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A proof-theoretic view on scheduling in concurrency

Emmanuel Beffara

I2M, Université d’Aix-Marseille & CNRS

This paper elaborates on a new approach of the question of the proof-theoretic study of concurrent

interaction called “proofs as schedules”. Observing that proof theory is well suited to the description

of confluent systems while concurrency has non-determinism as a fundamental feature, we develop a

correspondence where proofs provide what is needed to make concurrent systems confluent, namely

scheduling. In our logical system, processes and schedulers appear explicitly as proofs in different

fragments of the proof language and cut elimination between them does correspond to execution of

a concurrent system. This separation of roles suggests new insights for the denotational semantics of

processes and new methods for the translation of π-calculi into prefix-less formalisms (like solos) as

the operational counterpart of translations between proof systems.

1 Introduction

The extension of the familiar Curry-Howard correspondence outside the intuitionistic and functional

worlds has been an active topic for decades, with a variety of approaches to the question of determinism

and confluence, or lack thereof. The interactive nature of cut elimination procedures suggested relation-

ships with actually interactive models of computation like games or process algebras. Several systems

were proposed based on linear logic [13], following the intuition that it is a logic of interaction. Inter-

pretations of proofs as processes, first sketched by Abramsky [1] and formalized by Bellin and Scott [6],

later refined by various people including the author of this paper [3], stressed that proof nets [14] and

process calculi have significant similarities in dynamics. At the same time, type systems for concur-

rency [26] revealed to be equivalent to variants of linear logic [16, 8]. These approaches successfully

stress the fact that concurrent calculi are very expressive and versatile models of interactive behaviour,

however they are not satisfactory yet as a proof-theoretical account of concurrency, because they tend to

impose determinism in execution, effectively constraining processes to essentially functional behaviour.

Getting out of this restriction requires to actually handle the inherent non-determinism in concurrent

systems. A natural option is of course to relate processes with proofs in a non-deterministic system. The

prototypical such system is the original classical sequent calculus LK, however because of its structural

rules it feels too remote from actual process dynamics to offer a direct correspondence (although encod-

ings through intermediate systems have been proposed [2]). Several more direct approaches have been

proposed based on linear logic: non-determinism in the style of complexity theory has been modelled

using the additives of linear logic [18, 22, 23]; differential logic was recently developed by Ehrhard and

Regnier [12] and features a structured form of non-determinism in its cut elimination; its untyped proof

formalism was even shown expressive enough to represent the π-calculus [11].

The present work elaborates on a different approach to the topic, first sketched in a previous paper

called Proofs as executions [5]. Our point of view is that cut elimination and general process execution

should not be made to match directly, because their meaning is on different levels. On the one hand,

the meaning of proofs lies in their normal forms, hence cut elimination should be confluent in order to

preserve meaning. On the other hand, the meaning of a process is not its final irreducible form but what

http://dx.doi.org/10.4204/EPTCS.164.6
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happens to get there, as interaction with other processes (hence execution of interactions should defi-

nitely not preserve meaning). We thus establish a correspondence between proofs and interaction plans

for processes, hereafter called schedules (rather than executions). These schedules are what provides

necessary information to make a system deterministic, i.e. to make its execution confluent. Note that

despite the use of the word “schedule”, we do not claim any precise link with e.g. scheduling in operat-

ing systems; the word “strategy” might also be appropriate, although the standard meaning of “reduction

strategy” is way more restrictive than what we describe here.

Concretely, we develop this idea in a simple framework, relating schedules of finite processes with

proofs in multiplicative linear logic; this is to be considered as a first step towards a wider correspon-

dence, illustrating the idea of our interpretation. The process calculus we use is introduced in Section 2,

the logical system is introduced in Section 3. Section 4 presents two logical translations of processes

for which the correspondence is proved, once in a synchronous form in Section 4.1 and once in an asyn-

chronous form in Section 4.2, in which logic can abstract away from execution order. Section 5 discusses

extensions and directions for future developments of the proofs-as-schedules paradigm, related to seman-

tics of processes (Section 5.1), the status of name hiding and passing (Section 5.2) and the relationships

with CPS translations and determinisation in classical logic (Section 5.3).

Note. The previous paper [5] formalizes this idea by defining a logical system, which appears as a

kind of type system for processes, with the crucial property that for every lock-avoiding execution of a

process P one can deduce a typing of P, hence a proof, whose cut elimination does correspond to the

considered execution. A limitation of this result was that the “type” of a process could be very different

depending on its particular environment and execution, which made it difficult to deduce an interpreta-

tion of processes in logical terms. The present work improves the previous results in several respects:

Firstly, the typing of processes is uniform, and really independent of the particular executions it might

exhibit. Subsequently, the contributions of the process and the scheduler in the proof corresponding to

a scheduling are clearly identified, as simple fragments of the proof language. This in turn suggests

new approaches to the logical study of denotational models of processes. Despite these references to a

previous work, this paper aims to be self-contained.

Related work. The idea of matching proofs with executions is reminiscent of the proof-search ap-

proach to computation. Indeed, the relationship between logical linearity and interaction has been ex-

plored (for instance by Miller and Tiu [19, 24]) but our approach has different roots, in particular be-

cause of the status of cut-elimination, nevertheless proof search in our context looks like the building of

a schedule for a fixed process, as illustrated in the technical proofs in this paper. Bruscoli establishes a

correspondence between proof search in a variant of MLL and execution of a minimal CCS, in a context

of deep-inference [7]. Although our translation of processes into formulas is different that that used by

the above works, connections can certainly be established, but we defer this to later developments.

2 Multiplicative CCS

We consider processes in a fragment of the standard language CCS [21]. The fragment we use, hereafter

called multiplicative CCS (or MCCS), is defined by the following grammar:

P,Q := 1 inactive process

P |Q parallel composition

aℓ.P positive action prefix

āℓ.P negative action prefix
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where a is taken from a given set of channel names and ℓ is taken from a given set L of locations. We

impose that each location occurs at most once in any term: locations are used to identify occurrences

of actions in a process. Note that we use 1 for the inactive process instead of the usual 0 because it

is the neutral element of | which is a multiplicative operation (in the sense that it distributes over non-

deterministic choice, which is then additive, and not the other way around; besides it is in correspondence

with the unit 1 of linear logic and surely not with 0).

Definition 1. Structural congruence is the smallest congruence ≡ that makes parallel composition com-

mutative and associative with 1 as neutral element.

Definition 2 (execution). Execution is the relation over structural congruence classes, labelled by partial

involutions over L , defined by the rule

āℓ.P |am.Q |R →{(ℓ,m)} P |Q |R

Let →∗ be the reflexive transitive closure of →, with the annotations defined as P →∗
/0 P and if P →∗

c

Q →∗
d R then P →∗

c∪d R.

Note that, by definition, P →∗
/0 Q holds is when P and Q are structurally congruent. Moreover, the

subscript c in P →∗
c Q is indeed an involution, i.e. a set of disjoint pairs and not a list of pairs: it does

not record the order of interactions, only the information of which actions were synchronised together;

as stated in Theorem 4, this does characterize executions up to permutation of independent transitions.

Locations do not affect the execution of processes: they are nothing more than a technical tool used

to name occurrences of actions in a formal way. They will be used in Section 4.1 for the correspondence

between execution and cut elimination and in Section 5.1 for the discussion of the semantic interpretation

of our results. We introduce a few useful notations for this purpose:

Definition 3. Let P be an MCCS term.

• The set of locations occurring in P is written L (P).

• Given ℓ ∈ L (P), the subject of ℓ is the name tagged by ℓ, written subjP ℓ. The polarity of ℓ is that

of the action tagged by its subject, written polP ℓ, element of {±1}.

• The action order of P is the partial order ≤P over L (P) such that ℓ <P m for every sub-term xℓ.Q

of P with m ∈ L (Q).

Remark that the information of locations, subjects, polarities and action order completely character-

izes a class of structural congruence of MCCS terms, so we can consider that providing such information

does define a process without ambiguity.

When locations are unimportant for a given statement, they will be kept implicit. With this conven-

tion, the definition of the reduction relation is the standard one:

a.P | ā.Q |R → P |Q |R

This language is very minimalistic and its operational theory is actually very simple (one can prove

that its bisimilarity is completely axiomatized by a single rule scheme (a.P)n+1 ≃ a.(P | (a.P)n) plus

structural congruence). The results of this paper extend smoothly to a framework with replication and

sum. A much more subtle point is that of name hiding, which is discussed in Section 5.2.
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ax
⊢ A⊥,A

A⊥ A
⊢ Γ,A ⊢ A⊥,∆

cut
⊢ Γ,∆

π ρ

⊢ Γ,A ⊢ B,∆
⊗

⊢ Γ,A⊗B,∆

π ρ

⊗

⊢ Γ,A,B
`

⊢ Γ,A`B

π

`

⊢ Γ,A
〈a〉

⊢ Γ,〈a〉A

π

〈a〉

⊢ Γ,A
〈ā〉

⊢ Γ,〈ā〉A

π

〈ā〉

Table 1: Proof rules and proof net syntax for MLLa.

3 MLL with actions

Formulas of propositional multiplicative linear logic with actions (in short MLLa) are generated from

the following grammar:

A,B := α , α⊥ propositional variable

A⊗B, A`B conjunction, disjunction

〈a〉A, 〈ā〉A action modalities

where α is taken from a given set of propositional variables and a is taken from the set of channel

names. Negation is defined inductively on formulas in the standard way, with (〈a〉A)⊥ = 〈ā〉(A⊥); linear

implication A ⊸ B is defined as a shorthand for A⊥`B.

The modalities are reminiscent of those of Hennessy-Milner [15] logic, however the logic itself

is very different, in particular because of linearity. While Hennessy-Milner modalities 〈a〉A and [a]A
mean, respectively, “I can do a and then satisfy A” and “whenever I do a, I will satisfy A”, in our

logic the formula 〈a〉A means something like “I will do a and then exhibit behaviour A”. There is no

analogue of the modality [a] because all the information we provide is positive. The duality induced by

linear negation (·)⊥ is not a classical negation but a change of roles: A⊥ is the type of behaviours that

interact correctly with behaviours of type A. The connectives ⊗ and ` are not classical conjunction and

disjunction either, but spatial ones representing causality and independence between parts of a run, using

connectedness/acyclicity arguments to describe avoidance of deadlocks.

Proof rules are the standard rules of linear logic, extended with modalities, as shown in Table 1. We

use the language of proof nets: a proof structure is a directed graph whose nodes are labelled by names

of proof rules and have the appropriate input and output degrees for the rule they represent (premisses

are ingoing edges and conclusions are outgoing, the implicit orientation in the pictures is downwards), a

proof net is a proof structure that is the translation of a sequent calculus proof using the rules of Table 1.

As far as proof theory is concerned, these modalities are innocuous: they commute with all other rules,

their cancellation rule in cut elimination is the obvious one, the types A and 〈a〉A are isomorphic. Indeed,

they are nothing more than markers in formulas (yet we call them modalities since they do have a logical

meaning: they impose restrictions on the structure of their possible proofs and this is the key for the

results in the present work). For these reasons, standard theory for multiplicative proof nets applies to

proof nets of MLLa, including the Danos-Regnier correctness criterion:
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Theorem 1 (Danos-Regnier [10]). Let π be a proof structure. Define a switching graph of π as any graph

obtained by deleting one of the ingoing edges of each ` node and forgetting about edge orientation. Then

π is a proof net if and only if all its switching graphs are connected and acyclic.

We restrict ourselves to propositional logic, however our construction heavily relies on the instan-

tiation of propositional variables with particular formulas: this substitution mechanism is a key part of

interaction as we model it. The same work could be carried out, possibly in a cleaner way, using second-

order quantification, however we decided not to use this quantification explicitly because it makes proof

theory more complicated and we do not need its full power in the present work. A similar approach was

taken by Terui in his translation of boolean circuits into MLL proofs [23].

In order to ease the formulation of operational correspondence proofs, we assume that each proof

structure comes with an injective labelling of its modality links with locations in L .

Definition 4. Let π be an MLLa proof structure (possibly with cuts).

• The set of locations occurring in π is written L (π).

• Given ℓ ∈ L (π), the subject of ℓ is the name in the modality tagged by ℓ, written subjπ ℓ. The

polarity of ℓ is that of the modality, written polπ ℓ, element of {±1}.

• The proof order of π is the partial order ≤π over L (π) such that ℓ <π m when the link tagged m

appears in the tree of premisses of the link tagged by ℓ.

These definitions are similar to those for MCCS terms. The partial order ≤π is a bit more compli-

cated to define but can be explained in a simple way. Observe that a proof structure π can always be

decomposed as a family of trees of links together with a set of axioms between leafs and possibly a set

of cuts between roots:

π1 π2 · · · πn

Then the partial order ≤π over L (π) such that ℓ≤π m when the modality link labelled ℓ occurs below

that labelled m in one of the trees πi.

4 Execution as implication

In this section, we formally develop the correspondence between operational semantics of processes and

proofs in MLLa:

• Each process term P is translated into a cut-free proof in MLLa, where instances of modality rules

correspond to action prefixes in P; the conclusion ⌈P⌉ of this proof (which can be considered as

the type of P) is deduced syntactically from P.

• A schedule for reducing P to Q is a multiplicative proof (possibly with cuts) of the implication

⌈P⌉⊸ ⌈Q⌉, i.e. this proof may not contain modality rules, which stresses the fact that it is only

allowed to relate actions in a given process without introducing new actions.

• An execution of P corresponds to a cut elimination sequence of P cut against a schedule for re-

ducing P to some Q; various cut elimination sequences correspond to different linear orderings of

independent events in a given execution.
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Hence the concurrent aspect of execution is represented by the variety of proofs for a given implica-

tion, while different choices in cut elimination correspond to unimportant ordering decisions, which is

consistent with the fact that cut elimination is confluent.

We implement this correspondence in two different ways. The first version is synchronous in that it

exactly relates provability of implication and cut elimination with step-by-step execution of processes.

The second version is asynchronous in that it allows scheduling decisions to be made in advance of

execution, which leads to a more flexible system, albeit with a more intricate interpretation.

4.1 Synchronous translation

In this translation, each term P is mapped to a formula ⌈P⌉s that has a unique cut-free proof, which

follows the syntactic structure of P. We then prove, in Theorem 2, that ⌈P⌉s ⊸ ⌈Q⌉s is provable if and

only if there is an execution P →∗ Q.

Definition 5 (type assignment). Terms of MCCS are translated into MLLa formulas as follows, where in

each case α is a fresh propositional variable:

⌈1⌉s := α⊥
`α

⌈P |Q⌉s := ⌈P⌉s ⊗⌈Q⌉s

⌈a.P⌉s := 〈a〉(α⊥
` (⌈P⌉s ⊗α)) = 〈a〉(α ⊸ (⌈P⌉s ⊗α))

⌈ā.P⌉s := 〈ā〉(⌈P⌉s ⊗α⊥)`α = 〈a〉(⌈P⌉s ⊸ α)⊸ α

The freshness condition is a way to enforce polymorphism in our translation: each proposition vari-

able occurs exactly twice, once in each polarity. As observed in Section 3, the intended meaning is

indeed a universal quantification over these variables, in a context where we chose not to use second or-

der quantification for simplicity. For the same reason, the type for 1 is the type of an identity, where we

could have used the multiplicative unit 1 of linear logic (indeed, 1 and ∀α(α⊥`α) are equivalent for-

mulas): we deliberately restrict ourselves to a unit-free logic in order to avoid the slight proof-theoretic

complications of the units.

Proposition 1 (proof assignment). For every MCCS term P, there is a unique cut-free proof of ⌈P⌉s. This

proof will be denoted as LPMs.

Proof. The existence of a proof of ⌈P⌉s is proved by a straightforward induction on P. The case of action

prefixes is as follows:

La.PMs =

〈a〉
`

⊗

LPMs

α⊥ α

Lā.PMs =

`

〈ā〉

⊗

LPMs
α⊥ α

The key point for uniqueness is that the freshness constraint on propositional variables imposes that

for each variable α there must be an axiom link between the occurrence of α and that of α⊥, and

subsequently that all connectives must be explicitly introduced in a proof of ⌈P⌉s.

This proof assignment property is formulated in the absence of locations. We enrich it in the obvious

way with location information: the modality link 〈a〉 that corresponds to a prefix aℓ.P gets labelled by

the location ℓ.
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Theorem 2 below states the correspondence between process execution and provability of transitions.

In order to go from proofs to executions, we need to read back terms from proofs, in order to get a kind

of reverse operation for L−Ms. A direct read-back is hard to formulate, however we can define a particular

case of read-back for a proof that is derived from some LPMs if we know P.

Definition 6 (term extraction). Let P be a term of MCCS. An MLLa proof structure π is said to be

compatible with P if L (π)⊆ L (P), subjects and polarities coincide between P and π and the order ≤P

is included in the order ≤π .

For π compatible with P we define the term P ↾ π to be the MCCS term with locations L (π), subjects

and polarities as in P and π and action order as in P.

Remark that for all terms P, by construction LPMs is compatible with P and we have P ↾ LPMs ≡ P.

Note also that compatibility implies that the process is less constrained than the proof: given a proof π ,

the set of processes compatible with π contains terms that are more parallel than the structure of π (and

in particular the process that is just a parallel composition of all actions that correspond to modality links

in π). The stricter ordering in the proof π effectively means that π has made decisions on how P will

run, as illustrated by the lemma below and Theorem 2.

Lemma 1. Assume P is a term and π be a proof structure compatible with P. For any cut-elimination

step π → π ′, the structure π ′ is compatible with P and one of the two following situations occurs:

• either π → π ′ is an elimination of modality links 〈a〉 and 〈ā〉 at some locations ℓ and m, then

P ↾ π →{(ℓ,m)} P ↾ π ′ is a valid execution step,

• or it is another elimination step and P ↾ π ≡ P ↾ π ′.

Proof. The case of an elimination of modality links follows from the definition of term extraction: the

actions in the extracted term are necessarily at top level since the modalities are premisses of a cut so

their locations are minimal with respect to ≤π hence with respect to ≤P too. In π ′ the location set is the

same with ℓ and m removed and the other data (subjects, polarities and proof order) are simply restricted

to this new set, so compatibility with P is preserved.

The other cut elimination steps can be either multiplicative eliminations or axiom eliminations. In

these cases the location set is unchanged. For multiplicative steps the proof order is unchanged too, while

in the case of axiom eliminations the proof order is possibly strengthened, since one tree of links in the

proof is merged on top of another. In both cases, this preserves compatibility with P.

Remark that the strengthening of the proof order in the case of axiom elimination, i.e. the fact that

if π → π ′ by an axiom elimination then ≤π may be strictly included in ≤π ′ , is the very reason why we

need term extraction: in this case the syntactic structure of the proof is more constrained than that of the

process term P we are observing, so we cannot read back a reduct of P without extra information.

Theorem 2. Let P and Q be two MCCS terms. There is an execution P →∗ Q if and only if ⌈P⌉s ⊸ ⌈Q⌉s

is provable in MLL (without modality rules) for some instantiation of the propositional variables of ⌈P⌉s.

Proof. For the direct implication, remark that for a structural congruence P ≡ Q at top level (i.e. not

under prefixes), an implication ⌈P⌉s ⊸ ⌈Q⌉s is provided by a standard isomorphism for the associativity

and commutativity of the tensor, hence it is enough to handle the case of a reduction (a.P | ā.Q) |R →
(P |Q) |R. The expected type is

⌈(a.P | ā.Q) |R⌉s ⊸ ⌈(P |Q) |R⌉s =

((〈ā〉(α ⊗ (⌈P⌉⊥s `α⊥))` (〈a〉(⌈Q⌉⊥s `β )⊗β⊥))` ⌈R⌉⊥s )` ((⌈P⌉s ⊗⌈Q⌉s)⊗⌈R⌉s)

so we get a proof as follows, if we instantiate α as ⌈Q⌉s and β as ⌈P⌉s ⊗⌈Q⌉s:
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`

`

`

⊗

⊗

A⊥ A B⊥ B

⌈R⌉⊥s ⌈R⌉s

with

{

A = 〈a〉(⌈Q⌉⊥s ` (⌈P⌉s ⊗⌈Q⌉s))

B = ⌈P⌉s ⊗⌈Q⌉s

For the reverse implication, consider an MLL proof π of ⌈P⌉⊥s ,⌈Q⌉s for some instantiation of the

variables of ⌈P⌉s. If we cut this proof against LPMs (where the type variables are instantiated as in π), we

get a proof ρ of ⌈Q⌉s. By construction, the cut-elimination procedure reduces each proof into a cut-free

proof with the same conclusion, so cut-elimination in ρ reaches a cut-free proof of ⌈Q⌉s; by Proposition 1

there is only one such proof, hence cut-elimination of ρ reaches LQMs. Since π is an MLL proof, it

contains no modality link, hence ρ is compatible with P according to Definition 6 and by Lemma 1 we

know that each cut-elimination step of ρ induces either a structural congruence or an execution step in

terms extracted from P by intermediate proofs, so from a cut-elimination sequence LPMs →
∗ LQMs we can

extract a CCS-execution sequence P →∗ Q, and we also deduce that P ↾ LQMs = Q.

4.2 Asynchronous executions

The tight correspondence of Theorem 2 is obtained thanks to the fact that the action order ≤P of processes

is mapped to proof order ≤LPMs
because of syntactic structure of the type ⌈P⌉s, in which modalities are

nested as in P. The downside of this correspondence is that it does not leave much space for modular

reasoning about the behaviour on different channels in processes. Besides, it does not account for proofs

extracted from executions as in our previous work [5].

In this section, in order to generalise this result, we provide an asynchronous variant of the corre-

spondence. We discuss below the relevance of this variant.

Definition 7 (asynchronous type assignment). Terms of MCCS are translated into MLLa formulas as

follows, where in each case α is a propositional variable:

⌈1⌉a := α⊥
`α

⌈P |Q⌉a := ⌈P⌉a ⊗⌈Q⌉a

⌈a.P⌉a := 〈a〉α⊥
` (⌈P⌉a ⊗α) = 〈ā〉α ⊸ (⌈P⌉a ⊗α)

⌈ā.P⌉a := (⌈P⌉a ⊗α⊥)` 〈ā〉α = (⌈P⌉a ⊸ α)⊸ 〈ā〉α

Note that this translation is the same as the synchronous translation of Definition 5, except for the

position of modalities.

Proposition 2 (asynchronous proof assignment). For every MCCS term P, there is a unique cut-free

proof of ⌈P⌉a. This proof will be denoted as LPMa.

Proof. The argument is the same as in Proposition 1. The case of action prefixes is now as follows:

La.PMa =

`

〈a〉 ⊗

LPMa

α⊥ α

Lā.PMa =

`

⊗

LPMa

〈ā〉

β⊥ β
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Proposition 3. For all MCCS reduction P → Q, the formula ⌈P⌉a ⊸ ⌈Q⌉a is provable in MLL for some

instantiation of the variables of ⌈P⌉a.

Proof. For any structural congruence P ≡ Q, the implication ⌈P⌉a → ⌈Q⌉a is proved by a standard iso-

morphism for the monoidal structure of the tensor. For an execution step (a.P | ā.Q) |R → (P |Q) |R, we

prove the implication:

⌈(a.P | ā.Q) |R⌉a ⊸ ⌈(P |Q) |R⌉a =

((〈ā〉α ⊗ (⌈P⌉⊥a `α⊥)` ((⌈Q⌉⊥a `β )⊗〈a〉β⊥))` ⌈R⌉⊥a )` ((⌈P⌉a ⊗⌈Q⌉a)⊗⌈R⌉a)

with the following proof:

`

`

`

⊗ ⊗
`

⊗

A⊥ A B⊥ B

⌈Q⌉⊥a ⌈Q⌉a

⌈R⌉⊥a ⌈R⌉a
with























α = ⌈Q⌉a

β = ⌈Q⌉a

A = 〈a〉⌈Q⌉⊥a
B = ⌈P⌉s ⊗⌈Q⌉s

Lemma 2. Let P be an MCCS term with at least one action prefix. If ⌈P⌉a ⊸ ⌈1⌉a is provable in MLL

for some instantiation of the propositional variables, then there exists a reduction P → Q such that

⌈Q⌉a ⊸ ⌈1⌉a is also provable.

Note that the condition on P is that it is not already congruent to 1, otherwise ⌈P⌉a ⊸ ⌈1⌉a is provable

in MLL (as well as the reverse implication) but obviously P does not reduce. However, the statement

does not require that P must reducible (i.e. that it is not in “normal form” for execution): the existence

of a proof of ⌈P⌉a ⊸ ⌈1⌉a does imply this fact.

Proof. Consider a proof π of ⌈P⌉⊥a ` ⌈1⌉a for some instantiation of the propositional variables of ⌈P⌉a.

MLL admits cut elimination and expansion of axiom links, so we may assume without loss of generality

that π is cut-free and that all multiplicative connectives in ⌈P⌉⊥a are introduced by π .

The term P can be written as a composition of action prefixes a1 .P1 | · · · | an .Pn (where the ai are

actions of arbitrary polarities) so π is decomposed as follows, with some tensors possibly reversed de-

pending on the polarities of the ai:

`

⊗

π1

〈ā1〉α1

· · · ⊗

πn

〈ān〉αn

α⊥ α
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with axiom links on top (the ` link of arity n+2 in the picture actually stands for some tree of binary `

links, corresponding to the bracketing of parallel compositions in P, since our language only includes bi-

nary connectives). Note that, since π does not use modality rules, all premisses 〈āi〉αi must be introduced

by axiom links.

We now argue that two of these are actually connected by an axiom rule. Towards a contradiction,

assume that it is not the case: every 〈āi〉αi is introduced by an axiom link whose other conclusion is a

leaf in one of the subproofs π f (i). Since there are finitely many subproofs, the sequence 1, f (1), f 2(1), . . .

is eventually periodic. Consider a minimal cycle i, f (i), f 2(i), . . . , f k(i) = i. Up to the reordering of

sub-terms of P, let us assume this sequence is 1,2, . . . ,k,1. Then we have the following situation:

`

⊗

π1

〈ā1〉α1

⊗

π2

〈ā2〉α2

⊗

π3

〈ā3〉α3

· · · ⊗

πk

〈āk〉αk

Call ti the tensor link under the node 〈āi〉αi, and xi the axiom link that has 〈āi〉αi as one of its premisses.

Then we have a cycle that goes from t1 up to x1 into π2, down to t2, up to x2 into π3 and so on until tk,

up to xk and back into π1, down to t1. This cycle traverses each tree πi straight from a leaf to the root, so

it only goes through at most one premiss of each ` link. Hence there is a `-switching of π that has a

cycle, which violates the Danos-Regnier correctness criterion for multiplicative proof nets [10].

Hence there is an axiom link between two of the 〈āi〉αi. For simplicity, assume that the indices are 1

and 2. Then a1 and a2 are dual, so P can be written ā.P1 |a.P2 |P
′, and we have P → P1 |P2 |P

′. Moreover

the cut between LPMa and π has the following shape:

⊗
`

〈ā〉 ⊗

LP1Ma

`

⊗

LP2Ma

〈a〉

LP′Ma

π ′

`

⊗

`

⊗

`

After a few steps of cut elimination (five pairs of multiplicatives, three axioms and a pair of modalities)

this proof eventually reduces into π ′ cut against LP1Ma, LP2Ma and LP′Ma plus a cut between the two remain-

ing ports of π ′. This reduct is also a reduct of LP1 |P2 |P
′Ma against π ′ plus two ` rules. The latter is thus

an MLL proof of ⌈P1 |P2 |P
′⌉a ⊸ ⌈1⌉a.

Theorem 3. Let P be an MCCS term. There is an execution P→∗ 1 if and only if ⌈P⌉a ⊸ ⌈1⌉a is provable

in MLL (without modality rules) for some instantiation of the propositional variables.

Proof. For the direct implication, Proposition 3 provides the implication for one step of execution. The

result follows immediately since linear implications properly compose and the correctness of proofs is

preserved by instantiation of propositional variables.
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For the reverse implication, we can reason by induction on the number of action prefixes in P. The

base case of a term with no action is vacuous since the neutral process 1 is the only such term, up to

structural congruence. Lemma 2 provides the induction step.

The interpretation of Theorem 3 is more subtle than for Theorem 2, because in this variant there is no

step-by-step correspondence between execution and cut elimination. Of course, Lemma 2 does prove that

there is a strategy for eliminating cuts that corresponds to an execution, but in general the normalisation

of LPMa against a particular proof of ⌈P⌉a ⊸ ⌈1⌉a may consume modalities in P in an arbitrary order.

This is why Theorem 3 requires the final type to be ⌈1⌉a: the statement like of Theorem 2 is actually

false for the asynchronous variant.

Definition 8. Let ⇒ be the relation over processes such that P ⇒ Q holds whenever ⌈P⌉a ⊸ ⌈Q⌉a is

provable in MLL for some instantiation of the propositional variables of ⌈P⌉a.

By Proposition 3 we know that P →∗ Q implies P ⇒ Q, but other rules are easily provable, like the

following:

P → Q

P ⇒ Q

P ⇒ Q

a.P ⇒ a.Q
u.a.P | v.ā.Q ⇒ u.P | v.Q

Therefore ⇒ can make decisions in advance about the execution of a process, and update the visible part

of the process accordingly. In other words, ⇒ is an fully asynchronous form of execution: it allows to

perform an interaction as soon as this interaction may be part of some full execution.

5 Discussion

We thus have defined two type assignment systems for MCCS processes into MLLa that enjoy good

properties relating cut-elimination and execution. It appears that processes correspond to cut-free proofs

using modality links, while schedules correspond to pure MLL proofs without modality links.

Although the technical details of the paper are limited to multiplicative CCS, it is clear that the same

approach extends to the full calculus, including replication and sum, with a type assignment like

⌈!P⌉a = !⌈P⌉a ⌈P+Q⌉a = ⌈P⌉a & ⌈Q⌉a

so that, for replication, a schedule has to decide the number of copies of P it will use, and for the sum

it will have to decide which side of the additive conjunction will be effectively used. This leads to a

correspondence using full propositional linear logic; the theory of proof nets is harder in this case but the

principles of the correspondence remain the same.

We now conclude with ideas for research directions open by the present work.

5.1 Semantics of processes

The main source of non-determinism is the fact that a given action name may occur several times in a

given term, and locations are used to name the different occurrences.

The annotation c in an execution step P →c Q describes which occurrences interact. Remark that, for

a given P and c, there is at most one Q such that P →c Q, since c describes the interaction completely.

Definition 9 (pairing). A pairing of a term P is a partial involution c over L (P) such that for all ℓ ∈
domc, subj c(ℓ) = subj ℓ and pol c(ℓ) =−pol ℓ.

Let ∼c be the smallest equivalence that contains c. c is consistent if domc is downward closed for

≤P and ∼c<P∼c is acyclic.
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Example 1. The total pairings of P = a1.c2 |b3.ā4 | b̄5.c̄6 |a7.b̄8 |b9 | ā0 are

c1 = {(9,5),(1,0),(2,6),(3,8), (4,7)}, c2 = {(3,5),(1,4),(2,6),(7,0),(9,8)},

c3 = {(1,4),(3,8),(7,0),(9,5), (2,6)}, c4 = {(1,0),(3,5),(7,4),(9,8),(2,6)}.

Only c1 is inconsistent as there is a cycle induced by {(3,8),(4,7)}. The maximal consistent pairing

included in c1 is {(9,5),(1,0),(2,6)}.

Observe that pairings and consistency are preserved by structural congruence, as a direct consequence

of the fact that subjects, polarities and prefixing are preserved by structural congruence. In our previous

work [5], we established the following precise relationship between pairings and executions:

Theorem 4. Let P be an MCCS term and c a pairing of P.

• c is consistent if and only if there is a term Q such that P →∗
c Q,

• any two executions P →∗
c Q and P →∗

c R with the same pairing are permutations of each other, and

in this case Q ≡ R.

Maximal consistent pairings represent executions of processes until a state where no more execution

is possible.

We can actually relate pairings and logical schedules in a precise way. Consider a term P and proof

π of ⌈P⌉a ⊸ ⌈1⌉a. In a cut elimination process of LPMa against π , eventually each modality link in LPMa

will be eliminated by a dual link also from LPMa, and this association between modality links is of course

independent of the cut elimination sequence since proof normalisation is confluent. Hence π induces

a pairing between modality links in LPMa, and since modality links are in bijection with locations in P,

this in turn induces a pairing of P. This pairing is maximal since it reaches all locations in P, and by

Theorem 3 it is consistent. Reciprocally, every maximal consistent pairing of P induces a class of proofs

of ⌈P⌉a ⊸ ⌈1⌉a.

Moreover, this relationship between pairings and proofs is actually a correspondence between pair-

ings of P and possible ways of positioning axiom links on top of a canonical multiplicative proof structure

for ⌈P⌉a ⊸ ⌈1⌉a, as observed in the proof of Lemma 2. However, this correspondence is not straight-

forward (like one axiom for each pair) because there are more leaves in proofs of this type than there

are actions in P, moreover the instantiation of propositional variables is far from obvious since, as in the

proof of Proposition 3, it may include the whole type of a term involved in the execution. We defer the

precise study of this relationship to future work.

The next step in semantics is the study of denotational models of proofs in our system, which should

provide new insights for the denotational semantics of processes. For instance, it is a trivial remark that

coherence spaces [13] have a formal similarity with event structures [25], although a precise relationship

is hard to formulate, especially in a proofs-as-processes approach. Since our constructions maps pro-

cesses to types, i.e. spaces, and schedules to proofs i.e. cliques or configurations in spaces, it should be

possible to formalize such a relationship in our setting in a meaningful way. A difficulty in this respect

is of course to define a non-trivial interpretation of modalities: this is needed in order to identify cliques

that are interpretations of multiplicative proofs, as opposed to general proofs with modalities.

5.2 Name hiding and passing

The question of how to integrate name hiding in our system is crucial as it is necessary for expressiveness

and modularity. However, Theorems 2 and 3, which characterize execution in the proof system, do not

extend to a calculus with name hiding. Indeed, a reasonable type assignment for a term (νa)P should

not let a appear in the formula ⌈(νa)P⌉, yet actions on this bound a should be scheduled.
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A syntactic way of handling name hiding could be to allow quantification over channel names in the

logic, so that (νa) in a process would become a quantification in the type. A schedule would then have

to handle actions on this name without knowing anything about it, hence considering it effectively as a

fresh name. However, the nature of such a quantifier is unclear:

• A universal ∀a is not an option, since it would allow the scheduler to provide any name for a in

(νa)P, including one that P or its environment already knows, which would produce new possible

interactions.

• An existential ∃a is better suited since it forces the scheduler to behave independently of the actual

name used, effectively treating a as fresh. However, a proper correspondence can only be obtained

only if, by construction, ∃a is only introduced with a premiss where a is fresh, and such a restriction

is very unnatural as it does not respect the meaning of connectives in the target logic.

• Using a specific quantifier for freshness, like Miller and Tiu’s ∇ [20], would probably solve this

issue but at the price of introducing an ad-hoc construct with its particular theory in an otherwise

well-studied logic, with the consequence that it would make the semantic explorations mentioned

above more difficult.

A very different approach, more semantic than the use of a quantifier, would be to decide that placing

a (νa) in front of a process would mean something like making decisions about the scheduling that will

happen on name a, by cutting the relevant conclusions against a partial schedule (i.e. a proof without

modality rules).

• Only the asynchronous translation of section 4.2 can handle this approach, since Theorem 2 proves

that any partial schedule in the synchronous variant is the beginning of an execution. This is

consistent with the fact that it amounts to scheduling a channel in advance of actual execution.

• It blurs the distinction between a process and a scheduler, since now a process does include

scheduling decisions. This issue could be solved by typing a process (νa)P with something like

S ⊸ ⌈P′⌉a where S is the type of a scheduler for a channel (depending on how a is used in P) and

P′ is a type for P where a is hidden.

The latter approach would most likely require second-order quantification in order to specify S.

Further study of this point should also be the way to approach the problem of extending our work to

name passing calculi: once we know how to properly specify what a channel is for restricting it, we can

investigate how to communicate it through another channel.

5.3 CPS translations and determinisation

Both our type assignments actually translate actions and processes into types of intuitionistic MLL for-

mulas, therefore proofs extracted from processes could be interpreted as linear functions. Moreover, the

structure of the translations, up to the position of modalities, is ⌊ā.P⌋ = ∀α .(⌊P⌋ ⊸ α) ⊸ α , which

is a weak form of double-negation, so weak in fact that this formula, without modalities, is isomor-

phic to ⌊P⌋. This suggests a kind of (linear) continuation-passing-style translation of processes into a

linear λ -calculus, which could be another setting for the semantic and operational study of processes

and schedules. In relation with other forms of proofs-as-processes correspondences, this might suggest

an approach to the question of desequentialisation of processes (like translations into solos [4, 17]) as

a translation between logical systems, in a way similar to CPS translations from classical logic into

intuitionistic logic.
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This idea of CPS-like translations indeed suggest a step in a wider programme for the approach of

non-determinism in logic. It is well known that the classical sequent calculus LK is non confluent, to the

point that any two proofs of the same formula can be identified by conversion through cut-elimination,

which makes any direct denotational semantics of proofs degenerate, and that interesting semantics can

be obtained by means of double-negation translations into intuitionistic logic. Such translations are ef-

fective because they impose constraints on proof reduction, which on the computational side corresponds

to fixing reduction strategies like call-by-name or call-by-value in languages with control. It is a form

of determinisation, and such translations have been extensively studied. The systematic study of decom-

positions of LK into linear logic by Danos, Joinet and Schellinx in the system LKtq [9] is of particular

interest with respect to the present work since it combines determinisation and linearisation. Reading

these translations from the computational point of view provides translations of classical proofs into a

deterministic process calculus.

process

calculus

processes

+ schedules

linear

logic

determinisation

typing

LK

LJ

¬¬ and CPS

translations

semantics of

concurrency?

linearisation

LKtq

Our approach of non-determinism by means of scheduling suggest a different take on these questions:

would it be possible to provide a form of linearisation of classical proofs that would preserve the intrinsic

non-determinism of LK, so that various evaluations strategies could be obtained by effectively choosing

different types of schedulers? The semantic study of our proofs-as-schedules correspondence could be

an approach to this kind of question by means of a study of the semantics of processes.
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