
HAL Id: hal-00952248
https://hal.science/hal-00952248

Submitted on 26 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid determination of RMSDs corresponding to
macromolecular rigid body motions

Petr Popov, Sergei Grudinin

To cite this version:
Petr Popov, Sergei Grudinin. Rapid determination of RMSDs corresponding to macromolecular rigid
body motions. Journal of Computational Chemistry, 2014, 35 (12), pp.950-956. �10.1002/jcc.23569�.
�hal-00952248�

https://hal.science/hal-00952248
https://hal.archives-ouvertes.fr


Rapid determination of RMSDs corresponding to macromolecular

rigid body motions

Petr Popov1,2 and Sergei Grudinin∗1,2

1NANO-D, INRIA Grenoble – Rhone-Alpes, 38334 Saint Ismier Cedex, Montbonnot,

France
2Laboratoire Jean Kuntzmann, B.P. 53, 38041 Grenoble Cedex 9, France

February 26, 2014

Abstract

Finding the root mean sum of squared deviations (RMSDs) between two coordinate vec-
tors that correspond to the rigid body motion of a macromolecule is an important problem
in structural bioinformatics, computational chemistry and molecular modeling. Standard algo-
rithms compute the RMSD with time proportional to the number of atoms in the molecule.
Here, we present RigidRMSD, a new algorithm that determines a set of RMSDs correspond-
ing to a set of rigid body motions of a macromolecule in constant time with respect to the
number of atoms in the molecule. Our algorithm is particularly useful for rigid body modeling
applications such as rigid body docking, and also for high-throughput analysis of rigid body
modeling and simulation results. We also introduce a constant-time rotation RMSD as a sim-
ilarity measure for rigid molecules. A C++ implementation of our algorithm is available at
http://nano-d.inrialpes.fr/software/RigidRMSD.
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Finding the root mean squared deviations (RMSDs) between two coordinate vectors that correspond
to the rigid body motion of a macromolecule is an important problem in structural bioinformatics.
We present a new algorithm that determines a set of RMSDs corresponding to a set of rigid body
motions of a macromolecule in constant time with respect to the number of atoms in the molecule.
Our algorithm is particularly useful for rigid body docking applications and for high-throughput
analysis of rigid body modeling and simulation results.
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INTRODUCTION

The root mean square deviation (RMSD) is a widely used and powerful criterion to estimate the

similarity between two ordered sets of points. In structural biology and bioinformatics, RMSD

has been widely accepted as a measure of similarity between macromolecules. For rigid body

modeling applications such as rigid body molecular docking1,2, rigid body molecular dynamics

simulations3,4, and rigid body Monte Carlo simulations5, RMSD can be used as a measure of the

rigid body motion of a molecule. However, determination of the RMSD can be a rate-limiting

step for those applications where large number of rigid body motions should be compared. These

applications range from conformation sampling in protein docking and structure-based drug design

to high-throughput analysis of rigid body modeling and simulation results.

Much effort has been spent in developing algorithms for the optimal superposition of two

molecules that minimizes the RMSD between the corresponding atoms6–18. In these methods,

the squared RMSD is typically minimized with respect to the components of a rotation matrix or

a rotation quaternion. However, in many applications of computational chemistry and structural

bioinformatics a complementary problem emerges – given a set of rigid body motions of a reference

molecule, compute the corresponding set of RMSDs. To the best of our knowledge, there exists

no explicit description of an efficient algorithm for this problem in the literature. For the case of

the RMSD between two positions of the same molecule after applying two spatial rigid body trans-

formations, a formula can be found in the work of Rarey et al.19, however, it contains an error,

which we correct below. Here, we present RigidRMSD, a new algorithm for constant-time RMSD

computations. In particular, we provide a connection between the RMSD and the axis and the

angle of the rotation. Also, we consider rotations represented by both matrices and quaternions,

since the two representations are widely used in the description of spatial transformations. We

demonstrate that the quaternion representation could be more efficient than the matrix represen-

tation. Our algorithm initializes in time linear in the number of atoms in the molecule and then

computes the RMSD corresponding to a rigid body motion in constant time. Our algorithm can be

very useful when computing multiple RMSDs corresponding to a sequence of rigid body motions, as

e.g. in the DockTrina method20 or clustering applications, as each new RMSD computation takes

only constant time. To demonstrate the efficiency of the RigidRMSD library, we implemented an

RMSD-based clustering algorithm and compared it with the standard clustering method. Finally,

we provide several source-code examples that demonstrate the usage of our library.
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THEORETICAL FOUNDATION

Weighted RMSD

Given a set of N points A = {ai}N and A′ = {a′

i}N with associated weights w = {wi}N , the

weighted RMSD between them is given as

RMSD(A, A′)2 =
1

W

∑

i

wi

∣

∣ai − a′

i

∣

∣

2
, (1)

where W =
∑

i wi. Here, {wi}N are statistical weights that may emphasize the importance of a

certain part of the structure, for example in case of a protein, the backbone or the side chains.

These weights can be also equal to atomic masses (in this case W equals to the total mass of the

molecule) or may be set to 1 (in this case W = N).

Quaternion arithmetic

A quaternion Q can be considered as a combination of a scalar s with a 3-component vector

q = {qx, qy, qz}
T , Q = [s,q]. The product of two quaternions Q1 = [s1,q1] and Q2 = [s2,q2] is a

quaternion and can be expressed through a combination of scalar and vector products:

Q1 · Q2 ≡ [s1,q1] · [s2,q2] = [s1s2 − (q1 · q2), s1q2 + s2q1 + (q1 × q2)] . (2)

The squared norm of a quaternion Q is given as |Q|2 = s2 + q · q, and a unit quaternion is a

quaternion with its norm equal to 1. An inverse quaternion Q−1 is given as Q−1 = [s,−q]/ |Q|2.

A vector v can be treated as a quaternion with zero scalar component, v ≡ [0,v]. Then, a unit

quaternion Q̂ can be used to rotate vector v to a new position v′ as follows

[

0,v′
]

= Q̂ [0,v] Q̂−1 =
[

0, (s2 − q2)v + 2s(q × v) + 2(q · v)q
]

= [0,v + 2q × (q × v + sv)] . (3)

Equivalently, the same rotation can be represented with a rotation matrix R, such that v′ = Rv,

where R can be expressed through the components of the quaternion Q̂ as

R =







s2 + q2
x − q2

y − q2
z 2qxqy − 2sqz 2qxqz + 2sqy

2qxqy + 2sqz s2 − q2
x + q2

y − q2
z 2qyqz − 2sqx

2qxqz − 2sqy 2qyqz + 2sqx s2 − q2
x − q2

y + q2
z






. (4)

A unit quaternion Q̂ corresponding to a rotation by an angle α around a unit axis u is given as

Q̂ = [cos α
2
,u sin α

2
], and its inverse is Q̂−1 = [cos α

2
,−u sin α

2
]. Finally, N sequential rotations

around different unit axes defined by unit quaternions {Q̂i}N result in a new vector v′ according

to
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[

0,v′
]

= Q̂N Q̂N−1...Q̂2Q̂1 [0,v] Q̂−1
1 Q̂−1

2 ...Q̂−1
N−1Q̂

−1
N . (5)

Rigid body motion described with quaternions

Let R be a rotation matrix and T - a translation vector applied to a molecule with N atoms at

positions A = {ai}N with ai = {xi, yi, zi}
T , such that the new positions A′ = {a′

i}N are given as

a′

i = Rai + T. Then, the weighted RMSD between A and A′ is given as

RMSD2(A, A′) =
1

W

∑

i

wi |ai − Rai − T|2 . (6)

We can rewrite the previous expression using quaternion representation of vectors ai and T as

RMSD2 =
1

W

∑

i

wi

∣

∣

∣[0,ai] − Q̂[0,ai]Q̂
−1 − [0,T]

∣

∣

∣

2

. (7)

Here, the unit quaternion Q̂ corresponds to the rotation matrix R. Since the norm of a quaternion

does not change if we multiply it by a unit quaternion, we may right-multiply the kernel of the

previous expression by Q̂ to obtain

RMSD2 =
1

W

∑

i

wi

∣

∣

∣[0,ai]Q̂ − Q̂[0, ai] − [0,T]Q̂
∣

∣

∣

2

. (8)

Using the scalar–vector representation of a quaternion, Q̂ = [s,q], we rewrite the previous RMSD

expression as

RMSD2 =
1

W

∑

i

wi [−q · T,−sT + (2ai − T) × q]2 . (9)

Performing scalar and vector products in Eq. (9), we obtain

RMSD2 =
1

W

∑

i

wi

(

[qxTx + qyTy + qzTz]
2

+ [−sTx + qy(2zi − Tz) − qz(2yi − Ty)]
2 (10)

+ [−sTy + qz(2xi − Tx) − qx(2zi − Tz)]
2

+ [−sTz + qx(2yi − Ty) − qy(2xi − Tx)]2
)

.
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Grouping terms in Eq. (10) that depend on atomic positions together, we obtain

RMSD2 = T 2
x + T 2

y + T 2
z +

4

W

∑

i

wi

{

q2
x(y2

i + z2
i ) + q2

y(x
2
i + z2

i ) + q2
z(x

2
i + y2

i )

− 2qxqyxiyi − 2qxqzxizi − 2qyqzziyi

}

(11)

+
4

W

{

qxqzTz + qxqyTy − q2
zTx − q2

yTx + sqzTy − sqyTz

}

∑

i

wixi

+
4

W

{

qyqzTz + qxqyTx − q2
xTy − q2

zTy + sqxTz − sqzTx

}

∑

i

wiyi

+
4

W

{

qyqzTy + qxqzTx − q2
xTz − q2

yTz + sqyTx − sqxTy

}

∑

i

wizi.

Introducing the inertia tensor I, the rotation matrix R, the center of mass vector C, and the 3× 3

identity matrix E3, we may simplify the previous expression to

RMSD2 = T2 +
4

W
qT Iq + 2TT (R − E3)C, (12)

where C = 1
W

{
∑

wixi,
∑

wiyi,
∑

wizi}
T , rotation matrix R corresponds to the rotation with the

unit quaternion Q̂ according to Eq. (4), and the inertia tensor I is given as

I =







∑

wi(y
2
i + z2

i ) −
∑

wixiyi −
∑

wixizi

−
∑

wixiyi

∑

wi(x
2
i + z2

i ) −
∑

wiyizi

−
∑

wixizi −
∑

wiyizi

∑

wi(x
2
i + y2

i )






. (13)

Equation (12) is the principal result of this work. It consists of three parts, the pure translational

contribution T2, the pure rotational contribution 4
W

qT Iq, and the cross–term 2TT (R − E3)C. In

this equation, only two variables depend on the atomic positions {ai}N , the inertia tensor I, and

the center of mass vector C. Below, we will use this fact when computing RMSDs for a set of rigid

body motions.

RMSD corresponding to a pure rotation

An interesting consequence of Eq. (12) is the analytical expression of the RMSD for a pure rigid

rotation. Recall that a unit quaternion in Eq. (12) can be represented as a rotation about a unit

axis n by an angle α, Q̂ = [cos α
2
,n sin α

2
]. Then, if a rigid molecule is rotated about this axis

passing through the origin, the RMSD for such a rotation is given as

RMSD2 =
4

W
sin2 α

2
I(n), (14)

where I(n) is the reduction of the inertia tensor (13) to a scalar form for the unit axis n:

I(n) = nT In. (15)
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Rigid body motion described with a rotation matrix

The pure rotational contribution 4
W

qT Iq in Eq. (12) can be rewritten in terms of a rotation matrix

R as
4

W
qT Iq =

4

W
tr
((

qqT
)

I
)

=
1

W
tr (I) [1 − tr (R)] +

2

W
tr (IR) . (16)

Here, rotation matrix R is connected with the vector part of the rotation quaternion q by Eq. (4).

Equivalently, Eq. (16) can be written as

4

W
qT Iq =

2

W

3
∑

i,j=1

(δij − Rij) Xij , (17)

where matrix X is given as

X =







∑

wix
2
i

∑

wixiyi

∑

wixizi
∑

wixiyi

∑

wiy
2
i

∑

wiyizi
∑

wixizi

∑

wiyizi

∑

wiz
2
i






. (18)

Now, the weighted RMSD in Eq. (12) can be computed using the matrix description of the rotation:

RMSD2 = T2 +
2

W

3
∑

i,j=1

(δij − Rij) Xij + 2TT (R − E3)C. (19)

RMSD corresponding to a relative rigid body motion

Let R1 and R2 be two rotation matrices and T1 and T2 – two translation vectors applied to

a molecule with N atoms at positions A = {ai}N , such that new positions A1 = {a1
i }N and

A2 = {a2
i }N are given as a1

i = R1ai + T1 and a2
i = R2ai + T2. Let a unit quaternion Q̂ = [s,q]

correspond to the relative rotation RT
2 R1. Then, the weighted RMSD between positions A1 and

A2 is given by a generalized version of Eq. (12) as

RMSD2(A1, A2) =
4

W
qT Iq + (T1 − T2)

2 + 2 (T1 − T2)
T (R1 − R2)C. (20)

Using Eq. (17) we can rewrite the above equation using the matrix description of the rotation:

RMSD2(A1, A2) =
2

W

3
∑

i,j=1

(

δij −
3
∑

k=1

R1
kiR

2
kj

)

Xij + (T1 − T2)
2 + 2 (T1 − T2)

T (R1 − R2)C.

(21)

The derived equation is equivalent to the formula obtained by Rarey et al. for clustering spatial

motions in the FlexX docking tool19, except that the formula of Rarey et al. contains an error in

the rotational part. More precisely, it has an additional factor 2 preceding the
∑3

k=1 R1
kiR

2
kj term.

7



ALGORITHM IMPLEMENTATION

Computational considerations

In the above equations (12–21), as we have mentioned above, only two variables depend on the

atomic positions of the reference molecular structure – the inertia tensor I (or, its equivalent

matrix X if the rotation is given by the matrix representation), and the center of mass vector

C. Therefore, given a set of M spatial transformations, we compute these two variables only

once at the initialization step. The computational complexity of this step is linear with respect

to the number of atoms N in the molecule. After, each RMSD computation for a single spatial

transformation takes only constant time. The total cost to compute M RMSD values for a rigid

molecule with N atoms thus will be O(N + M), which is usually much smaller compared to the

cost of standard algorithms, O(NM), particularly at large values of M and N . More precisely,

a standard algorithm computes the RMSD for each spatial transformation in O(N) operations

according to Eq. (1), thus resulting in O(NM) overall complexity for M spatial transformations.

Below we discuss computational strategies that allow to reduce the constant in O(N + M).

In Eq. (12), the cross–term vanishes in the reference frame bound to the center of mass (COM)

of the molecule where C = 0. In this reference frame, the rotation is preserved, while the translation

TCOM is given as

TCOM = RC + T − C. (22)

We can equivalently obtain the translation in the COM reference frame using a rotation quaternion

Q̂ as

TCOM = Q̂CQ̂−1 + T − C. (23)

Therefore, in the COM reference frame, the RMSD can be computed with fewer arithmetic op-

erations. More precisely, using the quaternion representation of the rotation, the RMSD is given

as

RMSD2 = T2
COM +

4

W
qT ICOMq. (24)

Similarly, if we use the matrix representation of the rotation, the RMSD is given as

RMSD2 = T2
COM +

2

W

3
∑

i,j=1

(δij − Rij)XCOM
ij . (25)

In the above equations, inertia tensor ICOM and matrix XCOM are computed in the COM coordinate

system. A particularly interesting case is the computation of the RMSD in the principal axes of

inertia (PAI) frame. The PAI frame is the coordinate system where the centre of mass vector C = 0

and the molecule is aligned along its principal axes, i.e. matrices ICOM and XCOM are diagonal.

In this frame, equations (24-25) are simpler. Also, in the PAI frame, RMSD corresponding to a
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relative rigid body motion defined by two rotation quaternions Q̂1 and Q̂2 and two translation

vectors T1 and T2 will be

RMSD2(A1, A2) =
4

W

(

(s1q
x
2 − qx

1s2 − qy
1qz

2 + qz
1q

y
2)

2
Ixx + (s1q

y
2 − qy

1s2 − qz
1q

x
2 + qx

1qz
2)

2
Iyy+

(s1q
z
2 − qz

1s2 − qx
1qy

2 + qy
1qx

2 )
2
Izz

)

+ (T1 − T2)
2 . (26)

This equation uses three times fewer arithmetic operations compared to the previously published Eq.

(21). More precisely, Eq. (26) requires only 38 arithmetic operations compared to 114 operations

in Eq. (21). Generally, Eqs. (22-26) are more efficient in the number of arithmetic operations

compared to Eqs. (12) and (21), as it is summarized in Table 1. This table lists the number of

arithmetic operations needed to compute the squared RMSD using different representations of the

rigid motion in three different coordinate systems, the world frame, the COM frame, and the PAI

frame. As listed in Table 1, to compute the squared RMSD we need 54 arithmetic operations in

the worst case, when the rigid rotation is given as a quaternion in the world frame. If we choose

the coordinate system properly (the PAI frame), we can compute the squared RMSD in just 14

operations. Table 1 demonstrates that in the world frame one requires a fewer number of arithmetic

operations to compute the RMSD if rotations are represented with rotation matrices, whereas in the

COM and PAI frames the number of operations is equal between the two representations. However,

when performing sequences of rotations, the quaternion representation is more numerically stable

and computationally efficient compared to the matrix representation irrespective of the choice of

coordinate system. Indeed, one requires 45 arithmetic operations to multiply two rotation matrices,

whereas quaternion multiplication requires only 28 operations. Finally, Table 1 demonstrates that

the squared RMSD for a relative rigid motion computed with the quaternion representation in the

PAI frame requires three times fewer operations compared to the one computed with the matrix

representation in the world frame.

Numerical tests

Throughout the article, we count the number of arithmetic operations in different equations ac-

cording to the source code of the RigidRMSD library. We would like to mention that the cost of

different arithmetic operations is not the same – division and square root are usually more expen-

sive than multiplication, which is in turn more expensive than addition and subtraction21. We

should also mention that on modern computers minimizing the number of arithmetic operations is

less important for the performance of a particular algorithm compared to increasing the amount of

instruction level parallelism or improving memory access patterns and cache utilization, for exam-

ple. Therefore, it is impossible to rigorously compare the performance of different algorithms solely

based on their operation count. Thus, we only provide the total number of arithmetic operations

as a rough estimation of the complexity of the equations and the corresponding algorithms. To get

more practical numbers, in the following sections we run a series of tests with two different levels
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of compiler optimization.

We implemented the tests using the C++ programming language and compiled them using

g++ compiler version 4.6 with optimization levels –O0 and –O3. For the gcc family of compilers,

optimization option –O0 disables compiler optimization, whereas optimization option –O3 enables

heavy optimization including interprocedural optimization and vectorization. We ran the tests on

a 64-bit Linux Fedora operating system with Intel(R) Xeon(R) CPU X5650 @ 2.67GHz.

RESULTS AND DISCUSSION

This section presents numerical tests and practical applications of the equations derived in this

article. First, we compare the quaternion representation with the matrix representation when

computing sequential rotations (i.e. a composition of several rotations) and when computing a

product of rotations with the subsequent RMSD computation. Second, we discuss the similarity

measure between molecules and demonstrate that the rotation RMSD (Eq. 14) can be advantageous

over a simpler angular distance measure. Finally, we present a rigid body clustering algorithm as

an example of the application of the derived equations.

Rotation representation

Quaternions provide another way to represent rotations compared to conventional rotation matri-

ces. In practice, the quaternion representation has several benefits over the matrix representation.

First, a quaternion compared to a matrix requires less storage, four values versus nine. Second,

the orthonormalization of a quaternion costs much less than the orthogonalization of a matrix.

More precisely, orthonormalization of a quaternion can be accomplished by dividing the quater-

nion by its norm, which requires twelve arithmetic operations including one square root. However,

there is no universal method for matrix orthonormalization. In this case, one may use the Gram-

Schmidt orthonormalization method, QR decomposition, singular value decomposition or other

methods, which are more computationally expensive compared to the quaternion orthonormaliza-

tion22. Third, a product of two rotations using quaternions requires fewer arithmetic operations

compared to the matrix representation (28 versus 45). Finally, the matrix multiplication is less nu-

merically stable due to the accumulation of rounding errors. In summary, applications that require

sequential rotations (e.g. some docking applications) will gain in speed, memory and numerical

precision when using the quaternion representation.

To demonstrate the numerical efficiency of the quaternion representation, we ran a series of

tests with two different levels of compiler optimization. In the first test, we performed 108 products

of rotations using the two types of rotation representation and compared the timing for a single

product of rotations with and without compiler optimization. The results of this test are presented

in Table 2. We see that a rotation with quaternions is about 60% faster compared to a rotation

with matrices regardless of the optimization level. In the second test, we computed a product of
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two rotations with the subsequent RMSD computation using Eqs. (22)–(25) and repeated these

operations 108 times. Then, we calculated the time required for a single product of rotations

with the subsequent RMSD computation. The results of this test are also presented in Table 2.

Again, the quaternion representation is about 10% faster without optimization and 4% faster with

optimization compared to the matrix representation. We should note that increasing the number

of sequential rotations will provide a bigger speedup using the quaternion representation in this

example. In the third test, we computed 108 RMSDs corresponding to a relative rigid body motion

using the matrix representation of rotation (Eq. (21)) and the quaternion representation of rotation

(Eq. (26)). We can see that our quaternion approach is 2.4–3.2 times faster compared to the matrix

formula (Eq. (21)) depending on the level of compiler optimization.

To summarize, if a particular application operates with sequential rotations, as it happens in

the DockTrina algorithm20 or other docking applications, RMSD computations are more numeri-

cally efficient using the quaternion representation. Furthermore, the gain of using the quaternion

representation is bigger up to 60 % when using a larger sequence of rotations.

Rotation RMSD as a similarity measure for molecular structures

It is still an open question how to measure the similarity between structures of a molecular

complex23. For example, Rodrigues et al24 developed a clustering method with the similarity

measure based on the fraction of common contacts between two complexes. Another similarity

measure was recently proposed by Vreven et al.25, where the angular distance computed in constant–

time is used as the criterion for the similarity between the predictions from rigid body docking.

Nonetheless, the majority of the algorithms in the structural bioinformatics use the pair-wise RMSD

as the similarity metric between the molecular structures.

Equation (14) is of particular interest when considered in relation to the aforementioned work of

Vreven et al.25, where the authors demonstrated that the angular distance can serve as a similarity

measure for rigid molecules as an alternative for the RMSD. More precisely, they defined the angular

distance as the angle between the rotations corresponding to two docking predictions, ignoring the

translational degrees of freedom. Vreven et al. claimed that the drawback of using the RMSD

is that it is computationally expensive. However, we demonstrated that the RMSD can also be

computed in constant time. Furthermore, in the context of Eq. (14), the angular distance is simply

equal to the rotation angle α and does not take into account the geometry of a rigid molecule. In

particular, for a fixed rotation angle, the angular distance for molecules of different size will be

equal, while the RMSD can be very different. Another example that demonstrates the difference

between the two measures is the rotation of a long linear molecule. The RMSD for such a rotation

will dramatically depend on the axis of the rotation, while the angular distance will be the same

regardless the rotation axis.

To conclude, we would like to emphasize that for comparison of rigid molecules of different size

or molecules of non-spherical shape, it may be more rigorous to use the similarity measure defined
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by Eq. (14) instead of the angular distance. Particularly, our measure involves the scalar form

of the inertia tensor (Eq. 15), thus taking into account the geometry and the rotation axis of the

molecules.

Clustering algorithm

One of the possible applications of the RigidRMSD library can be the rigid body clustering. Molecu-

lar docking algorithms typically produce thousands of solutions, some of them having a very similar

geometry. Therefore, it is practical to group these into clusters. As we have discussed above, there

are multiple ways to measure the similarity between molecular structures23, however, most of the

modern state-of-the-art clustering algorithms use the pair-wise RMSD as the similarity metric be-

tween the predictions, as it is implemented, e.g., in the Hex1 and ZDOCK2 docking algorithms. In

the worst case, the complexity of such a clustering algorithm can be quadratic with respect to the

number of docking predictions. Thus, an efficient pair-wise RMSD test can dramatically improve

the clustering performance. The clustering algorithm used by the Hex and ZDOCK applications

consists of the following steps. First, the docking prediction with the best score (yet unassigned

to any cluster) is taken as the seed for the new cluster. Second, the pair-wise RMSDs between the

seed and all other predictions (in case of ZDOCK) or some best predictions (in case of Hex) are

measured and the predictions with the RMSD lower than a certain threshold are put into the clus-

ter. Finally, these two steps are iterated until all docking predictions are assigned to corresponding

clusters.

In order to demonstrate the efficiency of the RigidRMSD library, we compared the clustering

algorithm implemented with our library to the one from the Hex software. We chose Hex for the

comparison because it is a very fast rigid body docking tool and also because it explicitly provides

the clustering time. It is worth to note that Hex’s clustering algorithm has linear complexity

with respect to the number of docking predictions, i.e. it is faster (though less accurate) than

the standard RMSD-based clustering algorithms, as it is implemented in ZDOCK. Both Hex and

ZDOCK clustering algorithms use the standard RMSD test linear in the number of atoms in the

protein.

For the comparison, we collected a benchmark of 23 protein dimers of various size (see Table

S1 in SI). After, we launched Hex version 6.3 on this benchmark and collected docking solutions

before clustering, sizes of clusters, and clustering time. We then also clustered these solutions using

the RigidRMSD library. Figure 1 shows the clustering time of the HEX clustering algorithm with

respect to our clustering using Eqs. (21) and (26) as a function of the number of atoms in the

smaller protein (left) and the number of docking solutions before the clustering (right). We can

clearly see that our implementation of the clustering algorithm is more than an order of magnitude

faster compared to the Hex implementation. Also, the quaternion representation of rotation, Eq.

(26), is on average three times more efficient compared to the matrix representation, Eq. (21). The

efficiency of our clustering algorithm increases when using a larger RMSD threshold, as it is shown

in Fig. S1 from SI. Also, mean cluster sizes obtained with our clustering algorithm are significantly
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larger compared to the Hex clustering (see Fig. S1 from SI), particularly at large RMSD thresholds.

This demonstrates that our implementation of the clustering algorithm is not only much faster, but

also more accurate compared to the clustering in Hex, especially at large clustering thresholds.

CONCLUSIONS

We described a very fast and efficient way to compute the RMSD corresponding to the set of rigid

body motions of a molecule. Our algorithm consists of an initialisation step followed by a series

of constant-time RMSD computations. The initialization step has linear complexity with respect

to the number of atoms in a molecule. However, each of the RMSD calculations requires only

14 to 54 arithmetic operations when using a single rigid motion (i.e. given with a single spatial

rigid body transformation), or 38 to 114 arithmetic operations when using a relative rigid motion

(i.e. given with a pair of spatial rigid body transformations), depending on the representation

of the motion and the choice of the coordinate frame. This can be compared to 30 arithmetic

operations needed to rotate a vector using a quaternion or 15 arithmetic operations needed to

rotate a vector using a rotation matrix. We demonstrated that RMSD computations are more

numerically efficient when using the quaternion representation of rotation. In particular, the gain

of using the quaternion representation is bigger when using a larger sequence of rotations. We

have also discussed two ways to measure the similarity between structures of a molecular complex.

In particular, we claim that it may be more rigorous to use the rotation RMSD similarity measure

defined by Eq. (14) instead of the simpler measure based on the angular distance. As an

application of the RigidRMSD library, we implemented a clustering algorithm for solutions obtained

with rigid body molecular docking tools. We showed that our implementation is more than one

order of magnitude faster and also more accurate compared to the standard clustering algorithm

used in the popular Hex docking software. A C++ implementation of our algorithm is available at

http://nano-d.inrialpes.fr/software/RigidRMSD or by request from the authors.
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Table 1: Number of arithmetic operations for the RMSD calculations with respect to different
rotation representations and a different choice of the coordinate frame. These numbers were com-
puted according to the source code of the RigidRMSD library. The references to the corresponding
equations are given in the last column. These equations comprise only multiplication and addition
/ subtraction arithmetic operations.

Multiplies Add/Subtract Total Equation

RMSD2 (quaternion,
34 20 54 (24) and (23)

world frame)

RMSD2 (matrix,
19 26 45 (25) and (22)

world frame)

RMSD2 (quaternion,
16 8 24 (24)

COM frame)

RMSD2 (matrix,
10 14 24 (25)

COM frame)

RMSD2 (quaternion,
9 5 14 (24), ICOM is diagonal

PAI frame)

RMSD2 (matrix,
6 8 14 (25), XCOM is diagonal

PAI frame)

RMSD2 for clustering,
55 59 114 (21)

(matrix, world frame)

RMSD2 for clustering,
21 17 38 (26)

(quaternion, PAI frame)
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Figure 1: Left: Time spent on clustering docking solutions by Hex and RigidRMSD with respect
to the number of atoms in the ligand protein. Each point on the plot corresponds to a protein
complex from the protein benchmark (see Table S1 in SI). For each protein complex, the number of
considered docking solutions was fixed to 10,000. Right: Average time spent on clustering docking
solutions by Hex and RigidRMSD with respect to the number of docking solutions. For this plot,
we chose five structures with the number of atoms in the ligand protein of about 2,000 such that
they result in a similar number of clusters and plotted the standard deviation of the clustering
time for these structures. For both plots, time is plotted on a logarithmic scale and the clustering
RMSD threshold is fixed to 10.0 Å.
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Table 2: Running time for three tests using two levels of compiler optimization. O0 optimization
level disables optimization, whereas O3 optimization level enables heavy optimization including
interprocedural optimization and vectorization. In the first test (columns 1 and 2), we performed
108 products of rotations using the two types of rotation representation and reported the timing
for a single product of rotations. In the second test (columns 3 and 4), we computed a product
of two rotations with the subsequent RMSD computation using Eqs. (22)–(25) and repeated these
operations 108 times for averaging. In the last test (columns 5 and 6), we computed 108 RMSDs
corresponding to a relative rigid body motion, as in the clustering application, using the matrix
representation of rotation (Eq. 21) and the quaternion representation of rotation (Eq. 26) and
reported the timing for a single RMSD calculation.

Product of
Rotations
(–O0)

Product of
Rotations
(–O3)

Product of
rotations
and RMSD
(–O0)

Product of
rotations
and RMSD
(–O3)

Clustering
(–O0)

Clustering
(–O3)

Quaternion rep-
resentation

2.96× 10−8

s
0.73× 10−8

s
7.79× 10−8

s
2.29× 10−8

s
4.17× 10−8

s
1.19× 10−8

s

Matrix repre-
sentation

4.68× 10−8

s
1.18× 10−8

s
8.55× 10−8

s
2.39× 10−8

s
9.99× 10−8

s
3.81× 10−8

s
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