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1 Introduction

The advent of multicore processors raises new programmability challenges. Com-
plex applications are hard to write using threads, since they do not guarantee
a deterministic execution, and are difficult to optimize because the programmer
must carefully tune the application by hand.

Stream languages are a powerful alternative to program multicore processors
for two main reasons: (i) they offer a deterministic execution based on a sound
mathematical formalism (Synchronous Data Flow [22]), (ii) the expression of the
parallelism is implicitly described by the stream structure, which leverages com-
piler optimizations that can harness the multicore performance without having
to tune the application by hand.

The stream programming model emphasizes the exchange of data between
filters. To properly express and optimize stream programs it is crucial to capture
the data access patterns in the stream model. We can distinguish two families
of stream programming languages:

– languages in which the data access patterns are explicitly described by the
programmer through a set of reorganization primitives

– languages in which the data access patterns are implicitly declared through
a set of dependencies between tasks.

We present in the following a brief overview of related works concerning these
language families and then expose the principle of a two-level approach combin-
ing the advantages and expressivity of both types of languages.

1.1 Explicit manipulations of streams

StreamIt StreamIt[4] is both a streaming language and a compiler for RAW and
SMP architectures. StreamIt revolves around the notion of filters. A filter takes
a stream of input elements, performs a computation and produces the result of
the computation on an output stream, thus capturing the producer-consumer
pattern often used in signal applications.

⋆ Domain Specific Language



f l o a t−>f l o a t pipeline MatrixMult ip ly ( i n t x0 , i n t y0 , i n t x1 , i n t y1 ) {
add sp l i t jo in {

sp l i t roundrobin( x0 ∗ y0 , x1 ∗ y1 ) ;
add DuplicateRows ( x1 , x0 ) ;
add pipeline {

add Transpose ( x1 , y1 ) ;
add DuplicateRows ( y0 , x1∗y1 ) ;

}
join roundrobin ;

}
add Mul t i p l yAccPara l l e l ( x0 , x0 ) ;

}
f l o a t−>f l o a t sp l i t jo in Transpose ( i n t x , i n t y ) {
sp l i t roundrobin ;
for ( i n t i = 0 ; i < x ; i++) add Id en t i t y<f l o a t >() ;
join roundrobin( y ) ;

}
f l o a t−>f l o a t sp l i t jo in DuplicateRows ( i n t t , i n t l ) {

sp l i t duplicate ;
for ( i n t i = 0 ; i < t ; i++) add Id en t i t y<f l o a t >() ;
join roundrobin( l ) ;

}
f l o a t−>f l o a t sp l i t jo in Mul t i p l yAccPara l l e l ( i n t x , i n t n) {

// Omitted . . . r e a l i s e s the dot product o f
// the rows of A and the columns of B in p a r a l l e l .

}
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Fig. 1. Excerpt of a StreamIt program for matrix multiplication.

Filters are assembled in a flow graph by using a set of connectors: pipes form
chains of consumers and producers, split-joins allow to dispatch the elements in-
side a stream to a group of filters (parallelizing the computation) and reassemble
the results, feedback loops allow to introduce cycles in the flow graph. Using these
connectors constraints the structure of the StreamIt graphs to a series-parallel
hierarchical organization. This is a conscious design choice of the StreamIt de-
signers[27] since it simplifies the textual description of the graph. The use of
these connectors is demonstrated on fig. 1 where a program implementing the
Matrix Multiplication in StreamIt is provided.

StreamIt adapts the granularity and communications patterns of programs
through graph transformations [17], belonging to one of these three types: fu-
sion transformations cluster adjacent filters, coarsening their granularity; fission
transformations parallelize stateless filters decreasing their granularity; reorder-
ing transformations operate on splits and joins to facilitate fission and fusion
transformations. Complementary transformations have also been proposed. For
example optimizing transformations proposed in [1] take advantage of algebraic
simplifications between consecutive linear filters. On cache architectures, fusion
transformations proposed in [26] optimize filters to instruction and data cache
sizes.

Brook Brook is a stream programming language that targets different architec-
tures: Merrimac, Imagine, but also graphic accelerators. The Brook syntax is
inspired by the C language and implements many extensions for stream manip-
ulation. Streams are typed and possess an arbitrary high number of dimensions.



To the best of our knowledge, current Brook compilers are limited to primitive
types on streams (no composite or arrays types).

Filters in Brook are normal C functions but preceded with the keyword
kernel which indicates they accept streams as parameters. Side effects between
filters must be strictly confined to stream communications. The access rights of
kernels to stream parameters can be specified as write only, read only or random
access, which allows the compiler to optimize memory handling.

To express data reorganizations, Brook introduces a set of functions that
reorder the elements within a stream:

– streamStencil which extracts blocks of data inside a stream by moving a
stencil inside its shape.

– streamStride allows to select the elements in a stream that are separated
with a given stride factor.

– streamRepeat allows to duplicate elements in a stream.

– streamMerge which combines elements from multiple streams.

In [23] an optimization method is proposed to leverage the affine partitioning
framework. To do this it translates the above data reorganizations functions
into a set of dependences that can be optimized in the polyhedral model. The
dependence equations are not necessarily affine, but according to the authors in
many cases they can be reduced to a set of equivalent affine equations.

1.2 Expressing streams through dependencies

SumRbyC

<<Application Component>> MatrixMultiplication

A: float[16,16]

<<Tiler>> {modulo,

fitting = [1,0]

origin = ZERO

paving = [[0,0],[0,1]]}

B: float[16,16]

<<Tiler>> {modulo,

fitting = [0,1]

origin = ZERO

paving = [[1,0],[0,0]]}

Point: float[1]

Line: float[16]

Column: float[16]

C: float[16,16]

<<Tiler>> {modulo,

fitting = [0,0]

origin = ZERO

paving = [[1,0],[0,1]]}

Line: float[16]

Column: float[16]

<<Application Component>> SumRbyC

MultV

VA: float[16]

VB: float[16] 

VR: float[16] V: float[16]

Point: float[1]

SumVector

Fig. 2. Matrix multiplication in Array-OL as viewed in the IDE Gaspard2[8].



Array-OL Array-OL[16] is a language that specifically targets signal applica-
tions. Data is represented using multidimensional arrays which can have one
infinite dimension (for example to represent time). Arrays are toroidal avoiding
border effects in many applications.

In Array-OL, programs are composed of filters that can exchange data arrays
through streams. The program description is done at two levels:

– the global level describes connexions between filters using an oriented acyclic
graph. A filter can have multiple input and output streams. The absence of
cycle forbids feedback loops but simplifies scheduling.

– the local level describes dependences between filter inputs and outputs. Each
input has an associated tiler describing the order in which the filter consumes
its elements. A tiler is composed of an origin point, a shape, a paving matrix
and a fitting matrix. Each time the filter is executed, it consumes a stencil of
elements inside the input arrays, determined by the tilers shape. The stencil is
then translated according to the origin point, paving and fitting matrix. Just
like a tiler determines the dependences for each input stream, each output
stream also possesses a tiler describing the order of the elements produced
by the filter.

Array-OL programs can be developed in a visual IDE called Gaspard[12]
which eases the visualization of the local and global model. Fig. 2 shows a matrix
multiplication program as seen in Gaspard.

Array-OL programs can be transformed into a Kahn Process Network[3]
which enables a concurrent execution of the tasks. Recent works on Array-
OL compilation propose a set of optimizations that fusions Array-OL filters to
coarsen the grain of parallelism and factor producer-consumer dependencies to
increase reuse in pipelines[15][13]. But to the best of our knowledge, there is no
automatic framework to decide when these transformations should be applied.

Block Parallel Block Parallel[6] also targets signal applications. The author ar-
gues that the multidimensional formulations proposed, for example, by Array-OL
are difficult to optimize since each new dimension increases the number of possi-
ble data traversals. He pushes for a compromise between expressivity and ease of
compilation, by allowing only data shapes of one or two dimensions and restrict-
ing the input programs to acyclic graphs. He combines the input and output
filter dependencies proposed by Array-OL with the splitter and joiners proposed
by StreamIt (used to introduce data parallelism in the application). The author
proposes a set of optimizations to increase reuse in the filters and optimize the
order of access. Yet these transformations are very limited since they only work
on the programs that can be expressed using Block Parallel filter dependencies.
For example, Matrix multiplication of Fast Fourier Transformation are out of
the scope of Block Parallel optimizations.

1.3 A two-levels approach

Brook and StreamIt propose a low-level language to manipulate streams: StreamIt
uses joiners and splitters that route and copy data through the graph while



Brook manipulates the streams using primitives that reorder and select ele-
ments on streams. StreamIt and Brook propose efficient optimizations. StreamIt
uses fusion, fission and reordering transformations to optimize the throughput
and Brook leverages the optimizations offered by affine partitioning[23]. Array-
OL or Block Parallel on the other hand propose a high-level description of data
dependences[16][6]. Nevertheless the high-level description comes at a price: opti-
mizations in theses languages are harder to implement, in particular optimization
regarding the routing of data through the application. As pointed in [14][15], the
formalism underlying Array-OL dependences (ODT) makes difficult to express
some transformations: since the result of the optimizations must be a valid ODT
Array-OL dependences set, the palette of available transformation is limited.

Instead of using a single language to both describe and optimize the applica-
tion, we propose a two-level language approach. A high-level typed DSL, called
SLICES, is used to describe the data dependencies. SLICES is then converted to
an intermediary stream language, SJD, which can be efficiently optimized with
a set of semantically preserving stream graph transformations. The use of dif-
ferent levels of abstraction allows a clean separation of concerns and a modular
compilation chain. The expressivity problematic is addressed by a domain spe-
cific high-level typed language which can grow more complex to accommodate
the users’ demands. The optimization problematic is addressed by a simple and
restricted language easier to optimize.

Recent works have also considered intermediary stream representation to
capture the parallelism and flow of data information. Erbium[25] proposes a
data flow intermediary representation enabling mainstream compilers to better
optimize stream applications. Fastflow [2] is a parallel programming runtime
based on skeletons that also advocates a multi-layered approach. The high-level
layer is a library of very general parallel patterns (Farm, Pipeline, etc.) that are
build upon the simple but efficient lock-free queues of the lower layers.

2 A high-level DSL: SLICES

The high-level domain specific language SLICES enables to model the multidi-
mensional data dependencies of filters in signal applications. For this, the domain
of each filter is described as a combination of multidimensional slicings over the
input streams. The language is built around five concepts: shapes, grids, blocks,
iterators and zippers. We are going to present the language through a practical
example: the data dependencies of a matrix multiplication filter. To multiply
two matrices, as in Cy0,x1 = Ay0,x0 ×By1,x1, we must extract the lines of A and
pair them with the columns of B, before processing them through a dot-product
filter.

Lines 1-2 of the program in fig. 3 instantiate a datafilter embedding SLICES
code. The filter has two stream inputs with float values containing the elements
of each matrix and is parametrized with the matrix dimensions.

Shapes SLICES allows us to restructures input streams into multidimensional
views using shape types. In line 3, we cast the raw input of the first matrix to a



1  (float, float) -> float datafilter

2  PairRowsAndCols (int x0, int y0, int x1, int y1) { 

  

3    shape  [x0,y0] A    =     input(0)

1 2 3 4 5

109876

11 12 13 14 15

16 17 18 19 20

1 2 3 4 5 6 7 8 ...

4    shape[x1,y1] B    =     input(1)

      

  

  

  

  

5    for l  in A[0:1:,::] x (0:x0-1,0:0):       

Fig. 3. SLICES program that captures a matrix multiplication communication pattern.
First the raw stream inputs are casted to shape to view them as matrices. Then the
rows of A are paired with the columns of B in the iterator loop, and pushed to the
output. In the graphical examples we have chosen x0 = 5 and y0 = 4.



type shape[x0,x1]. This produces a view A, where input(0) is seen as a stream
of matrices. In practice we can use an arbitrary number of dimensions in a shape

type.

Blocks Blocks are used to select a set of elements inside a shape view. A block
is defined by a d-dimensional box parametrized by its min and max coordinates
on each dimension: (a1:b1, . . . , ad:bd) with ai, bi ∈ Z. In our example we want to
extract from view A each horizontal line. To achieve this we define in line 5 the
block (0:x0-1, 0:0).

Grids To select each and every horizontal line from A, we must apply the previ-
ous block to each row. To define a set of anchor points where a block is applied,
SLICES provide the grid constructor. A grid is defined by three parameters
for each dimension i: the lower bound of the grid li, the upper bound of the
grid hi, and the stride δi. This triplet describes for each dimension i, the set of
points Gi = {δi.k.ei : ∀k ∈ [| li

δi
; hi

δi
|]}. The elements of a grid are constructed by

computing the Cartesian product of the Gi in lexicographical order. The grid
operator uses a standard slicing notation where li, hi, δi are separated by colons
and each dimension is separated by commas. For example V[0:10:2] would de-
scribe the points in V that are between position 5 and 10 with a stride of 2.
Out of simplicity, it is possible to omit one or more values of the triplet; missing
values are replaced by sensible default values (0 in place of li, the size of the
dimension in place of hi, 1 in place of δi). For instance, the previous example
could be rewritten B[:10:2].

A block can be applied upon a grid with the grid × block operator. This
returns the set of points produced by centering the block around each point of
the grid. For example, to extract the rows of A we must apply the previous
block to every point in the first column of A in line 5. Indeed the grid A[0:1:,

0:y0:1] defines the first column as a set of anchor points and is combined with
the (0:x0-1,0:0) block.

When applied to a grid, successive blocks may overlap which is convinient to
write filters working on sliding windows of data (eg. FIR or Gauss filter). Blocks
may also partially fall outside of the view shape to handle border effects.

Iterators shape, grid and block return instances of the iterator type that we
can interleave using nested “for v in iterator” loops. A loop iterates over the
elements of the given iterator, binding each returned set of points to the variable
v. In lines 5-6 we iterate over the rows of A and the columns of B, and produce
each pair to the output using the push keyword.

For a complete presentation of the language and of its underlying type system
please refer to [10]. SLICES is able to capture frequently used data reorganization
patterns in signal applications: [9] presents the design with SLICES of a Sobel
filter, a Gauss filter, a Hough filter and the odd-even mixing stage of a fast
Fourier butterfly transformation.



3 Intermediary representation SJD

The intermediary representation must provide a framework for the efficient op-
timization of applications. To accomplish this objective, two requirements must
be satisfied: first, the representation must be simple enough to enable a well-
understood set of optimizations ; second, the representation should capture all
the possible static data reorganizations (we cannot optimize what we cannot
model). A high-level multidimensional representation like Array-OL and Block
Parallel does not satisfy the first requirement, since the optimization complexity
grows with the number of dimensions [6]. A simple graph language like StreamIt
is much easier to optimize. Nevertheless, by design StreamIt imposes a hierar-
chical series-parallel structure on the application graphs that cannot model all
the possible static data reorganization. As a simple example [27] shows that
StreamIt can never alter the position of the first element of a stream. Therefore,
in StreamIt to reverse the order of a vector of elements we cannot use splitters
and joiners and must hide the communication pattern inside a filter. Another
limitation of the hierarchical graph restriction is that it cannot capture all the
optimizing transformations we propose (UnrollRemove or BreakJS in section 4.2
cannot be expressed with a series-parallel graph). To build our intermediary rep-
resentation, we have removed the hierarchical restriction from StreamIt graphs
that hampers the expressivity of the language.

Source (I) and Sink (O) nodes model respectively the program inputs and
outputs. The source produces a stream of inputs elements, while the sink con-
sumes all the elements it receives. A source producing always the same element
is a constant source (C). If the elements in a sink are never observed, it is a
trash sink (T).

Functions in the imperative programming paradigm are replaced by filter
nodes (F(c1,p1)). Each filter has one input and one output, and an associated
pure function f (i.e. with no internal state). Each time there are at least c1
elements on the input, the filter is fired: the function f consumes the c1 input
elements and produces p1 elements on the output.

Another category of nodes dispatch and combine streams of data from multi-
ple filters, routing data streams through the program and reorganizing the order
of elements within a stream.

Join J(c1 . . . cn): A Join node has n inputs and one output. Each time it is
fired, it consumes ci elements on every ith input and concatenates the consumed
elements on its output.

Split S(p1 . . .pm): A split node has m outputs and one input. A split con-
sumes

∑
i pi elements on its input and dispatches them on the outputs (the first

p1 elements are pushed to the first output, then p2 elements are pushed to the
second, etc.).

Dup D(m) has one input and m outputs. Each time this node is fired, it
takes one element on the input and writes it to every output, duplicating its
input m times.

By breaking the hierarchical constraint of StreamIt and introducing trash
nodes, SJD is able to capture all the finite static data reorganizations in the



application: for example, a vector can be easily reversed without using filters. In
[9] we prove the following result.

Theorem 1 (Expressivity). SJD graphs without filters exactly capture the re-

organizations [iφ(1), . . . , iφ(m)] where [i1, . . . , in] are the elements being reorga-

nized and φ is an application from [1, . . . ,m] to [1, . . . , n].

In other words, SJD graphs enables any finite permutation, reordering, du-
plication or pruning of elements. Fig. 4 demonstrates those features on a simple
example.

Like StreamIt, our intermediate representation is built upon the a synchronous
data flow (SDF) computation model[22] where nodes are actors that are fired
periodically and edges represent communication channels. We can schedule an
SDF graph in bounded memory if it has no deadlocks and is consistent. A consis-

tent SDF graph admits a repetition vector qG = [q1, q2, . . . , qNG
] where qN is the

repetition number of node N . A schedule where each actor N is fired qN times is
called a steady-state schedule. Such a schedule is rate matched: for every pair of
actors (U, V ) connected by an edge e, the number of elements produced by U on
e is equal to the number of elements consumed by V on e during a steady-state
execution (data dependencies are satisfied). The number of elements exchanged
in a steady-state through edge e is noted β(e).

3.1 Compiling SLICES to SJD

a b c d

S

TD

J

b b a c

Fig. 4. Example of data reorganiza-
tions enabled by SJD. (The split and
join consumptions and productions are
always 1 in this graph.)
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Fig. 5. Multidimensional grids and
blocks extraction.

To be able to optimize programs written using SLICES, we must compile
SLICES programs to the intermediate representation SJD. A detailed description
of the compilation process is outside the scope of this chapter, please see [10];
however, the main steps are:

1. Each SLICES datafilter is parsed and type checked. For every SLICES pro-
gram that type checks the compiler is able to generate a correct reentrant
SJD graph without dead-locks.



w

b
lo
c
k
#

1
st

2
nd

3
rd

w − δ δ.(n− 1) δ

δ xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

I S JS O
J

D
δ.(n-1)

w-δ

δ

2δ-w

w-δ

w-δ
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δ
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2. Multidimensional grids and blocks, are by construction cartesian products
of their 1D counterparts. For instance the following grid and block 2D ex-
pression,

[l1 : h1 : δ1, l2 : h2 : δ2]× (a1 : b1, a2 : b2)

can be decomposed as shown in fig. 5 into,

([l1 : h1 : δ1]× (a1 : b1))⊗ ([l2 : h2 : δ2]× (a2 : b2))

3. We compile each 1D constituent to an equivalent SJD graph using a set of
simple patterns. As an example, in the case of partial overlapping blocks
(1 < w

δ
< 2) the SJD graph produced is given in fig. 6.

4. Our compiler analyzes the nested for loops, duplicates and reorders (insert-
ing appropriate Dup and Join nodes in the final graph) according to the
iterators length and the nesting depth of push instructions.

We prove in [9], that the number of nodes in the SJD graph produced by this
compilation process is O(p.d.w), where p is the number of push instructions,
d is the maximum number of dimensions used and w is the largest width in
any dimension of the extracted blocks. Thus the complexity of the generated
graphs is independent of the size of the input shapes. This means that working
on large sets of data will not increase the number of nodes in the intermediate
representation.

When we compile the SLICES program from matrix multiplication of fig. 3
our compiler generates the SJD graph in fig. 7. The matrix B is transposed using
the first S−J pair, then the rows of A and columns of B are duplicated with the
D−J pairs and paired together with the final J node, before been sent through
the DotProduct filter.

4 Optimizing the intermediate representation

The way we optimize the intermediate representation is through a set of transfor-
mations of the program. These transformations alter the communication patterns
and the degree of parallelism in the SJD representation of the original program
while preserving its semantics.

We follow the formulation given in [5]: a transformation T applied on a

graph G, generating a graph G′ is denoted G
T
−→ G′. It is defined by a matching
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Fig. 7. Intermediate SJD representation equivalent to the SLICES matrix multiplica-
tion program (fig. 3). The intermediate representation was automatically generated by
our SLICES to SJD compiler.

subgraph L ⊆ G and a replacement graph R ⊆ G′. It operates by deleting the
match subgraph L from G and replacing it by the replacement subgraph R.
The part of graph that remains untouched (G\L) is called the context of the
transformation.

4.1 Soundness of transformations

An optimizing transformation can only be applied if it preserves the semantics of
the original program, preserves consistency and does not introduce dead-locks.

In [9] we prove the following sufficient condition where L(I) are the output
traces of subgraph L for given input traces I and L(I) is the length of the output
traces. For simplicity we consider that L and R have only one input and output,
but the sufficient condition stands for multiple input/output subgraphs.

Lemma 1 (Local correction). If a transformation G
T
−→ G′ satisfies

∀I ⇒ L(I) is a prefix of R(I)

∃b ∈ N, ∀I ⇒ R(I)− L(I) ≤ b

L is consistent ⇒ R is consistent

then the transformation T is correct.

This lemma establishes the correction of a transformation independly of the
context. A transformation that verifies the lemma 1 can be applied to any input
SDF program. In particular such a transformation is legal inside a feedback loop
in the SJD graph without introducing dead-locks or breaking consistency.

4.2 Transformations

Using the previous lemma we have constructed a set of correct transformations
on SJD graphs. In fig. 8 a subset of these transformations is presented. The
transformations split or reorder the streams of data and modify the expression
of concurrency, they can be separated in three groups according to their effect.
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Fig. 8. Set of transformations considered. Each transformation is defined by a graph
rewriting rule. Node N is a wildcard for any arity compatible node.



Node removal These transformations rewrite communication structures that use
less nodes, for example by removing nodes whose composed effect is the identity.

RemoveJS / RemoveSJ / RemoveD These transformations (not shown
in the figure) are very simple and remove nodes whose composed effect is the
identity: a Split and a Join of identical consumption and productions, a single
branch Dup, a single branch Split, etc ...

CompactSS/CompactDD/CompactJJ (fig. 8(f)) CompactSS (resp. JJ, DD)
fuses together a hierarchy of Split (resp. Join, Dup) nodes.

Synchronization removal These transformations remove synchronization points
inside a communication pattern, usually by decomposing it into its smaller con-
stituents.

Constant propagation(fig. 8(e)) when a constant source is split we can elim-
inate the Split duplicating the constant source.

Dead code elimination(fig. 8(g)) eliminate nodes whose outputs are never
observed.

BreakJS(fig. 8(i)) breaks Join-Split junctions into smaller constituents, it often
triggers Synchronization Removal(fig. 8(h)) which tries to find two matching
groups in the productions/consumptions of the junction. This allows to break a
Join-Split junction into two smaller junctions.

Restructuring These transformations restructure communication patterns. They
find alternative implementations which may be more efficient in some targets and
sometimes trigger some of the previous transformations.

SplitF(fig. 8(a)) This transformation splits a filter on its input. SplitF introduces
split-join parallelism in the programs. Because filters are pure: we can compute
each input block on a different filter concurrently.

InvertDN(fig. 8(d)) This transformation inverts a duplicate node and its chil-
dren, if they are identical. This transformation eliminates redundant computa-
tions in a program.

UnrollRemove(fig. 8(b)) This transformation inverts the order between Join
and Split nodes. The transformation is admissible in two cases:
1- Each pj is a multiple of C =

∑
i ci, the transformation is admissible choosing

pij = ci.pj/C, cji = ci.
2- Each ci is a multiple of P =

∑
j pj , the transformation is admissible choosing

pij = pj , cji = pj.ci/P .

ReorderS/ReorderJ(fig. 8(c)) ReorderS (resp. ReorderJ) creates a hierarchy
of Split (resp. Join) nodes. In the following we will only discuss SplitS. The
transformation is parametric in the Split arity f . This arity must divide the
number of outputs, m = k.f . In the figure, we have chosen f = 2. As shown
in figure 8(c), the transformation works by rewriting the original Split using
two separate stages: odd and even elements are separated then odd (resp. even)
elements are redirected to the correct outputs. We have omitted some more
complex transformations for simplicity sake. For an in-depth description of the
transformation set, please see [9][11].



5 Reducing inter-core communication cost

The previous set of transformations change the degree of parallelism and the
communications patterns of the original program. In this section we will demon-
strate how they can be used to reduce the inter-core communication cost in a
parallel program.

5.1 Measuring inter-core communication cost

To execute a SJD program on a multicore target, we partition the nodes in the
SJD graph among the available cores. For a given partitioning P of G, we define
inter(G,P) as the set of edges that connect nodes in different partitions.

The Hockney[19] model distinguish two cost factors in a point-to-point com-
munication: (i) a fixed cost equal to the latency c0, (ii) a variable cost that
increases with the number of streamed elements and depends on the bandwidth
bw. The communication cost during a steady-state schedule execution is noted

ce = c0 + β(e).s(e)
bw

where β(e) is the number of elements exchanged during a
steady-state and s(e) is the size in bytes of each element. The inter-core com-
munication cost is computed by aggregating the costs of all the edges that link
different cores, C(G,P) =

∑
e∈inter(G,P) ce.

5.2 Exploring the optimization space

We can improve the inter-core communication cost by optimizing two factors:
partitioning of the SJD nodes among the processors and the communications
patterns between filters.

To partition the SJD nodes among the processors, we solve the following
optimization problem: (i), reduce the inter-core communication cost C, (ii) un-
der the constraint that the work imbalance among the cores is less than a small
threshold (5% in our setup). The work imbalance is the difference of load be-
tween the the core which is busiest and the core with the less work. To solve this
problem we use the graph partitioner METIS[20]. The threshold makes the bal-
ancing constraint a bit more flexible, opening opportunities for the partitioner
to improve the communication cost.

To optimize the communication patterns between filters we use the set of
transformations presented in sec. 4.2. Given a SJD graph G0, a derivation is

a chain of transformations that can be successively applied to G0: G0
T0−→

G1 . . .
Tn−−→ . . .. Each derivation produces a new variant, semantically equiva-

lent to G0 but with different communication patterns. Given an initial graph
G0, the number of derivations that exist is very large, how should we pick one ?
In [9] we prove that for any given graph there are no infinite derivations, that is
to say the optimization space is bounded. To choose which transformations to
apply we use the Beamsearch[24] search heuristic which is tuned with a con-
stant parameter beamsize ∈ N. The algorithm explores the optimization space
recursively by applying all the possible transformations to the initial graph G0,



sorting the produced first-generation variants by their inter-core communication
costs and discarding all but the first beamsize ones. The algorithm is then ap-
plied recursively on the selected best first generation variants. Beamsearch is
guaranteed to terminate since the optimization space is finite. These two passes:
partitioning and communication optimization are interleaved in an iterative pro-
cess, depicted in fig. 9, similar to [7].

Beamsearch(G) algorithm

Partition Gi Optimize C(Gi,Pi)

Exit: fixed-point or
max. numer of itera-
tions reached

G0

Pi

Gi+1

1: T ← {RemoveSJ,RemoveI, . . .}
2: Gbest, Cbest ← G,C(G)
3: visit← {G}
4: while visit 6= ∅ do
5: beam← SortedList[beamsize]
6: for all G ∈ visit do

7: for all T ∈Matching(G, T ) do
8: if C(T (G)) < Cbest then

9: Gbest = T (G)
10: Cbest = C(T (G))
11: end if

12: beam.InsertifC(T (G))better(T (G))
13: end for

14: end for

15: visit← beam

16: end while

17: return Gbest

Fig. 9. Reducing the inter-core communication through an iterative process.

6 Evaluation

We have evaluated the inter-core communication reduction technique on a two
sets of signal application benchmarks: a first set of SLICES programs, Matrix
multiplication, Gauss Filter, Sobel Filter which are first compiled to the SJD
intermediate representation and a second set of programs from the StreamIt
benchmarks [18], Bitonic sort, FFT, DES, DCT which are directly translated to
the SJD representation.

The target architecture is quadcore SMP Nehalem (Xeon c© W3520 at 2.67GHz)
with 256KB of L2 cache and a shared 8MB L3 cache. The communications be-
tween cores happen through the L3 cache with a very low latency (here we
suppose that c0 = 0).

We have measured the communication cost for two versions of the programs:
the original one is mapped with METIS to reduce the communication cost but
graph transformations are not applied to it; the optimized one is mapped with
METIS and optimized using the graph transformation set.



Table 1 summarizes the inter-core communication reductions achieved by
our optimization framework. The mean percentage of reduction among all the
programs is 49.9% and the mean time spend optimizing the programs is 3.4
minutes.

The DES encryption program shows no gains at all: the program admits
very few graph transformations that have no impact on the global layout of
communications.

The gains in MM-COARSE can be attributed to several transformations of
the flow graph that can be seen in fig. 10. After optimization, the synchroniza-
tion bottlenecks (nodes J8 and S15) have been removed. The transposition of
matrix B has been decomposed in blocks and distributed among the four cores.
Finally, duplications have are made locally which reduces the volume of inter-
core communications.

The GAUSS filter is a bi-dimensional sliding-window filter that extract over-
lapping 3 × 3 windows of data from the input image. Our transformations are
able to break the sliding-window extraction among the different cores and re-
organize the Split, Join and Dup nodes to increase the horizontal reuse of data
among filters, reducing inter-core communication.

The HOUGH filter computes the Hough transformation in a tight loop. Our
optimization framework breaks this loop in three smaller loops that are dis-
tributed among the cores, making the state in the loop local to each processor.

The FFT and DCT filters possess many synchronizations points that are
removed by our transformation process allowing a better partitioning among
the cores.

MM-COARSE GAUSS BITONIC HOUGH FFT DES DCT

original (B) 18864 10563200 384 48480000 384 192 3072
optimized (B) 6624 7340000 256 401624 192 192 1956
C reduction (%) 64.9 30.5 33.4 99.2 50 0 36.3

opt. cost (s) 5 18 925 411 10 66 10

Table 1. Inter-core communication cost reduction. “original” and “optimized” repre-
sent the inter-communication volume per-steady state for the original program and the
optimized program in Bytes. “C reduction” is the reduction percentage of inter-core

communications computed as
Coriginal−Coptimized

Coriginal
.100. “opt. cost” is the time spend

optimizing the SJD representation in seconds.

6.1 Impact on the execution time

We have implemented[9] a complete backend that compiles the intermediate
SJD representation to C code running on a SMP architecture. The compilation
process can be broken in a series of steps: partitioning, scheduling, task fusion,
communication fusion and code generation.
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Fig. 10. Optimizations applied to MM-COARSE. In the original program the inter-
core communications cost is high since the program presents many synchronizations
points: for example at runtine J8 and S15 quickly become communication bottlenecks.
After optimization: J8 and S15 have been split, the transposition of matrix B has been
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Our compiler takes into account two types of parallelism: (i) task or data
parallelism which is explicit in the SJD graph and (ii) pipeline parallelism which
allows to overlap successive executions of consumers and producers in a Stream
Graph Modulo scheduling[21]. In the Stream Graph Modulo scheduling, a node
execution can be overlapped with its communications, hiding the cost of the
cheaper operation. In this context, the performance of a program is determined
by the maximum between: (i) the time needed to complete a schedule tick of a
node execution, (ii) the time needed to copy the productions of the node to the
consumer.

Reducing the inter-core communication cost should therefore have an impact
on performance on communication-bound programs. To verify this hypothesis we
have selected among the previous benchmarks the programs for which we had a
reference implementation (StreamIt) and for which our inter-core communication
reduction was successful.

Our baseline is the execution time of the StreamIt version of the program
compiled on a single core with the command strc -O3. The speed-ups pre-
sented are normalized by the StreamIt single-core performance. Then we have
measured the execution time of the SJD original program and the SJD opti-
mized program using our backend on four cores. Fig. 11 presents the results
obtained. The mean speedup without applying optimizations is ×1.85 while the
mean speedup with inter-core communications reductions is ×3.2.

7 Conclusion

The challenge for stream programming on multicore architectures is to describe
stream manipulation, dependent on the application, and adapt this stream to
complex and changing multicore architectures. In particular, the program has to
adapt to the parallelism of the target architecture, to the bandwidth limitation
and limited cache (or buffer) sizes.

Stream transformations and optimizations are the key to this adaptation,
and both parallelism and communication metrics can be evaluated on a flow
graph describing the stream. Being able to explore different stream formula-
tion according to the metrics to be optimized is essential to obtain high per-
formance stream programs. So far, research efforts in stream specific languages
have focused on two language categories: languages such as Array-OL and Block-
Parallel describe streams through dependences between filters, languages such
as StreamIt and Brook explicitly manipulate stream operators. While it is more
natural to the developer to describe its program as a set of filters communi-
cating through dependences, stream optimizations are hampered by the strong
constraints imposed by the underlying dependency model. For languages explic-
itly manipulating stream objects, the range of possible optimizations is larger
but is suffers from the difficulty to describe complex flows.

We have presented in this chapter a novel approach for stream programming.
Based on the fact that the description of the stream and its optimization are
seperate concerns, we proposed an approach based on two domain specific lan-



guages, one for each concern. This approach retains both the expressivity of high
level languages such as Array-OL and Block Parallel and the rich optimization
framework, similar to StreamIT and Brook.

SLICES manages to retain a high-level multidimensionnal expression of pro-
grams while enabling an efficient compilation to the intermediary language. The
SJD intermediary language extends the expressivity of StreamIt by allowing non
hierarchical graphs, extending the range of possible optimizations. We introduce
a formal framework for building correct transformations of SJD programs and
an iterative exploration algorithm to optimize a program according to a metric.
This method achieves a mean 49.9% reduction of the inter-core communication
cost among a set of significant benchmarks. We expect our results to be even
more relevant as the number of cores increases, but this will be shown as fu-
ture work. A limited exploration of the space of solutions seems to be difficult
to overcome so far: the metrics, such as inter-core communication or memory
consumption are non linear metrics.
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2008.

9. P. de Oliveira Castro. Expression et optimisation des réorganisations de données
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