interesting discrete

kernels which are binomial and discrete triangular with small arms. Another rea-

son is suggested by the very good approximation between these discrete kernels

and the Gaussian kernel, which has the advantage of being one of the best in the

(symmetric) continuous kernel nonparametric regression.

Some evident and practical extensions of the model (1) are for several regres-

sors. The first one is to consider that all the regressors are counts. The multivari-

ate (associated) discrete kernel can be a product of some univariate ones from the

same or different discrete distributions. The second and more useful extension

is to investigate a nonparametric regression which admits a mixture of discrete

and continuous explanatory variables using also the method of appropriate ker-

nels. For the part of the discrete (or discretized) regressors, we must distinguish

count regressors from categorial ones. At the same time, we can improve by us-

ing semiparametric regression, where the model of the endogenous variable yi on

the p × 1 vector of regressors xi = (x1i, . . . , xpi)
′ contains a parametric function

g(xi; β) and a nonparametric factor m(xi) such that yi = g(xi; β)m(xi) + ei for

all i = 1, 2, . . . , n.
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Table 1: Sales data (with − denotes a missing observation and ∗ can be considered

as a strange value)

xi yAi yBi yCi yDi yEi yFi yGi yHi

0 7.2 9.7 5.0 9.0 12.0 7.0 9.2 7
1 16.4 15.9 ∗5.0 16.1 16.2 15.4 16.2 16
2 21.4 18.9 22.2 19.7 17.2 20.7 19.9 23
3 22.0 19.7 24.2 20.5 18.1 22.4 21.1 20
4 20.4 19.2 23.0 19.8 17.6 21.7 20.5 23
5 18.2 18.1 20.4 18.4 16.8 19.8 ∗8.8 24
6 16.1 16.6 17.7 16.6 15.7 17.6 ∗6.5 12
7 14.2 15.0 15.2 14.8 14.5 15.3 ∗4.0 13
8 12.6 13.5 13.0 13.0 13.3 13.3 ∗1.8 9
9 11.1 12.0 11.1 11.5 12.1 11.5 9.9 9

10 9.9 10.6 9.5 10.0 10.9 9.9 8.5 8
11 8.7 9.4 8.2 8.8 9.8 8.6 7.5 10
12 7.8 8.3 7.1 7.7 8.7 7.4 6.8 8
13 6.9 7.3 6.2 6.7 7.8 6.5 6.3 7
14 − 6.4 5.4 5.9 6.9 5.6 5.9 2
15 5.4 5.6 4.7 − 6.1 4.9 5.6 ∗12
16 4.8 − 4.1 4.6 5.4 − − 3
17 4.3 − 3.6 − − 3.8 − 5
18 − 3.8 − − − 3.3 − 4
19 − − − 3.2 3.7 − 4.3 2
20 − 2.9 − 2.8 3.2 − − 2
21 − − − − 2.9 2.3 3.5 5
22 − − − − 2.5 − 3.2 5
23 − − 2.1 1.8 2.2 − − 2
24 − − 1.9 − − − 2.5 −
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Figure 1: Two generalized linear models from data of Table 2, with the best R2 =
0.76790 (McCulloch, 2001)

Table 2: Average daily fat (kg/day) yields from milk of a single cow for each of

the 35 first weeks (McCulloch, 2001)
xi 1 2 3 4 5 6 7 8 9 10 11 12
yi 0.31 0.39 0.50 0.58 0.59 0.64 0.68 0.66 0.67 0.70 0.72 0.68

xi 13 14 15 16 17 18 19 20 21 22 23 24
yi 0.65 0.64 0.57 0.48 0.46 0.45 0.31 0.33 0.36 0.30 0.26 0.34

xi 25 26 27 28 29 30 31 32 33 34 35
yi 0.29 0.31 0.29 0.20 0.15 0.18 0.11 0.07 0.06 0.01 0.01
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Table 3: Summary of properties of some discrete kernel estimators (Senga Kiessé, 2008)

Type of discrete E(Kx,h) var(Kx,h) lim
h→0

var(Kx,h) Convergence Cross- Excess Symmetry Remarks

kernel of the MISE validation of zero of Kx,h

Dirac x 0 0 YES −− −− YES No

(n ր ∞) bandwidth

Poisson x + h x + h x ∈ N NO YES YES NO Equi-

dispersion

Binomial x + h (x + h)
(

1−h
x+1

)
0 ≤ x

x+1 < 1 NO YES YES NO Under-

dispersion

Negative x + h (x + h)
(
1 + x+h

x+1

)
x(2x+1)

x+1 ≥ 0 NO YES YES NO Over-

binomial dispersion

Triangular x V (a, h) : see (10) 0 YES YES NO YES Boundary

a ∈ N \ {0} (n ր ∞ and h ց 0) bias

2
0



Figure 2: Behaviour of some discrete kernels for count distributions of Senga

Kiessé (2008) at the target y = x = 5 with the same bandwidth h = 0.1
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Table 4: Simulated optimal average integrated squared errors and their standard

errors (in parentheses) for discrete and Epanechnikov kernel estimators. The re-

sults multiplied by 103 are given

n Triang.1 Triang.2 Binomial Epanech. Poisson Neg. bin.

20 11.77 (8.2) 24.51 (19.9) 43.87 (49.6) 55.06 (107.2) 65.98 (51.2) 82.73 (122.5)

50 7.01 (8.4) 17.00 (14.1) 27.03 (26.5) 32.02 (31.6) 69.10 (36.1) 87.01 (43.6)

80 4.47 (4.5) 14.13 (8.7) 18.18 (13.6) 23.30 (19.8) 69.42 (27.6) 88.45 (42.9)

100 3.67 (2.9) 12.68 (7.9) 17.03 (11.4) 21.93 (16.5) 70.51 (25.7) 92.12 (37.3)

200 2.43 (1.4) 10.20 (4.0) 12.60 (5.6) 14.81 (15.0) 76.48 (21.2) 102.17 (23.4)

500 1.86 (0.7) 8.46 (2.0) 9.92 (2.5) 9.96 (10.0) 83.45 (17.3) 116.13 (22.4)

1000 1.60 (0.4) 8.09 (1.4) 9.19 (1.5) 8.27 (7.9) 89.69 (13.0) 126.78 (20.1)

Figure 3: Nonparametric regressions of average daily fat (Table 2) by some dis-

crete kernels and the continuous Epanechnikov kernel
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Table 5: R-squared (in %) of nonparametric regressions of average daily fat (Table

2) by some discrete kernels and the continuous Epanechnikov kernel
Kernel Triang.2 (a) Triang.2 (b) Binomial Epanech. Poisson Neg. bin.

hcv 0.1 0.5∗ 0.101 4.0 0.151 0.224
R2 99.140 97.321 97.179 96.967 67.057 49.435

Figure 4: Nonparametric regressions of sales data (Table 1) by some discrete

kernels and the continuous Epanechnikov kernel

Table 6: R-squared (in %) of nonparametric regressions of sales data (Table 1) by

some discrete kernels and the continuous Epanechnikov kernel
Data Kernel Triang.1 Triang.2 Epanech. Binomial Poisson Neg. bin.

Complete hcv 0.558 0.132 2.427 0.064 0.206 0.327
R2 95.155 92.502 82.877 80.086 56.065 40.094

Incomplete hcv 0.170 0.052 2.121 0.078 0.209 0.327
(without ∗) R2 94.075 92.922 93.915 89.151 63.159 45.230
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