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Histogram of gradients of Time-Frequency

Representations for Audio Scene Detection
A. Rakotomamonjy, G. Gasso

Abstract—This paper addresses the problem of audio
scenes classification and contributes to the state of the
art by proposing a novel feature. We build this feature
by considering histogram of gradients (HOG) of time-
frequency representation of an audio scene. Contrarily to
classical audio features like MFCC, we make the hypothesis
that histogram of gradients are able to encode some relevant
informations in a time-frequency representation: namely,
the local direction of variation (in time and frequency) of
the signal spectral power. In addition, in order to gain
more invariance and robustness, histogram of gradients
are locally pooled. We have evaluated the relevance of
the novel feature by comparing its performances with
state-of-the-art competitors, on several datasets, including
a novel one that we provide, as part of our contribution.
This dataset, that we make publicly available, involves 19

classes and contains about 900 minutes of audio scene
recordings. We thus believe that it may be the next standard
dataset for evaluating audio scene classification algorithms.
Our comparison results clearly show that our HOG-based
features outperform its competitors.

Index Terms—Histogram of gradients; Time-Frequency
Representation; audio scene; MFCC; support vector ma-
chines

I. INTRODUCTION

The problem of recognizing acoustic environments is

known as the problem of audio scene classification and

it is one of the most difficult task in the general context

of computational auditory scene analysis (CASA) [1].

This classification task is of primary importance in the

domain of machine listening since it is strongly related

to the context in which the acquisition device capturing

the audio scene lives. Typically, in order to get some

context awareness, a machine, say a smart-phone or any

mobile electronic device, should be able to predict the

environment in which it currently resides. The main goal

is to help the machine adapting itself to the context of

the user (for instance by automatically turning off the
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ring tone in some situations). Such awareness can be

brought through vision or audio scene analysis. While

most of the efforts have focused on vision, there is now

a growing interest of environment recognition based on

audio modality.

Audio scene classification is a very complex problem

since a recording related to a given location can be

potentially composed of a very large amount of single

sound events while only few of these events provide

some information on the scene of the recording. More

specifically, an audio scene can be assimilated to an

audio recording specific to a given location. And this

location is expected to generate some acoustic events

that make it distinguishable from other audio scenes.

These discriminative acoustic events may be produced

by different phenomena and they may have a very large

variability.

Hence, the recent works on audio scene classification

have devoted much efforts on designing methods and

algorithms for automatically extracting audio features

that capture the specificities of these events. The natural

hope is that the designed features are still able to capture

the discriminative power of a given audio event.

For instance, following its success in speech recogni-

tion, one of the most prominent features that has been

considered for audio scene recognition are mel-frequency

cepstral coefficients (MFCC) [2], [3], [4], [5]. These

features are typically used in conjunction with different

machine learning techniques in order to capture the vari-

ations that help in discriminating scenes. For instance,

[2] consider a Gaussian Mixture Model for estimating

the distribution of the MFCC coefficients, while [6] have

proposed a sparse feature learning approach for capturing

relevant MFCC coefficients.

In addition to MFCC, several kinds of features have

also been evaluated for solving this problem of audio

scene recognition. [7] proposed an ensemble of time-

frequency features obtained from a matching pursuit

decomposition of the audio signal. Recently, [8] have

considered a large set of features, including spectral,

energy-based and voicing-related features. Another fam-

ily of relevant features can be obtained from MFCC

by considering recursive quantitative analyzing (RQA)
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as introduced by [9]. The advantage of RQA is that it

allows the analysis of recurrent behaviour in the MFCC

coefficients over time. According to the recent D-Case

challenge on audio scene recognition [10], combining

MFCC features in conjunction to RQA features extracted

from MFCC yield to an highly efficient set of features.

Another trend aims at building higher-level features

from the time-frequency representations of the audio

scene. In this context, [11] have investigated methods

for automatically extracting spatio-temporal patches that

are discriminative of the audio scene. Typically, these

patches are obtained through a non-negative matrix

factorization of a time-frequency representation. [12]

have followed similar idea but instead of considering

NMF they employed a probabilistic model denoted as

probabilistic latent component analysis. Following sim-

ilar ideas, other works propose features, like texture-

based features that are directly computed from the time-

frequency representation [13], [14].

In this paper, we follow this trend and propose a novel

feature for automatic recognition of audio scene. The

main originality of the proposed feature is the use of

histogram of gradients (HOG) on time-frequency rep-

resentations. These HOG features have been genuinely

introduced for human detection in images [15] but we

strongly believe that their properties make them highly

valuable for extracting relevant features based on time-

frequency representation (TFR). Indeed, while MFCC

can also be considered as features extracted from a time-

frequency (TF) representation, they essentially capture

non-linear information on the power spectrum of the

signal. Instead, histogram of gradients of a TF repre-

sentation provides information on the spectral power

direction of variation. For instance, if an audio scene

has been obtained in a bus that it is accelerating or

decelerating, we expect the chirp effect present in the

TFR to be captured and better discriminated by the

histogram of gradients representation, than by MFCC.

This property will be empirically illustrated in the sequel

and it provides rationale that for audio scene recognition

this novel feature we present is strongly relevant.

Algorithms for audio scene recognition have to be val-

idated and evaluated on some datasets. In order to make

comparisons of different designs of features including

signal processing set-ups or different learning techniques

possible, these datasets should be publicly available. The

recent D-Case challenge [10] is an excellent initiative of

this kind although its number of examples is limited (100
for the publicly available examples). Hence, another of

our contribution is to present a new dataset for audio

scene recognition. It is based on about 900 minutes of

recording on different locations (up to 19). This dataset

will be made publicly available and we expect that it

becomes one of the classical benchmark of this kind of

recognition task.

The paper is organized as follows: we first describe

the pipeline we propose for extracting our novel HOG-

based feature. Then, as one of our contribution is also

to introduce a novel benchmark dataset, we carefully

detail all the datasets we considered for evaluating our

feature and its competitors as well as the experimental

protocol we employed for the comparisons. Extensive

experimental analyses have been carried out and they

show that our HOG-based feature achieves state-of-the-

art performances on all datasets. As we advocate result

reproducibility, all the codes used for this work will be

made publicly available.

II. FROM SIGNAL TO HISTOGRAM OF GRADIENTS

FEATURES

This section describes the feature extraction pipeline

we propose for analyzing audio scene signal. We first

provide the big picture before detailing each part of the

flowchart.

A. The global feature extraction scheme

The features we propose for recognizing audio scenes

are based on some specific information extracted from a

time-frequency representation (TFR) of the signal. After

the TFR image has been computed, it is preprocessed

so as to attenuate some spurious noises that may hin-

der some relevant information related to high-energy

time-frequency structures. Afterwards, the resulting pre-

processed time-frequency representation image is used as

input of our histogram of gradient feature extraction. In

a nutshell, the idea of histogram of gradient is to locally

analyze the direction of energy’s variation in the time-

frequency representation. As described in more details

in what follows, the local HOG informations over the

whole TF image are combined in order to generate the

final feature vector. The dimension of this vector depends

on the number of bin in the (local) histogram and on how

all the local histograms are pooled together in order to

form the final feature vector.

The block diagram of this feature extraction scheme

is illustrated in Figure 1.

B. From signals to TFR images

Because of their non-stationary nature, sounds are

typically represented on a short-time power frequency

representation, which idea is to capture the power spec-

trum of the signal on a varying short local window. A
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Fig. 1. Block Diagram of the HOG-based feature extraction

large part of the literature on sound recognitizion prob-

lems use such a time-frequency representations of sound.

Depending on the task at hand, they either consider

wavelet-based [16], [17], MFCC-based [18] or short-

time fourier-based representations [19]. In this work, we

do not depart from this widely adopted framework and

choose to represent the signal according to a constant-

Q transform [20]. Contrarily to a short-time Fourier

transform, this transform provides a frequency analysis

on a log-scale which makes it more adapted to sound and

music representations [20]. Example of a representation

of a linear chirp signal is given in Figure 2.

Once this TFR has been computed, we now have an

image that can be processed as such. In order to obtain a

processing system independent of the signal length and

sampling frequency, as well as the CQT parameters, we

have chosen to resize all TFRs to a 512 × 512 image.

Then, depending on the noise present in the TFR images,

some denoising process can be applied. In our work,

we have kept things simple and only used an average

filtering. Our goal when smoothing the image, is to

reduce strong local variations in the image that will tend

to produce high gradient variation (which may be not

relevant for audio scene recognition).

C. Histogram of gradients

Histogram of gradients have been originally intro-

duced by [15] for human detection in images. Our main

objective in this feature extraction stage is to capture

the shape of some time-frequency structures in the hope

that such structures are relevant for characterizing an

audio scene. From works in computer vision [15], [21],

[22], it is now well acknowledged that local shape infor-

mation can be described through gradient intensity and

orientations. Histograms of gradients basically provide

information about the occurrence of gradient orientations

in a localized region of the images. Hence, they are able

to characterize shapes in that regions.

Two main approaches have been proposed for comput-

ing HOG in images [15], [21] and they are both based

on the following steps:

1) compute the gradient of the TF image

2) compute angle of all pixel gradients

3) split images into non-overlapping cells

4) count the occurrence of gradient orientations in a

given cell

5) eventually normalize each cell histogram according

to histogram norm of neighboring cells.

Variants on this theme are essentially based on whether

the gradient orientation are bidirectional or not, whether

the magnitude of the gradient are taken into account

in the counting and on how normalization factors are

computed within block of neighboring cells. For this

work, we have used the implementation in the vlfeat

toolbox [23], and for more details, we refer the reader

to [15] and [21].

As an illustration, we depict in Figure 2 the 512×512
average filtered image of a linear chirp’s CQT transform,

as well as the resulting histogram of gradient we obtain

for each 32× 32 cell with 8 gradient orientations. From

the right panel, we remark that the HOG representation

properly captures the directions of power spectrum’s

variation along the high-energy chirp signal. However,

we can also note that several spurious cells depict non-

zero histogram of gradients. They are essentially due to

presence of small variations of gradient in low-energy

time-frequency structure in the CQT transform, inducing

non-zero gradients. However, these noisy cells can be

easily recognized as having an almost flat histogram,

denoting thus the presence of multiple orientations of

gradient in the cells.

After having computed the histogram of gradient in the

images, we are thus left with a representation composed

of an histogram in all the cells. If we concatenate all

these histograms for yielding our final feature vector,

we obtain a vector whose dimension is large (number

of cells × number of orientations in the histogram). In

the example in Figure 2, cells are sized 32 × 32 pixels,

this results in vector of dimension 162 × 8 = 2048,

162 being the total number of cells. Of course, this
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Fig. 2. Example of HOG for a toy linear chirp. (left) 512 × 512 image of the CQ transform of the signal. (right) histogram of gradient
representation of the signal. Note that for a sake of interpretation, each cell in the plots represents the occurrence of edge orientation in the
cell and the darker the orientation is, the more present the orientation is. We thus note that along the chirp, the HOG representation correctly
captures the direction of energy variation.

dimensionality may further increase if we choose to

reduce cell’s size or increase the number of orientations

in the histogram computation. Depending on the number

of audio scene examples, it thus may be beneficial to

reduce the dimensionality of the problem for instance by

pooling.

D. Time-Frequency Histogram Pooling

Pooling consists in combining the responses of a fea-

ture extraction algorithm computed at nearby locations.

The underlying idea is to summarize local features into

another feature (of lower dimensionality) that is expected

to keep relevant information over the neighbourhood. The

pooling may result in a more smoothed and robust infor-

mation. This technique is a step commonly considered

with success in modern visual recognition algorithms

[24]. In our case, pooling histograms over neighboring

cells aims at building new histograms that capture infor-

mation on time-frequency structures which may be larger

than a cell or that have been slightly translated in time or

frequency. In this work, we will investigate several forms

of time-frequency region pooling (see Figure 3), while

the pooling operation will be kept fixed as an averaging

operator. We will consider the following poolings:

• Marginalized pooling over time: for this pooling, we

average all histograms along the time axis of the

TFR representation. This results in a feature vector

which has lost all temporal information.

• Marginalized pooling over frequency: in this case,

the averaging is performed over the frequency axis.

Hence, all frequency informations of the HOG are

now merged into a single one.

• Block-size pooling: pooling is performed on nearby

cells with the size of the neighorhood being user-

defined.

The vector resulting from the concatenation of all the

pooled histograms forms now the feature vector that will

be used for learning the audio scene classifier.

E. Discusssions

Now that we have explained how the HOG on time-

frequency representation feature is obtained, we want

to discuss some properties of these HOG features and

their advantages over features like MFCC for audio scene

characterization.

Our initial objective was to design features that is

able to characterize some time-frequency structures that

occur in a time-frequency representation. By construc-

tion, since we bin the orientations when counting a

given gradient, the histogram of gradients is invariant to

rotation if this rotation is smaller than the bin size. Still

by construction, as we build an histogram from a cell of

pixels and then average them over a larger region, our

pooled histogram of gradient is invariant to translation

over that region of pooling.

Compared to classical features like MFCC used for

audio applications, HOG-based features present several

benefits. For instance, they are, by construction, invari-

ant to small time and frequency translations. But most

interestingly, they bring information that are not pro-

vided by other power-spectrum based features, namely

local direction of variation of power spectrum. As an

illustration of this point, we will compare the features

obtained, by MFCC and the HOG-based approach on

two linear chirps, one with increasing frequency and the

other one with a decreasing frequency, but both covering

the same frequency range. Our experimental results will

show that bag of MFCC will fail in fully capturing the

discriminative information brought by these signals at the

contrary of the features we propose.
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Fig. 3. Illustrating the different types of pooling we investigate. (left) time pooling.(Middle) frequency pooling. (right) block-sized pooling. The
green, red and blue boxes provide an example on the regions on which local histograms are averaged. The x-axis and y-axis respectively denote
the time and frequency axes. Best viewed in color.

III. DATA AND CLASSIFIERS

We provide in this section some details about the

datasets we have considered for evaluating the feature

we propose. Description of the classifier we used as well

as the experimental protocol are also given.

A. Toy dataset

For evaluating our features, we have created a toy

problem which highlights the ability of our HOG-based

feature in capturing power spectrum’s direction of vari-

ation. As such, we have created a binary classification

problem where signals from each class are composed of

a localized linear chirp, respectively of increasing and

decreasing frequency, defined as

s(t) = Π[t1,t2](t) cos
(

2π(at+ b)t
)

+ n(t)

where n is a centered Gaussian noise of standard devia-

tion 0.4 and Π[t1,t2](t) a function which value is 1 when

t1 ≤ t ≤ t2 and 0 otherwise. For the first class, we have

set a = 1200 and b = 0 while for the second class we

have a = −1200 and b = 2400. These signals have been

sampled at 10kHz on the interval [0, 1], with t1 = 0.4
and t2 = 0.6. We have created 100 examples per classes.

B. D-case challenge dataset

For the purpose of a challenge, a dataset providing en-

vironmental sound recordings has been recently released

by [10]. Each example in the dataset consists of a 30-

second audio scene, which has been captured at one of

the 10 following locations : bus, busy street, office, open

air market, park, quiet street, restaurant, supermarket,

tube, tubestation. Recording has occurred at a rate of

44.1kHz and the number of examples available is 100
with 10 examples per class. Note that, the challenge’s

organisers have only made available the development

dataset1

1http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/29

C. East Anglia (EA) dataset

This dataset2 has been collected in the early 2000
by Ma et al. [25] at the East Anglia University. It

provides environmental sounds coming from 10 different

locations: bar, beach, bus, car, football match, laundrette,

lecture, office, railstation and street. The length of each

recording is 4 minutes and it has been recorded at a

frequency of 22100 Hz. Similarly to the D-case dataset,

we have split the recording in 30-second audio scene

examples. Hence, we have only 8 examples per class for

this dataset.

D. Litis Rouen dataset

This dataset we make publicly available3 goes be-

yond the above ones in terms of volume and number

of locations. Recordings have been performed using

a Galaxy S3 smart-phone equipped with Android by

means of the Hi-Q MP3 recorder application. While such

an equipment may be considered as poor, we believe

that the resulting recordings would be similar to those

obtained for real applications where cheap and ubiquitous

microphone is more likely to be used. The sampling

frequency we have used is 22050 Hz and the recording

is saved as a MP3 file with a bitrate of 64 kbps. Overall,

about 900 minutes of audio scene have been recorded.

They took place from December 2012 to November

2013. The dataset is composed of 19 classes and audio

scenes forming a given class have been recorded at

different locations. Note that in order to reduce temporal

dependencies in our dataset, recordings usually last 1
minute but in some locations, their durations can reach

up to 10 minutes. Again in order to be consistent with

the D-case challenge, each example is composed of a

2available at http://lemur.cmp.uea.ac.uk/Research/noise db/
3available on the author’s the website at : https://sites.google.com/

site/alainrakotomamonjy/home/audio-scene
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Fig. 4. Examples of CQT representation of the two localized linear chirps used in the toy dataset. These images are obtained after a 512× 512

resizing and a 15× 15 average filtering.

TABLE I
SUMMARY OF THE LITIS ROUEN AUDIO SCENE DATASET

Classes #examples

plane 23

busy street 92

bus 65

cafe 46

car 37

train station hall 175

kid game hall 56

market 51

metro-paris 46

metro-rouen 99

billiard pool hall 100

quiet street 26

student hall 44

restaurant 534

pedestrian street 59

shop 52

train 66

high-speed train 53

tubestation 169

1793

30-second audio scene. A summary of the dataset is

given in Table I and Figure 5 presents some samples

of CQT for 3 different audio scenes. The plots in this

figure show typical characteristics of an audio scene of

the class. For instance, in the bus’s CQT, we can note the

low-frequency line related to the bus’s acceleration and

deceleration. In the kid game hall scene, we see some

high-frequency structures induced by kid screams. For

the train station hall, we remark the presence of some

time-frequency structures associated with babble noises

and sounds of people walking.

E. Competing features, classifier and protocols

In order to evaluate how well the HOG-based feature

we propose performs, we have compared its performance

to those of other features. As a sake of comparison, we

have considered the following ones

• Bag of MFCC: these features are obtained by com-

puting the MFCC features on windowed part of

the signals and then in concatenating them all [2].

The setting for the MFCC computations are typical.

We have extracted MFCC features from each audio

scene by means of sliding windows of size 25 ms

with hops of 10 ms. For each window, 13 cepstra

over 40 bands have been computed. The toolbox we

have employed is the rastamat with the dithering

option on [26]. The lower and upper frequencies of

the spectral analysis are respectively set to 1 and

10000Hz. For the toy dataset, the upper frequency

is set to the Nyquist frequency. For obtaining the

final features, we average the obtained MFCC over

windows of size 40ms and hops of 20ms and

concatenated together all the MFCC averages and

standard deviations.

• Recurrence plot analysis: these features are those

introduced by [9], and they have achieved the best

performance on the test set of the D-case audio

scene challenge [10]. These are the features that we

consider as the state-of-the-art. The idea is to ex-

tract from MFCC features, other characteristics that

provide informations about recurrence over time

of some specific MFCC patterns. Interestingly, the

final features proposed by [9] are obtained through

averaging over time of all time-localized MFCC and

recurrence plot features. Hence, their features are

of very low-dimensional and do not provide any

time-related information. MFCC features have been

computed as above. Then, for each sliding window

of size 40ms and hops of 20ms, 11 RQA features

have been computed. Afterwards, MFCC features

and RQA features are all averaged over time and

MFCC averages, standard deviations and RQA av-

erages are concatenated to form a 37-dimensional
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(bus)

(train station hall)

(kid game hall)

Fig. 5. Examples of CQT of audio signals from 3 different scenes
of the Rouen’s dataset. x-axis represents time while y-axis denotes
increasing frequencies.

features.

Note that we have considered an higher upper

frequency of the spectral analysis than the 900Hz

used by [9]. However, we believe that their choice is

optimal for one dataset at the expense of genericity.

For our HOG feature, we have set the following

parameters. The CQT transform is computed, by means

of the [27]’s toolbox, on the same frequency range

as the MFCC features and with 8 bins per octave.

All other parameters have been kept as default as

proposed in [27]. The time-frequency representation is

then transformed into a 512 × 512 image. The cells for

the histogram computation are of size 8 × 8 and we

have chosen 8 orientations. Note that it is also possible

to consider the signed direction of gradient (leading

thus to a histogram of size 16). As described above,

histograms are normalized according to some norms, 4
normalization factors are computed by the vlfeat toolbox

[28] and we have considered the possibility of using

them as complementary features.

In order to compare our HOG-based feature to its

competitors, we fed them to the same classifier and

evaluated the resulting performance. The classifier we

have considered is an SVM classifier with either a linear

kernel or a Gaussian one. All problems except the toy

one are multiclass classification problems. Hence, we

have used a one-against-one scheme for dealing with this

situation.

For all the experiments, we have provided averaged

results where the averaging occurs over 20 different

splits of a dataset into a training set and a test set. For

all datasets except the toy ones, 80% of the examples

have been used for training. For the toy problem, we

considered only 40 training examples among the 200
available. Note that all features have been normalized so

as to have zero mean and unit variance on the training

set. The test set has also been normalized accordingly.

All the parameters of the SVM are tuned according to a

validation scheme. The C parameter is selected among

10 values logarithmically scaled between 0.001 and 100

while the parameter σ of the Gaussian kernel e−
‖x−x

′‖2

2σ2

is chosen among [1, 5, 10, 20, 50, 100]. Model selection

is performed by resampling 5 times, the training set

into a learning and validation set of equal size. The

best hyperparameters are considered as those maximizing

averaged performances on the validation set.

As an evaluation criterion, we have considered the

mean average precision, defined as

MAP =
1

C

C
∑

i=1

TP (i)

#C(i)

where TP (i) and #C(i) are respectively the number

of examples of class i correctly classified and the total

number of examples in class i. This is equilavent to the

correct recognition rate when classes are even (this is the

case for all datasets except the Rouen’s ones).

IV. EXPERIMENTAL RESULTS

We have run several experiments aiming at showing

the benefits of our HOG-based feature compared to the

state-of-the-art, as well as at analyzing the influence of

the different parameters of the HOG feature extraction

pipeline.
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A. Comparison with classical features

Our first result compares HOG features to some classi-

cal ones, the bag of MFCC as described above as well as

the features based on MFCC and Recurrence quantitative

analysis. We have considered two sets of signed HOG

features, one which concatenates all histograms obtained

from all the cells, denoted as HOG-full. This results, as

reported, in a feature of very high-dimensionality. The

second set of HOG features is obtained by averaging all

the histograms over the time and over the frequency and

by concatenating the two averaged histograms, denoted

as HOG-marginalized. Note that we have also used

MFCC and MFCC-RQA features obtained with an upper

frequency of 900 Hz as in the paper of [9]. Results

obtained according to the above-described protocol and

the feature extraction parameters are depicted in Table II.

A Wilcoxon signed-rank test with a p-value of 0.05 have

been computed between the best HOG feature and its

best competitor in order to evaluate whether differences

are statistically significant.

As expected, for the toy dataset, our HOG-based

feature performs significantly better than its competitor.

MFCC is still able to discriminate the two chirps but

less powerfully than the HOG feature, which natively

capture the power spectrum variation. Interestingly, the

best performing feature is the one which considers all

the histograms, despite the very-high dimensionality and

the low number of training examples (40). A rationale for

this, is that the discriminative parts of the signal are very

well-localized, thus the HOG features obtained from the

cells covering this region are strongly discriminative. Of

course, removing other spurious HOG may have further

increased performance.

The East Anglia’s dataset seems to be fairly easy and

all features perform good with a slight advantage to

MFCC.

For the D-case challenge, the MFCC and MFCC-RQA

features perform poorly, with performances around 55%.

However, with a more adapted upper frequency of the

spectral analysis, performances of the MFCC-RQA reach

68% of mean average precision. Marginalized HOG

features performs significantly better than competitors

with a gain in performance of about 17% when the range

of frequency (1-10 KHz) is considered. This gain drops

to 5% but is still consequent when the range of frequency

1-900 Hz is used for MFCC-RQA. However, we can

note that using the full HOG representation induces a

slight loss of performances and that it seems valuable

to consider some HOG pooling. We want to highlight

that the performance we report for MFCC-RQA-900 is

slightly lower than those given in [9] and this is due to

the fact our results is obtained as an average of 20 splits

instead of a 5-fold cross-validation.

For the Rouen’s dataset we have introduced, the

marginalized HOG features perform again significantly

better than all competitors and the MFCC-RQA features

yield about 3 − 4% loss of performances compared to

the HOG. Note that using a cut-off frequency of 900
Hz induces a larger loss of performance for this MFCC-

RQA features. More interestingly, we highlight that the

marginalized HOG feature is robust across the different

datasets, especially when used in conjunction with a lin-

ear kernel, even though its extraction parameters have not

been tuned. This is a very promising result concerning

the generalization capability of these features

B. Analyzing HOG feature parameters

In this next experiment, we have investigated the influ-

ence of two parameters of the HOG features on the global

classification performance. We have used the marginal-

ized HOG features, as in the previous experiment, in

conjunction with a linear kernel. The HOG features are

composed of either signed, unsigned or both histograms

eventually completed with the 4 normalization factors.

Hence for each cell, the size of the feature ranges from

8 to 28 = 8×3+4. Since we have 64 rows and columns

of 8× 8 cells in the image, this results in feature vector

of size ranging from 1024 to 3584.

The results we obtain for the different datasets are

presented in Table III. We can note that the parameters

we are evaluating clearly influence performances. De-

pending on the datasets, the variation of performances is

in between 2% (for East Anglia) to 6% (for D-case). The

most consistent feature seems to be the ones for which

histograms are computed with both signed and unsigned

gradient orientations and the normalization factors are

not included.

C. On the effect of pooling

We have analyzed the effects of pooling on the per-

formances of the HOG features. Indeed, it is well known

from the computer vision literature that pooling plays an

important role when it comes to pattern recognition [24]

and we believe that a proper choice of pooling can also

improve performances in our audio scene classification

problem. In the experiment, we varied the size of the

average pooling in the time and frequency axis. Here, the

HOG features is obtained using both signed and unsigned

histograms and without the normalization factors. Again,

linear kernel is used in the SVM.

Results for different sizes are presented in Table IV.

Note that the first and last rows correspond respectively
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TABLE II
COMPARING PERFORMANCES OF DIFFERENT FEATURES ON THE DIFFERENT DATASETS. BOLD RESULTS DEPICT BEST PERFORMANCES FOR

EACH DATASET AS WELL AS RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANTLY DIFFERENT ACCORDING TO A WILCOXON SIGNRANK

TEST WITH A P-VALUE = 0.05. MFCC, MFCC-RQA, MFCC-900 AND MFCC-RQA-900 RESPECTIVELY DENOTE THE MFCC FEATURES,
THE MFCC AND RQA FEATURES AT CUT-OFF FREQUENCY OF 10 KHZ, THE MFCC AND THE MFCC AND RQA FEATURES WITH UPPER

FREQUENCY SET AT 900 HZ. THE HOG (FULL) AND (MARGINALIZED) ARE RELATED TO THE HOG FEATURES WHICH ARE RESPECTIVELY

OBTAINED BY CONCATENATING THE HISTOGRAMS FROM ALL CELLS AND BY CONCATENATING THE TWO MARGINALIZED HOG FEATURES.

Datasets

features dim kernel Toy EA D-case Rouen

mfcc 3900 linear 0.76 ± 0.04 0.99 ± 0.02 0.55 ± 0.09 0.71 ± 0.02

mfcc 3900 gaussian 0.75 ± 0.04 0.99 ± 0.02 0.54 ± 0.08 0.74 ± 0.02

mfcc-900 3900 linear 0.54 ± 0.04 0.97 ± 0.03 0.55 ± 0.08 0.66 ± 0.02

mfcc-900 3900 gaussian 0.51 ± 0.04 0.97 ± 0.05 0.54 ± 0.12 0.68 ± 0.02

mfcc-RQA 37 linear 0.50 ± 0.04 0.95 ± 0.04 0.56 ± 0.07 0.76 ± 0.02

mfcc-RQA 37 gaussian 0.51 ± 0.04 0.94 ± 0.04 0.54 ± 0.08 0.82 ± 0.03

mfcc-RQA-900 37 linear 0.49 ± 0.04 0.95 ± 0.04 0.68 ± 0.09 0.74 ± 0.02

mfcc-RQA-900 37 gaussian 0.49 ± 0.03 0.96 ± 0.03 0.65 ± 0.08 0.79 ± 0.02

Hog-full 65536 linear 0.93 ± 0.02 0.95 ± 0.06 0.65 ± 0.06 0.75 ± 0.02

Hog-marginalized 2048 linear 0.92 ± 0.03 0.97 ± 0.05 0.73 ± 0.09 0.85 ± 0.02

Hog-marginalized 2048 gaussian 0.89 ± 0.06 0.94 ± 0.06 0.69 ± 0.11 0.86 ± 0.02

TABLE III
ANALYZING THE EFFECTS OF HOG FEATURE PARAMETERS. TWO DIFFERENT PARAMETERS HAVE BEEN EVALUATED: THE SIGN OF

GRADIENT ORIENTATIONS IN THE HISTOGRAM COMPUTATIONS (SIGNED, UNSIGNED AND BOTH) AND THE INCLUSION (WITH OR WITHOUT)
OF THE NORMALIZATION FACTORS. BOLD RESULTS DEPICT BEST PERFORMANCES FOR EACH DATASET AS WELL AS RESULTS THAT ARE NOT

STATISTICALLY SIGNIFICANTLY DIFFERENT ACCORDING TO A WILCOXON SIGNRANK TEST WITH A P-VALUE = 0.05.

Datasets

sign factors dim Toy EA D-case Rouen

signed w/o 2048 0.92 ± 0.03 0.97 ± 0.05 0.73 ± 0.09 0.85 ± 0.02

signed with 2560 0.90 ± 0.03 0.97 ± 0.04 0.72 ± 0.09 0.86 ± 0.02

unsigned w/o 1024 0.96 ± 0.02 0.96 ± 0.05 0.68 ± 0.09 0.84 ± 0.02

unsigned with 1536 0.92 ± 0.02 0.95 ± 0.06 0.67 ± 0.09 0.85 ± 0.02

both w/o 3072 0.96 ± 0.02 0.97 ± 0.04 0.73 ± 0.10 0.86 ± 0.02

both with 3584 0.94 ± 0.02 0.97 ± 0.04 0.73 ± 0.09 0.87 ± 0.02

to the results obtained for the red and green pooling in

Figure 3. Other rows are related to more general pooling

form as in the blue pooling in Figure 3. A striking

result can first be highlighted, regarding the importance

of carefully selecting the pooling form : variation of

performance between the worst and the best pooling form

is at least 30% for all real datasets.

Worst performance is achieved by pooling over fre-

quency, which means that we average all the obtained

histograms over the frequency, losing all informations

about spectral contents. From this point of view, this

finding is thus rather intuitive as we believe that the audio

scenes can be mostly discriminated by their spectral con-

tents and the local variations of their spectral contents.

At the other end, best performances are obtained

by pooling over time, especially when we consider

the real datasets. This result is also interesting in the

sense that best performances are achieved while no time

information are kept in the features : they are totally

translation-invariant. We make the hypothesis that this

occurs because the audio scenes we are trying to classify

are “textured” audio scene. By “textured”, we mean that

most of them can be distinguished according to some

global analysis of some recurrent patterns without the

needs to look at some short-time single events. This

rationale we provide is also corroborated by the fact

that MFCC-RQA features that are averaged over time

performs reasonably well on the real datasets.

Regarding other pooling forms, we can note a clear

trend of improving performances as the pooling over

frequency is decreased and the one over time increases.

D. More insights on the Rouen’s dataset

As one of our main contribution in this paper is to

introduce a novel audio scene dataset, we discuss in the

sequel our findings regarding this dataset.

Table V presents the sum of all confusion matrices

obtained over the 20 training/test splits. They have been

obtained using the best performing HOG feature : namely

the one with signed and unsigned orientations, without

normalization factors histograms and fully pooled over

time.



10

TABLE IV
ANALYZING THE EFFECTS OF POOLING. THE NUMBER UNDER THE Freq AND Time LABELS DEPICT THE NUMBER OF HISTOGRAMS ON THE

FREQUENCY AND TIME AXES AFTER POOLING. FOR INSTANCE, THE FIRST ROW PRESENTS THE RESULT OF POOLING WHERE ALL

HISTOGRAMS HAVE BEEN AVERAGED OVER THE FREQUENCY AXES. THIS POOLING CORRESPONDS TO THE RED POOLING IN FIGURE 3.
BOLD RESULTS DEPICT BEST PERFORMANCES FOR EACH DATASET AS WELL AS RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANTLY

DIFFERENT ACCORDING TO A WILCOXON SIGNRANK TEST WITH A P-VALUE = 0.05.

Datasets

Freq Time dim Toy EA D-case Rouen

1 64 1536 0.89 ± 0.02 0.63 ± 0.09 0.43 ± 0.11 0.42 ± 0.04

2 32 1536 0.87 ± 0.03 0.77 ± 0.07 0.57 ± 0.10 0.57 ± 0.02

4 16 1536 0.93 ± 0.02 0.87 ± 0.07 0.52 ± 0.08 0.67 ± 0.02

8 8 1536 0.97 ± 0.02 0.93 ± 0.05 0.62 ± 0.07 0.76 ± 0.03

16 4 1536 0.97 ± 0.02 0.96 ± 0.05 0.69 ± 0.09 0.83 ± 0.03

32 2 1536 0.97 ± 0.02 0.97 ± 0.05 0.72 ± 0.09 0.86 ± 0.02

64 1 1536 0.92 ± 0.03 0.98 ± 0.04 0.74 ± 0.08 0.88 ± 0.02

TABLE V
SUM OF ALL CONFUSION MATRICES OBTAINED OVER THE 20 TRAINING/TEST SPLITS. THE HOG FEATURES WE USED ARE THE BEST

PERFORMING ONES ACCORDING TO ABOVE EXPERIMENTS. ROWS DEPICT THE REAL CLASS OF THE AUDIO SCENE WHILE COLUMNS ARE

RELATED TO THE PREDICTED ONE.
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plane 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

busy street 0 332 0 0 0 0 0 7 1 8 0 3 0 0 2 0 0 0 7

bus 0 0 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

cafe 0 0 0 161 0 1 0 5 0 0 0 3 0 1 4 5 0 0 0

car 0 0 0 0 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0

train station hall 0 6 0 0 0 656 0 0 0 0 0 0 0 2 0 0 0 0 36

kid game hall 0 0 0 0 0 0 220 0 0 0 0 0 0 0 0 0 0 0 0

market 0 0 0 0 0 5 0 183 0 0 0 0 0 9 0 3 0 0 0

metro-paris 0 1 0 0 0 2 0 1 162 12 0 0 0 0 0 1 0 0 1

metro-rouen 0 9 0 0 0 1 0 3 10 224 0 1 0 0 0 0 0 0 152

billiard pool hall 0 0 0 0 0 0 0 0 0 0 400 0 0 0 0 0 0 0 0

quiet street 0 18 0 10 0 0 0 0 0 0 0 48 0 0 22 0 0 0 2

student hall 0 0 0 0 0 0 0 0 0 0 1 0 162 17 0 0 0 0 0

restaurant 0 0 0 0 0 0 0 0 0 0 0 0 2 2130 3 5 0 0 0

pedestrian street 0 1 0 11 0 7 0 4 0 4 4 4 0 0 197 6 0 0 2

shop 0 6 0 8 0 10 0 0 0 0 0 0 0 6 10 160 0 0 0

train 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 254 0 4

high-speed train 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 0

tubestation 0 8 0 0 0 37 0 1 9 138 0 1 0 0 7 4 0 0 475

We can first note that 6 among the 19 classes are

always correctly predicted. These classes are : plane, bus,

car, high-speed train, kid game hall and billiard pool

hall. Interestingly, they form 2 groups with distinct char-

acteristics. The first group is a group of transportation

devices, in which each item has a distinct audio signature.

The second group is a group of locations composed of

speeches (eventually loud ones) with specific short-time

events (kid’s scream and impacting balls) that occur all

along the scenes. Thus, it seems that our HOG feature

is also able to capture these types of discriminating

features.

There are several groups of audio scenes that are

frequently confused. The two most difficult classes to dis-

criminate are the metro-rouen and the tubestation ones.

Again, this seems natural as the tubestation recordings

are frequently composed of arriving and departing metro-

rouen and the main difference between the scenes is that

the former one is recorded while inside the tube and the

latter is obtained while the tube is arriving, departing or

when none of these situations is active.

We can also remark another group of audio scenes

that seems to be difficult to distinguish: the ones

composed of walking people, namely pedestrian street,

quiet street and train station hall.

While the features we propose seems to capture the

discriminative features of all audio scenes, there are still
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rooms for improvement, by addressing the issues raised

by these classes that are highly mixed. We believe that

these classes show the needs for features (that can still

be based on HOG) capturing discriminative short-time

events that come in complement to our “global” features.

V. CONCLUSION

The problem of classifying audio scene is currently

a hot topic in the computational auditory scene analysis

domain. For this specific problem, we have introduced in

this paper a novel feature that seems to be very promising

at capturing relevant discriminative informations. The

main block of the feature we proposed has been ini-

tially proposed in the computer vision domain, namely

histogram of gradients.

Our novel feature has been obtained by computing

histogram of gradients of a constant Q-transform fol-

lowed by an appropriate pooling. We have experimentally

proved that these histograms of gradients were useful

for capturing specific characteristics present in a time-

frequency representation that classical features such as

MFCC can not encode, the local variation of power

spectrum. Then, our experimental results on real datasets

clearly shown that our features achieve state-of-the-art

classification performances on several datasets.

While our HOG-based feature is globally efficient,

the overall pipeline for audio scene classification still

lacks in discriminating some difficult classes. In order to

further improve the scheme, some efforts are still needed.

Our future researches focus on improving dicriminative

ability of HOG-based feature by working on the pooling

strategy. The supervised learning paradigm may also be

improved by taking into account an hierarchical taxon-

omy of the classes. We plan to take into account this

taxonomy by learning it directly from the data.
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