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Histogram of Gradients of Time-Frequency
Representations for Audio Scene Detection

A. Rakotomamonjy, G. Gasso

Abstract—This paper addresses the problem of audio
scenes classification and contributes to the state of the
art by proposing a novel feature. We build this feature
by considering histogram of gradients (HOG) of an audio
scene time-frequency representation. Contrarily to classical
audio features like MFCC, we make the hypothesis that
histograms of gradients are able to encode some relevant
informations in a time-frequency representation: namely,
the local direction of variation (in time and frequency) of
the signal spectral power. In addition, in order to gain
more invariance and robustness, histograms of gradients
are locally pooled. We have evaluated the relevance of the
novel feature by comparing its performances with state-
of-the-art competitors, on several datasets, including a
novel one that we provide, as part of our contribution.
This dataset, that we make publicly available, involves 19
classes and contains about 1500 minutes of audio scene
recordings. We thus believe that it may be the next standard
dataset for evaluating audio scene classification algorithms.
Our comparison results clearly show that the HOG-based
features outperform its competitors.

Index Terms—Histogram of gradients; Time-Frequency
Representation; audio scene; MFCC; support vector ma-
chines

I. INTRODUCTION

The problem of recognizing acoustic environments is
known as the problem of audio scene classification and
it is one of the most difficult task in the general context
of computational auditory scene analysis (CASA) [1].
This classification task is of primary importance in the
domain of machine listening since it is strongly related
to the context in which the acquisition device capturing
the audio scene lives. Typically, in order to get some
context awareness, a machine, say a smart-phone or any
mobile electronic device, should be able to predict the
environment in which it currently resides. The main goal
is to help the machine adapting itself to the context of
the user (for instance by automatically turning off the
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ring tone in some situations). Such awareness can be
brought through vision or audio scene analysis. While
most of the efforts have focused on vision, there is now
a growing interest of environment recognition based on
audio modality.

Audio scene classification is a very complex problem
since a recording related to a given location can be
potentially composed of a very large amount of single
sound events while only few of these events provide
some information on the scene of the recording. More
specifically, an audio scene is associated to a recording
taken at a given location and this location is expected
to generate some acoustic events that make it distin-
guishable from other audio scenes. These discriminative
acoustic events may be produced by different phenomena
and they may have a very large variability.

Hence, the recent works on audio scene classification
have devoted much efforts on designing methods and
algorithms for automatically extracting audio features
that capture the specificities of these events. The natural
hope is that the designed features are still able to capture
the discriminative power of a given audio event.

For instance, following its success in speech recogni-
tion, one of the most prominent features that has been
considered for audio scene recognition are mel-frequency
cepstral coefficients (MFCC) [2], [3], [4], [5]. These
features are typically used in conjunction with different
machine learning techniques in order to capture the vari-
ations that help in discriminating scenes. For instance,
[2] consider a Gaussian Mixture Model for estimating
the distribution of the MFCC coefficients, while [6] have
proposed a sparse feature learning approach for capturing
relevant MFCC coefficients.

In addition to MFCC, several kinds of features have
also been evaluated for solving this problem of audio
scene recognition. [7] proposed an ensemble of time-
frequency features obtained from a matching pursuit
decomposition of the audio signal. Recently, [8] have
considered a large set of features, including spectral,
energy-based and voicing-related features. Another fam-
ily of relevant features can be obtained from MFCC by
considering recursive quantitative analyzing (RQA) as
introduced by [9]. RQA has the advantage to allow the
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analysis of recurrent behaviour in the MFCC coefficients
over time. According to the recent D-Case challenge on
audio scene recognition [10], combining MFCC features
with RQA features extracted from MFCC yield to an
highly efficient set of features.

Another trend aims at building higher-level features
from the time-frequency representations of the audio
scene. In this context, [11] have investigated methods
for automatically extracting spatio-temporal patches that
are discriminative of the audio scene. Typically, these
patches are obtained through a non-negative matrix fac-
torization of a time-frequency representation. [12] have
followed similar ideas but instead of considering NMF
they employed a probabilistic model denoted as proba-
bilistic latent component analysis. Likewise, other works
propose features, like texture-based features that are
directly computed from time-frequency representations
[13], [14].

In this paper, we follow this trend and propose a novel
feature for automatic recognition of audio scene. The
main originality of the proposed feature is the use of
histogram of gradients (HOG) on time-frequency rep-
resentations. These HOG features have been genuinely
introduced for human detection in images [15] but we
strongly believe that their properties make them highly
valuable for extracting relevant features based on time-
frequency representation (TFR). Indeed, while MFCC
can also be considered as features extracted from a time-
frequency (TF) representation, they essentially capture
non-linear information on the power spectrum of the
signal. Instead, histogram of gradients of a TF repre-
sentation provides information on the spectral power
direction of variation. For instance, if an audio scene
has been obtained in a bus that it is accelerating or
decelerating, we expect the chirp effect present in the
TFR to be captured and better discriminated by the
histogram of gradients representation, than by MFCC.
This property will be empirically illustrated in the sequel
and it provides rationale that for audio scene recognition
the novel feature we present is strongly relevant.

Algorithms for audio scene recognition have to be val-
idated and evaluated on some datasets. In order to make
comparisons of different designs of features including
signal processing set-ups or different learning techniques
possible, these datasets should be publicly available. The
recent D-Case challenge [10] is an excellent initiative
of this kind although its number of examples is limited
(100 for the publicly available examples). Hence, an-
other contribution we present is a new dataset for audio
scene recognition. It is based on about 1500 minutes of
recording on different locations (up to 19). This dataset is
publicly available and we expect that it will become one

of the standard benchmarks for audio scene recognition.
The paper is organized as follows: we first describe

the pipeline we propose for extracting our novel HOG-
based feature. Then, as one of our contribution is also
to introduce a novel benchmark dataset, we carefully
detail all the datasets we considered for evaluating our
feature and its competitors as well as the experimental
protocol we employed for the comparisons. Extensive
experimental analyses have been carried out and they
show that our HOG-based feature achieves state-of-the-
art performances on all datasets. As we advocate result
reproducibility, all the codes used for this work will be
made publicly available on the author’s website.

II. FROM SIGNAL TO HISTOGRAM OF GRADIENTS
FEATURES

This section describes the feature extraction pipeline
we propose for analyzing audio scene signals. We first
provide the big picture before detailing each part of the
flowchart.

A. The global feature extraction scheme

The features we propose for recognizing audio scenes
are based on some specific information extracted from
a time-frequency representation (TFR) of the signal.
After the TFR image has been computed, it is pro-
cessed so as to attenuate some spurious noises that may
hinder relevant information related to high-energy time-
frequency structures. Afterwards, the resulting processed
time-frequency representation image is used as input
of our histogram of gradients feature extraction. In a
nutshell, the idea of histogram of gradients is to locally
analyze the direction of energy’s variation in the time-
frequency representation. As detailed in the sequel, the
local HOG informations over the whole TF image are
combined in order to generate the final feature vector.
The dimension of this vector depends on the number of
bin in the (local) histogram and on how all the local
histograms are pooled together in order to form the final
feature vector.

The block diagram of this feature extraction scheme
is illustrated in Figure 1. Each block of this diagram is
discussed in the next paragraphs.

B. From signals to TFR images

Because of their non-stationary nature, sounds are
typically represented on a short-time power frequency
representation, which idea is to capture the power spec-
trum of the signal on a varying short local window. A
large part of the literature on sound recognitizion prob-
lems use such time-frequency representations of sound.
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Fig. 1. Block Diagram of the HOG-based feature extraction

Depending on the task at hand, they either consider
wavelet-based [16], [17], MFCC-based [18] or short-
time Fourier-based representations [19]. In this work, we
do not depart from this widely adopted framework and
choose to represent the signal according to a constant-
Q transform [20]. Contrarily to a short-time Fourier
transform, this transform provides a frequency analysis
on a log-scale which makes it more adapted to sound
and music representations [20].

Once this TFR has been computed, we now have an
image that can be processed as such. In order to obtain a
processing system independent of the signal length and
sampling frequency, as well as the CQT parameters, we
have chosen to resize all TFRs to a 512×512 image. This
resizing is performed on the CQT matrix by means of a
bicubic interpolation. Hence, the image we obtain is not
exactly equivalent to a CQT with a total of 512 frequency
bins but it preserves the time-frequency structures of the
audio scene as one can see in Figure 2.

Then, depending on the TFR images, some image
processing tools can be used so as to enhance relevant
time-frequency structures. In our work, because we have
few prior knowledge on the signal noise, we have just
applied a mean filtering so as to smooth the TFR image.
Our goal with this smoothing is to reduce strong local
variations in the image that will tend to produce high
gradients, which may be not relevant for audio scene
recognition. The size of the average kernel for mean

filtering can be considered then as an hyperparameter
of the feature extraction scheme and its influence will be
investigated in the experimental analysis.

C. Histogram of gradients

Histogram of gradients have been originally intro-
duced by [15] for human detection in images. Our main
objective in this feature extraction stage is to capture
the shape of some time-frequency structures in the hope
that such structures are relevant for characterizing an
audio scene. From works in computer vision [15], [21],
[22], it is now well acknowledged that local shape infor-
mation can be described through gradient intensity and
orientations. Histograms of gradients basically provide
information about the occurrence of gradient orientations
in a localized region of the images. Hence, they are able
to characterize shapes in that regions.

Two main approaches have been proposed for comput-
ing HOG in images [15], [21] and they are both based
on the following steps:

1) compute the gradient of the TF image
2) compute angles of all pixel gradients
3) split images into non-overlapping cells
4) count the occurrence of gradient orientations in a

given cell
5) eventually normalize each cell histogram according

to histogram norm of neighboring cells.
Variants on this theme are essentially based on whether

the gradient orientations are bidirectional or not, whether
the magnitude of the gradient is taken into account in the
counting and on how normalization factors are computed
within block of neighboring cells. For this work, we
have used the implementation in the VLFeat toolbox [23].
VLFeat is an open-source computer vision toolbox that
includes the major functionalities of the most popular
computer vision and pattern recognition algorithms. In
particular, it implements several histogram-based feature
extraction algorithms including SIFT [24] and HOG. For
more details, we refer the reader to [15] and [21] and to
the VLFeat Hog tutorial1.

As an illustration, we depict in Figure 2 the 512×512
mean filtered image of a linear chirp’s CQT transform,
as well as the resulting histogram of gradients we obtain
for each 32× 32 cell with 8 gradient orientations. From
the right panel, we remark that the HOG representation
properly captures the directions of power spectrum’s
variation along the high-energy chirp signal. However,
we can also note that several spurious cells depict non-
zero histogram of gradients (top and right bottom parts

1http://www.vlfeat.org/overview/hog.html
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Fig. 2. Example of HOG for a toy linear chirp. (left) 512 × 512 image of the CQ transform of the signal. (right) histogram of gradients
representation of the signal. Note that for a sake of interpretation, each cell in the plots represents the occurrence of edge orientation in the
cell and the darker the orientation is, the more present the orientation is. We thus note that along the chirp, the HOG representation correctly
captures the direction of energy variation.

of the image). They are essentially due to presence of
small variations of gradient in low-energy time-frequency
structure in the CQ transform, inducing non-zero gradi-
ents. However, these noisy cells can be easily recognized
as having an almost flat histogram, denoting thus the
presence of multiple orientations of gradient in the cells.
Note that in our feature extraction scheme, we have
not considered any pre-processing and post-processing
strategies for handling these spurious cells, they are taken
into account as they are into the HOG features.

After having computed the histogram of gradients in
the images, we are left with a representation composed
of histograms in all cells. If we concatenate all these
histograms for yielding the final feature vector, we obtain
a vector whose dimension is large (number of cells ×
number of orientations in the histogram). In the example
in Figure 2, cells are sized 32× 32 pixels, this results in
vector of dimension 162× 8 = 2048, 162 being the total
number of cells. Of course, this dimensionality may fur-
ther increase if we choose to reduce cell’s size or increase
the number of orientations in the histogram computation.
Depending on the number of audio scene examples, it
thus may be beneficial to reduce the dimensionality of
the problem for instance by pooling the histograms of
gradients.

D. Time-Frequency Histogram Pooling

Pooling consists in combining the responses of a fea-
ture extraction algorithm computed at nearby locations.
The underlying idea is to summarize local features into
another feature (of lower dimensionality) that is expected
to keep relevant information over the neighborhood. The
pooling helps in getting a more robust information. This
technique is a step commonly considered with success
in modern visual recognition algorithms [25]. In our
case, pooling histograms over neighboring cells aims

at building new histograms that capture information on
time-frequency structures which may be larger than a
cell or that have been slightly translated in time or
frequency. In this work, we will investigate several forms
of time-frequency region pooling (see Figure 3), while
the pooling operation will be kept fixed as an averaging
operator. We will consider the following poolings:

• Marginalized pooling over time: for this pooling, we
average all histograms along the time axis of the
TFR representation. This results in a feature vector
which has lost all temporal information.

• Marginalized pooling over frequency: in this case,
the averaging is performed over the frequency axis.
Hence, all frequency informations of the HOG are
now merged into a single one.

• Block-size pooling: pooling is performed on nearby
cells with the size of the neighorhood being user-
defined.

The vector resulting from the concatenation of the
pooled histograms forms now the feature vector that will
be used for learning the audio scene classifier.

E. Discussions

Now that we have explained how the HOG on time-
frequency representation feature is obtained, we want
to discuss some properties of these HOG features and
their advantages over features like MFCC for audio scene
characterization.

Our initial objective was to design features that is
able to characterize some time-frequency structures that
occur in a time-frequency representation. By construc-
tion, since we bin the orientations when counting a
given gradient, the histogram of gradients is invariant
to rotation if this rotation is smaller than the bin size. In
our case, rotation would correspond to a small rotation
of a time-frequency structure leading then to a change
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Fig. 3. Illustrating the different types of pooling we investigate based on the HOG issued from Figure 2. (Left) time pooling. (Middle) frequency
pooling. (right) block-sized pooling. The green, red and blue boxes provide an example on the regions on which local histograms are averaged.
The x-axis and y-axis respectively denote the time and frequency axes. Best viewed in color.

of orientation of its gradients. Such a situation may
occur for instance in audio scenes capturing a moving
object, like a bus or a car. Indeed, variations of a
bus’s acceleration induce variations of steepness in the
time-frequency structure related to the sound of that
bus. Owing to the binning of the gradient orientation,
the HOG feature will be invariant to these variations.
Furthermore, as we build an histogram from a cell of
pixels and then average them over a larger region, our
pooled histogram of gradient is invariant to translation
over that region of pooling.

Compared to classical features like MFCC used for
audio applications, HOG-based features present several
benefits. For instance, they are, by construction, invari-
ant to small time and frequency translations. But most
interestingly, they bring information that are not pro-
vided by other power-spectrum based features, namely
local direction of variation of power spectrum. As an
illustration of this point, we will compare the features
obtained, by MFCC and the HOG-based approach on
two linear chirps, one with increasing frequency and the
other one with a decreasing frequency, but both covering
the same frequency range. Our experimental results will
show that bag of sole MFCC will fail in fully capturing
the discriminative information brought by these signals
at the contrary of the features we propose.

III. DATA AND CLASSIFIERS

We provide in this section some details about the
datasets we have considered for evaluating the feature
we propose. Description of the classifier we used as well
as the experimental protocol are also given.

A. Toy dataset

For evaluating our features, we have created a toy
problem which highlights the ability or the failure of
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Fig. 4. Examples of CQT representation of the two localized linear
chirps used in the toy dataset. These images are obtained after a 512×
512 resizing and a 15× 15 average filtering.

studied features (including HOG and competitors) in cap-
turing power spectrum’s direction of variation. As such,
we have created a binary classification problem where
signals from each class are composed of a localized
linear chirp, respectively of increasing and decreasing
frequency, defined as

s(t) = Π[t1,t2](t) cos
(
2π(at+ b)t

)
+ n(t)

with t ∈ [0, 1] and n is a centered Gaussian noise of
standard deviation 0.4, a = 1200, b = 0 for the class
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y = +1, a = −1200, b = 2400 for the class y = −1
and Π[t1,t2](t) a function which value is 1 when t1 ≤
t ≤ t2 and 0 otherwise. We have set t1 = 0.4 and t2 =
0.6. Figure 4 depicts the CQ transform of representative
samples of both classes. One can notice the localized
spectral contents of the chirps.

B. D-case challenge dataset

For the purpose of a challenge, a dataset providing en-
vironmental sound recordings has been recently released
by [10]. Each example in the dataset consists of a 30-
second audio scene, which has been captured at one of
the 10 following locations : bus, busy street, office, open
air market, park, quiet street, restaurant, supermarket,
tube, tubestation. Recording has occurred at a rate of 44.1
kHz and the number of examples available is 100 with 10
examples per class. Note that, the challenge’s organisers
have only made available the development dataset2

C. East Anglia (EA) dataset

This dataset3 has been collected in the early 2000
by Ma et al. [26] at the East Anglia University. It
provides environmental sounds coming from 10 different
locations: bar, beach, bus, car, football match, laundrette,
lecture, office, railstation and street. The length of each
recording is 4 minutes and it has been recorded at a
frequency of 22100 Hz. Similarly to the D-case dataset,
we have split the recording in 30-second audio scene
examples. Hence, we have only 8 examples per class for
this dataset.

D. Litis Rouen dataset

This dataset we make publicly available4 goes be-
yond the above ones in terms of volume and number
of locations. Recordings have been performed using
a Galaxy S3 smartphone equipped with Android by
means of the Hi-Q MP3 recorder application. While
such an equipment may be considered as poor, we
believe that the resulting recordings would be similar
to those obtained for real applications where cheap and
ubiquitous microphones are more likely to be used. The
sampling frequency we have used is 44100 Hz and the
recording is saved as a MP3 file with a bitrate of 64
kbps. When transformed into raw audio signals, they
have been downsampled to 22050 Hz. Overall, about
1500 minutes of audio scene have been recorded. They

2http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/29
3available at http://lemur.cmp.uea.ac.uk/Research/noise db/
4available on the first author’s website at : https://sites.google.com/

site/alainrakotomamonjy/home/audio-scene

TABLE I
SUMMARY OF THE LITIS ROUEN AUDIO SCENE DATASET

Classes #examples
plane 23
busy street 143
bus 192
cafe 120
car 243
train station hall 269
kid game hall 145
market 276
metro-paris 139
metro-rouen 249
biliard pool hall 155
quiet street 90
student hall 88
restaurant 133
pedestrian street 122
shop 203
train 164
high-speed train 147
tube station 125

3026

took place from December 2012 to June 2014. For a
given class, recordings occured at several days of that
period. The dataset is composed of 19 classes and
audio scenes forming a given class have been recorded at
different locations. Note that in order to reduce temporal
dependencies in our dataset, recordings usually last 1
minute but in some locations, their durations can reach
up to 10 minutes. Again in order to be consistent with
the D-case challenge, each example is composed of
a 30-second audio scene. The 30-sec examples have
been obtained by splitting a given signal into 30-second
segments without overlapping. A summary of the dataset
is given in Table I and Figure 5 presents some samples
of CQT for 2 different audio scenes. The plots in this
figure show typical characteristics of an audio scene of
the class. For instance, in the bus’s CQT, we can note the
low-frequency line related to the bus’s acceleration and
deceleration. In the kid game hall scene, we see some
high-frequency structures induced by kid screams.

E. Competing features, classifier and protocols

In order to evaluate how well the HOG-based feature
we propose performs, we have compared its performance
to those of other features. As a sake of comparison, we
have considered the following ones:

• Bag of MFCC: these features are obtained by
computing the MFCC features on windowed part
of the signals and then in concatenating them all
[2]. The setting for the MFCC computations are
typical. We have extracted MFCC features from
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Fig. 5. Examples of CQT of audio signals from 2 different scenes of
the Rouen’s dataset after image mean filtering with an average kernel
of size 15× 15.

each audio scene by means of sliding windows of
size 25 ms with hops of 10 ms. For each window,
13 cepstra over 40 bands have been computed. The
toolbox we have employed is the rastamat one with
the dithering option on [27]. The lower and upper
frequencies of the spectral analysis are respectively
set to 1 and 10000Hz. For the toy dataset, the
upper frequency is set to the Nyquist frequency. For
obtaining the final features, we average the obtained
MFCC over batch of 40 windows with overlap of 20
windows and concatenated together all the MFCC
averages and standard deviations.

• Bag of MFCC-D-DD: these features are the same
as above but in addition to the MFCC averages
and standard deviations over a batch of 40 win-
dows, we also concatenate to the feature vector, the
average of first-order and second-order differences
of the MFCC over these windows. These features
should provide a better description of the dynamic
behaviour of the signal.

• Frame/majority-based MFCC-D-DD : For this ap-

proach, we use the typical solution which consists
in computing MFCCs and its first-order and second-
order MFCC derivatives for every 10ms-spaced
frames of length 25ms. Each frame is described with
a feature vector of size 39 and is assigned the label
of the signal. Classifiers are trained on all frames
and at prediction time, a given 30-second signal
is labelled according to the majority vote obtained
over the frames it is composed by.

• Texture-based TFR analysis: we have also imple-
mented the features extracted from time-frequency
representations as proposed in [13]. These features
exploit specific repeating spectral patterns in the
TFR. Provided M blocks (or filters) of different
sizes in time-frequency plane, feature generation
proceeds by locally matching each of these blocks
with the CQT representation and retaining the high-
est local degree of similarity of the block with the
CQT image. This best local similarity serves as
feature, leading to an M -dimensional feature vector.
In agreement with [13], the used local filters are
randomly sampled over the CQT representations of
the training set. For a strongly textured TFR, the
retrieved filters are likely to be representative of
the repeated patterns. However, for less-structured
audio scene, the ability of this approach to retrieve
discriminative features may be spoiled. In addi-
tion, these features calculation is computationally
demanding as it requires 2D convolutions of the full
TFR for the matching. In our experiments, we have
considered M = 20 blocks of different sizes.

• Recurrence plot analysis: these features are those
introduced by [9], and they have achieved the best
performance on the test set of the D-case audio
scene challenge [10]. These are the features that we
consider as the state-of-the-art. The idea is to ex-
tract from MFCC features, other characteristics that
provide informations about recurrence over time
of some specific MFCC patterns. Interestingly, the
final features proposed by [9] are obtained through
averaging over time of all time-localized MFCC and
recurrence plot features. Hence, their features are
of very low-dimensional and do not provide any
time-related information. MFCC features have been
computed as above. Then, for all the MFCCs ob-
tained over batch of 40 windows with overlap of 20,
11 RQA features have been computed. Afterwards,
MFCC features and RQA features are all averaged
over time and MFCC averages, standard deviations
and RQA averages are concatenated to form a 37-
dimensional features.
Note that we have considered an higher upper
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frequency of the spectral analysis instead of the
900Hz used by [9]. Indeed, we believe that their
choice was optimal for one dataset at the expense
of genericity.

For our HOG feature, we have set the following
parameters. The CQT transform is computed, by means
of the [28]’s toolbox, on the same frequency range
as the MFCC features and with 8 bins per octave.
All other parameters have been kept as default as
proposed in [28]. The time-frequency representation is
then transformed into a 512 × 512 image. The cells for
the histogram computation are of size 8 × 8 and we
have chosen 8 orientations. Note that it is also possible
to consider the signed direction of gradient (leading
thus to a histogram of size 16). As described above,
histograms are normalized according to some norms, 4
normalization factors are computed by the vlfeat toolbox
[29] and we have considered the possibility of using
them as complementary features.

In order to compare our HOG-based feature to its
competitors, we fed them to the same classifier and
evaluated the resulting performance. The classifier we
have considered is an SVM classifier with either a linear
kernel or a Gaussian one. All problems except the toy
one are multiclass classification problems. Hence, we
have used a one-against-one scheme for dealing with this
situation.

For all the experiments, we have provided averaged
results where the averaging occurs over 20 different splits
of the dataset into a training set and a test set. For
all datasets except the toy ones, 80% of the examples
have been used for training. For the toy problem, we
considered only 40 training examples among the 200
available. Note that all features have been normalized so
as to have zero mean and unit variance on the training
set. The test set has also been normalized accordingly.
All the parameters of the SVM are tuned according to a
validation scheme. The C parameter is selected among
10 values logarithmically scaled between 0.001 and 100

while the parameter σ of the Gaussian kernel e−
‖x−x′‖2

2σ2

is chosen among [1, 5, 10, 20, 50, 100]. Model selection
is performed by resampling 5 times, the training set
into a learning and validation set of equal size. The
best hyperparameters are considered as those maximizing
averaged performances on the validation set.

As an evaluation criterion, we have considered the
mean average precision, defined as

MAP =
1

N

N∑
i=1

TP (i)

#N(i)

where TP (i) and #N(i) are respectively the number
of examples of class i correctly classified and the total
number of examples classified in class i.

IV. EXPERIMENTAL RESULTS

We have run several experiments aiming at showing
the benefits of our HOG-based feature compared to the
state-of-the-art, as well as at analyzing the influence of
the different parameters of the HOG feature extraction
pipeline.

A. Comparison with classical features

Our first result compares HOG features to some clas-
sical ones, the bag of MFCC, the bag of MFCC-D-
DD as described above as well as the features based
on MFCC, Texture, Recurrence quantitative analysis
and the MFCC-D-DD frame-based classifier. We have
considered two sets of signed HOG features. The first
set, denoted as HOG-full, concatenates all histograms
obtained from all the cells, resulting in a feature of very
high-dimensionality. The second set of HOG features
is obtained by averaging all the histograms over the
time and over the frequency and by concatenating the
two averaged histograms, denoted as HOG-marginalized.
Note that we have also used MFCC and MFCC-RQA
features obtained with an upper frequency of 900 Hz as in
the paper of [9]. Results obtained according to the above-
described protocol and the feature extraction parameters
are depicted in Table II. A Wilcoxon signed-rank test
with a p-value of 0.005 have been computed between
the best competitor and the other approaches.

For the toy dataset, the best performance is obtained
by the Texture and MFCC-D-DD based features with a
perfect classification. These features seem to be able to
capture the discriminative part of the signal either by
capturing the MFCC variations or by finding the good
matching patch. We also explain this good performance
by the fact that the two classes have high-energy well-
localized time-frequency structures. Except for these
features, our HOG-based feature performs significantly
better than its competitor RQA. MFCC is still able to
discriminate the two chirps but less powerfully than
the HOG feature, which natively captures the power
spectrum variation. Interestingly, the best performing
HOG feature is the one which considers all the his-
tograms, despite the very-high dimensionality and the
low number of training examples (40). A rationale for
this, is that the discriminative parts of the signal are very
well-localized, thus the HOG features obtained from the
cells covering this region are strongly discriminative. Of
course, removing other spurious HOG may have further
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TABLE II
COMPARING PERFORMANCES OF DIFFERENT FEATURES ON THE DIFFERENT DATASETS. BOLD RESULTS DEPICT BEST PERFORMANCES FOR
EACH DATASET AS WELL AS RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANTLY DIFFERENT ACCORDING TO A WILCOXON SIGNRANK
TEST WITH A P-VALUE = 0.005. TEXTURE DENOTES THE FEATURES OBTAINED FROM THE WORK OF YU ET AL. [13] WHILE MFCC-D-DD

IS RELATED TO THE MFCC AND DERIVATIVES FEATURES. MFCC, MFCC-RQA, MFCC-900 AND MFCC-RQA-900 RESPECTIVELY
DENOTE THE MFCC FEATURES, THE MFCC AND RQA FEATURES AT CUT-OFF FREQUENCY OF 10 KHZ, THE MFCC AND THE MFCC AND
RQA FEATURES WITH UPPER FREQUENCY SET AT 900 HZ. THE HOG (FULL) AND (MARGINALIZED) ARE RELATED TO THE HOG FEATURES

WHICH ARE RESPECTIVELY OBTAINED BY CONCATENATING THE HISTOGRAMS FROM ALL CELLS AND BY CONCATENATING THE TWO
MARGINALIZED HOG FEATURES.

Datasets
features dim classifier Toy EA D-Case Rouen
Texture 20 linear 1.00 ± 0.00 0.57 ± 0.13 0.23 ± 0.10 -
Texture 20 gaussian 1.00 ± 0.01 0.49 ± 0.13 0.19 ± 0.09 -
mfcc-d-dd 7800 linear 1.00 ± 0.00 0.98 ± 0.04 0.51 ± 0.13 0.66 ± 0.02
mfcc-d-dd 7800 gaussian 1.00 ± 0.01 0.97 ± 0.05 0.49 ± 0.15 0.69 ± 0.02
mfcc-d-dd 39 frame/majority 0.47 ± 0.04 0.95 ± 0.05 0.32 ± 0.12 0.36 ± 0.04
mfcc 3900 linear 0.78 ± 0.04 1.00 ± 0.01 0.53 ± 0.12 0.67 ± 0.01
mfcc 3900 gaussian 0.77 ± 0.03 0.99 ± 0.03 0.52 ± 0.10 0.76 ± 0.02
mfcc-900 3900 linear 0.50 ± 0.04 0.91 ± 0.07 0.53 ± 0.11 0.60 ± 0.02
mfcc-900 3900 gaussian 0.50 ± 0.04 0.86 ± 0.09 0.56 ± 0.12 0.66 ± 0.02
mfcc+RQA 37 linear 0.51 ± 0.02 0.95 ± 0.08 0.54 ± 0.09 0.78 ± 0.01
mfcc+RQA 37 gaussian 0.51 ± 0.04 0.96 ± 0.08 0.52 ± 0.10 0.86 ± 0.02
mfcc+RQA-900 37 linear 0.50 ± 0.04 0.93 ± 0.06 0.68 ± 0.10 0.72 ± 0.02
mfcc+RQA-900 37 gaussian 0.49 ± 0.04 0.93 ± 0.07 0.65 ± 0.11 0.80 ± 0.01
Hog-full 65536 linear 0.97 ± 0.02 0.99 ± 0.02 0.64 ± 0.09 0.84 ± 0.01
Hog-marginalized 2048 linear 0.94 ± 0.02 0.97 ± 0.06 0.75 ± 0.10 0.86 ± 0.01
Hog-marginalized 2048 gaussian 0.91 ± 0.04 0.95 ± 0.06 0.71 ± 0.12 0.87 ± 0.01

increased performance. We can also remark that the use
of the frame/majority-based classifier with MFCC-D-
DD leads to poor results. This can be easily explained
by the fact that there are few discriminative frames in
the audio scene and this induces errors in the majority
vote scheme. We thus believe that such an approach is
more appropriate to audio classification problems where
discriminative features are persistent over time like in
music genre classification. We will show in the sequel
that when using appropriate cell size, our HOG feature
will also obtain perfect classification.

The East Anglia’s dataset seems to be fairly easy and
all features except the Texture-based and frame/majority
approaches perform well with a slight advantage to
MFCC.

For the D-case challenge, the Texture, MFCC, MFCC-
D-DD and MFCC-RQA features perform poorly, with
performances around 50% and even around 20% for the
Texture. However, with a more adapted upper-frequency
of the spectral analysis, performances of the MFCC-RQA
reach 68% of mean average precision. Marginalized
HOG features perform significantly better than competi-
tors with a gain in performance of about 19% when the
range of frequency 1-10000 Hz is considered. This gain
drops to 7% but is still consequent when the range of
frequency 1-900 Hz is used for MFCC-RQA. However,
we can note that using the full HOG representation

induces a slight loss of performances and that it seems
valuable to consider some HOG pooling. We also want
to highlight that the performance we report for MFCC-
RQA-900 is slightly lower than those given in [9] and
this is due to the fact our results are averages over 20
splits instead of a 5-fold cross-validation precision.

For the Rouen’s dataset we have introduced, the
marginalized HOG features perform on par with MFCC-
RQA and significantly better than all other competitors.
Using a cut-off frequency of 900 Hz induces a larger loss
of performance for these MFCC-RQA features. Also note
that we cannot provide results using the Texture-based
features as after one week, the feature computation was
still running proving that approach is intractable even
for medium-scale datasets. Again, MFCC-D-DD features
with the frame/majority-based classifier fail to capture
the discriminative information of the audio scene.

More interestingly, we highlight that the marginalized
HOG feature is robust across the different datasets,
especially when used in conjunction with a linear kernel,
even though its extraction parameters have not been
tuned. This is a very promising result concerning the
generalization capability of these features. We will see in
the sequel that by properly tuning the HOG parameters
we are able to statistically significantly perform better
than the MFCC-RQA feature on the Rouen’s dataset.
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B. Analyzing HOG feature parameters

In the first part of this experiment, we have inves-
tigated the influence of two parameters of the HOG
features on the global classification performance. We
have used the marginalized HOG features, as in the
previous experiment, in conjunction with a linear ker-
nel. The HOG features are composed of either signed,
unsigned or both histograms eventually completed with
the 4 normalization factors. Hence for each cell, the size
of the feature ranges from 8 to 28 = 8×3 + 4. Since we
have 64 rows and columns of 8 × 8 cells in the image,
this results in feature vector of size ranging from 1024
to 3584.

The results we obtain for the different datasets are
presented in Table III. We can note that the parameters
we are evaluating clearly influence performances. De-
pending on the datasets, the variation of performances
is in between 2% (for East Anglia) to 6% (for D-case
and the toy dataset). The most consistent feature seems
to be the ones for which histograms are computed with
both signed and unsigned gradient orientations and the
normalization factors are not included.

In the second part of the experiment, we have analyzed
the effect of the average kernel size of the mean filtering,
the number of orientations in the HOG as well as the
size of the cell.The results are reported in Table IV. We
note that these parameters have different influences given
the dataset. However, it seems that the choices of a cell
size of 8 and 8 orientations for the HOG computation
are a good default choice. The parameter with most
influence seems to be the filtering kernel size. Depending
on the datasets, the best kernel size varies from 1, which
corresponds to no filtering to 15. According to this result,
we thus suggest practictioner to tune this parameter value
according to its own dataset.

C. On the effect of pooling

We have analyzed the effects of pooling on the per-
formances of the HOG features. Indeed, it is well known
from the computer vision literature that pooling plays an
important role when it comes to pattern recognition [25]
and we believe that a proper choice of pooling can also
improve performances in our audio scene classification
problem. In the experiment, we varied the size of the
average pooling in the time and frequency axis. Here, the
HOG features is obtained using both signed and unsigned
histograms and without the normalization factors. The
mean filtering size, the number of cells and the number
of orientations have been set to the values that maximize
performances according to Table IV. Again, linear kernel

is used in the SVM. Note that the form of HOG pool-
ing investigated in this experiment does not necessarily
perform better than those used in previous ones.

Results for different sizes of pooling are presented in
Table V. Note that the first and last rows correspond
respectively to the results obtained for the red and green
pooling in Figure 3. Other rows are related to more
general pooling form as in the blue pooling in Figure
3. A striking result can first be highlighted, regarding
the importance of carefully selecting the pooling form :
variation of performance between the worst and the best
pooling form is at least 30% for all real datasets.

Worst performance is achieved by pooling over fre-
quency, which means that we average all the obtained
histograms over the frequency, losing all informations
about spectral contents. This finding is rather intuitive
as we believe that the audio scenes can be mostly
discriminated by their spectral contents and the local
variations of their spectral contents.

At the other end, best performances are obtained by
pooling over time, especially when we consider the real
datasets. This result is also interesting in the sense that
best performances are achieved while no time informa-
tion are kept in the features as they are totally translation-
invariant. We make the hypothesis that this occurs be-
cause most audio scenes can be distinguished according
to some global analysis (enhanced by pooling over time)
of some recurrent patterns without the needs to look at
some short-time single events, although these events may
carry discriminative information. This rationale is also
corroborated by the fact that MFCC-RQA features that
are averaged over time performs reasonably well on the
real datasets. While this approach works pretty well for
the audio scene classes we have considered, we believe
that features able to leverage on short-time events will
be needed for fine-grained audio-scene classification.

Regarding other pooling forms, we can note a clear
trend of improving performances as the pooling over
frequency is decreased and the one over time increases.

D. More insights on the Rouen’s dataset

As one of our main contribution in this paper is to
introduce a novel audio scene dataset, we discuss in the
sequel our findings regarding this dataset.

In Table V, we have shown that mean average pre-
cision, obtained as an average over 20 trials, is 0.9170.
Table VI presents the normalized sum of all confusion
matrices obtained from these 20 training/test splits. They
have been obtained using the best performing HOG
feature : namely the one with signed and unsigned orien-
tations, without normalization factors of the histograms
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TABLE III
ANALYZING THE EFFECTS OF HOG FEATURE PARAMETERS. TWO DIFFERENT PARAMETERS HAVE BEEN EVALUATED: THE SIGN OF

GRADIENT ORIENTATIONS IN THE HISTOGRAM COMPUTATIONS (SIGNED, UNSIGNED AND BOTH) AND THE INCLUSION (WITH OR WITHOUT)
OF THE NORMALIZATION FACTORS. BOLD RESULTS DEPICT BEST PERFORMANCES FOR EACH DATASET AS WELL AS RESULTS THAT ARE NOT

STATISTICALLY SIGNIFICANTLY DIFFERENT ACCORDING TO A WILCOXON SIGNRANK TEST WITH A P-VALUE = 0.005.

Datasets
sign factors dim Toy EA D-case Rouen

signed w/o 2048 0.94 ± 0.02 0.97 ± 0.06 0.75 ± 0.10 0.86 ± 0.01
signed with 2560 0.91 ± 0.02 0.97 ± 0.08 0.73 ± 0.11 0.86 ± 0.02

unsigned w/o 1024 0.97 ± 0.01 0.97 ± 0.07 0.70 ± 0.11 0.83 ± 0.02
unsigned with 1536 0.93 ± 0.02 0.97 ± 0.08 0.67 ± 0.11 0.84 ± 0.02

both w/o 3072 0.96 ± 0.01 0.98 ± 0.04 0.75 ± 0.12 0.86 ± 0.01
both with 3584 0.95 ± 0.02 0.98 ± 0.06 0.75 ± 0.11 0.86 ± 0.01

TABLE IV
ANALYZING THE EFFECTS OF HOG FEATURE PARAMETERS AND THE IMAGE FILTERING PARAMETER. THREE DIFFERENT PARAMETERS

HAVE BEEN EVALUATED: THE SIZE OF THE CELL FOR NORMALIZATION, THE NUMBER OF ORIENTATIONS IN THE HOG COMPUTATION AND
THE AVERAGE IMAGE FILTERING SIZE. BOLD RESULTS DEPICT BEST PERFORMANCES FOR EACH DATASET AS WELL AS RESULTS THAT ARE

NOT STATISTICALLY SIGNIFICANTLY DIFFERENT ACCORDING TO A WILCOXON SIGNRANK TEST WITH A P-VALUE = 0.005.

Datasets
filter size Nb. Orient cell size dim Toy EA D-case Rouen

15 8 2 12288 1.00 ± 0.00 0.97 ± 0.05 0.66 ± 0.13 0.84 ± 0.01
15 8 4 6144 0.98 ± 0.01 0.98 ± 0.05 0.73 ± 0.12 0.85 ± 0.01
15 8 8 3072 0.96 ± 0.01 0.98 ± 0.04 0.75 ± 0.12 0.86 ± 0.01
15 8 16 1536 0.98 ± 0.01 0.96 ± 0.07 0.73 ± 0.15 0.86 ± 0.02
15 8 32 768 1.00 ± 0.00 0.98 ± 0.04 0.68 ± 0.12 0.83 ± 0.02
1 8 8 3072 0.97 ± 0.01 0.97 ± 0.05 0.65 ± 0.12 0.89 ± 0.01
5 8 8 3072 0.96 ± 0.01 0.99 ± 0.01 0.69 ± 0.14 0.88 ± 0.01
15 8 8 3072 0.96 ± 0.01 0.98 ± 0.04 0.75 ± 0.12 0.86 ± 0.01
30 8 8 3072 0.99 ± 0.01 0.96 ± 0.07 0.69 ± 0.12 0.82 ± 0.02
15 4 8 1536 0.79 ± 0.03 0.98 ± 0.05 0.74 ± 0.12 0.86 ± 0.01
15 8 8 3072 0.96 ± 0.01 0.98 ± 0.04 0.75 ± 0.12 0.86 ± 0.01
15 16 8 6144 0.98 ± 0.01 0.97 ± 0.07 0.76 ± 0.10 0.86 ± 0.02

and fully pooled over time, the HOG being obtained with
cell size of 8, 8 bins of the orientations and no average
filtering. The average precision obtained from this matrix
is 0.915 and it is different to the mean average precision
over the 20 runs as presented in Table V.

From Table VI, we can first note a group of con-
veyances plane, bus, car, train and high-speed train that
are precisely recognized (with precisions above 97%).
Figure 6 shows examples of CQT and HOG represen-
tation of some audio scenes related to these classes.
Each class has specific signature with time-frequency
structures around 30 Hz, 60 Hz and 240 Hz for bus, car
and plane. Two other classes of conveyance metro-rouen
and metro-paris are sometimes mislabelled showing that
our HOG feature is not able to totally capture the fine-
grained discriminative features between these two classes
(if there is any).

A group of audio scenes composed of speeches (even-
tually loud ones) with specific short-time events (kid’s
scream and impacting balls) that occur all along the
scenes is also precisely recognized with precision above

96%. These classes are kid game hall and billiard pool
hall. Figure 7 shows examples of CQT and HOG rep-
resentation of these audio scenes. In these plots, the
short time-frequency structures appearing around 2000
Hz correspond to shouts and impacting balls.

We can also notice a group of scenes that seems
difficult to distinguish as seen in Fig. 8: the ones
in which some people are walking, namely pedestrian
street, market, train station hall, quiet street and shop.
These confusions are easily understandable. For instance,
the main difference between a quiet street and pedestrian
street would be the number of people walking in the
scene. Such a difference is hardly taken into account by
our HOG feature.

Despite the good skills exhibited by the proposed HOG
features, the latter remarks show that there are still rooms
for improvement, by addressing the issues raised by
classes that are mixed. We believe that these classes show
the needs for features (that can still be based on HOG)
capturing discriminative short-time events that come in
complement to our “global” features.
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TABLE V
ANALYZING THE EFFECTS OF POOLING. THE NUMBER UNDER THE Freq AND Time LABELS DEPICTS THE NUMBER OF HISTOGRAMS ON THE

FREQUENCY AND TIME AXES AFTER POOLING. FOR INSTANCE, THE FIRST ROW PRESENTS THE RESULT OF POOLING WHERE ALL
HISTOGRAMS HAVE BEEN AVERAGED OVER THE FREQUENCY AXES. THIS POOLING CORRESPONDS TO THE RED POOLING IN FIGURE 3.

BOLD RESULTS DEPICT BEST PERFORMANCES FOR EACH DATASET AS WELL AS RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANTLY
DIFFERENT ACCORDING TO A WILCOXON SIGNRANK TEST WITH A P-VALUE = 0.005.

Datasets
Freq Time dim Toy EA D-case Rouen

1 64 1536 0.99 ± 0.01 0.69 ± 0.10 0.43 ± 0.11 0.41 ± 0.02
2 32 1536 0.98 ± 0.02 0.87 ± 0.07 0.54 ± 0.15 0.56 ± 0.02
4 16 1536 0.96 ± 0.02 0.92 ± 0.08 0.56 ± 0.13 0.68 ± 0.02
8 8 1536 0.93 ± 0.02 0.97 ± 0.05 0.64 ± 0.14 0.78 ± 0.01
16 4 1536 0.99 ± 0.01 0.97 ± 0.06 0.70 ± 0.12 0.85 ± 0.01
32 2 1536 0.98 ± 0.01 0.99 ± 0.04 0.75 ± 0.12 0.88 ± 0.01
64 1 1536 0.99 ± 0.01 1.00 ± 0.01 0.73 ± 0.10 0.92 ± 0.01

TABLE VI
NORMALIZED SUM OF ALL CONFUSION MATRICES OBTAINED OVER THE 20 TRAINING/TEST SPLITS. THE NORMALIZATION OCCURS BY

COLUMNS SO THAT THE DIAGONAL TERMS REPRESENT THE PRECISION OBTAINED FOR A GIVEN CLASS. THE OBTAINED AVERAGE
PRECISION IS 0.915. THE HOG FEATURES WE USED ARE THE BEST PERFORMING ONES ACCORDING TO ABOVE EXPERIMENTS. ROWS

DEPICT THE REAL CLASS OF THE AUDIO SCENE WHILE COLUMNS ARE RELATED TO THE PREDICTED ONE.
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plane 97.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
busy street 0.0 83.2 0.0 2.1 0.0 0.1 1.3 0.9 1.0 2.4 0.0 6.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0
bus 0.0 0.0 98.6 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
cafe 0.0 1.0 0.0 82.9 0.0 0.2 0.0 0.6 0.0 0.0 0.0 1.9 0.0 0.2 11.3 0.6 0.0 0.0 0.0
car 0.0 0.0 0.1 0.0 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
train station hall 0.0 0.2 0.0 0.2 0.0 92.9 1.2 1.7 0.2 0.0 0.0 0.0 0.0 0.2 2.2 0.0 0.0 0.0 0.0
kid game hall 0.0 0.0 0.0 0.0 0.0 0.0 96.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
market 0.0 0.3 0.0 1.4 0.0 1.3 0.0 90.5 0.0 0.0 0.0 0.6 0.0 0.7 4.6 1.4 0.0 0.0 0.2
metro-paris 0.0 2.8 0.5 0.2 0.0 0.2 0.0 0.0 86.7 7.2 0.0 1.3 0.0 0.0 0.2 0.6 0.0 0.0 0.0
metro-rouen 3.0 2.2 0.3 0.6 0.0 0.0 0.7 0.0 10.0 88.3 0.0 0.3 0.0 0.0 0.0 0.0 0.6 0.0 0.0
billiard pool hall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 100.0 0.0 0.0 0.0 0.7 0.2 0.0 0.0 0.0
quiet street 0.0 7.5 0.0 3.5 0.0 0.0 0.0 0.0 0.6 0.2 0.0 75.9 0.3 0.0 3.9 4.3 0.0 0.0 0.4
student hall 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.5 2.1 1.7 1.3 0.0 0.0 0.0
restaurant 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.0 0.9 92.4 0.0 0.6 0.0 0.0 0.0
pedestrian street 0.0 1.2 0.0 7.2 0.0 2.8 0.0 2.5 1.0 0.0 0.0 5.1 0.0 1.1 70.9 2.9 0.0 0.0 0.2
shop 0.0 0.2 0.0 1.2 0.0 0.6 0.2 2.5 0.0 0.3 0.0 5.1 0.3 3.2 3.3 86.4 0.0 0.0 0.2
train 0.0 0.0 0.5 0.0 0.1 0.6 0.0 0.0 0.2 1.1 0.0 0.0 0.0 0.0 0.0 0.0 99.1 0.0 0.0
high-speed train 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.3 100.0 0.0
tubestation 0.0 1.5 0.0 0.4 0.0 0.8 0.0 0.4 0.0 0.0 0.0 3.5 0.0 0.2 1.1 1.6 0.0 0.0 98.9

V. CONCLUSION

The problem of classifying audio scene is currently
a hot topic in the computational auditory scene analysis
domain. For this specific problem, we have introduced in
this paper a novel feature that seems to be very promising
at capturing relevant discriminative informations. The
main block of the feature we proposed has been ini-
tially proposed in the computer vision domain, namely
histogram of gradients.

Our novel feature has been obtained by computing
histogram of gradients of a constant Q-transform fol-
lowed by an appropriate pooling. We have experimentally
proved that these histograms of gradients were useful
for capturing specific characteristics present in a time-
frequency representation that classical features such as
MFCC can not encode namely the local variation of
power spectrum. Then, our experimental results on real
datasets clearly show that our features achieve state-of-

the-art classification performances on several datasets.
While our HOG-based feature is globally efficient,

the overall pipeline for audio scene classification still
lacks in discriminating some difficult classes. In order to
further improve the scheme, some efforts are still needed.
Our future researches focus on improving discriminative
ability of HOG-based feature by working on the pooling
strategy. The supervised learning paradigm may also be
improved by taking into account an hierarchical taxon-
omy of the classes. We plan to investigate this taxonomy
by learning it directly from the data.
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Fig. 6. Examples of CQT representation and associated HOG representations for transportation devices (top) bus. (middle) car. (bottom) plane.
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Fig. 7. Examples of CQT representation and associated HOG representations for audio scene with babble noises and short-time events (top) kid
game hall (bottom) pool hall.
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Fig. 8. Examples of CQT representation and associated HOG representations for audio scene with several people walking (top) train station
hall (bottom) pedestrian street.
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