
HAL Id: hal-00951969
https://hal.science/hal-00951969

Submitted on 25 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accommodation to outliers in identification of non linear
SISO systems with neural networks
Gérard Bloch, Philippe Thomas, Didier Theilliol

To cite this version:
Gérard Bloch, Philippe Thomas, Didier Theilliol. Accommodation to outliers in identification of non
linear SISO systems with neural networks. Neurocomputing, 1997, 14 (1), pp.85-99. �10.1016/0925-
2312(95)00134-4�. �hal-00951969�

https://hal.science/hal-00951969
https://hal.archives-ouvertes.fr

Accommodation to outliers in identification of non linear SISO systems

with neural networks

Gérard Blocha, Philippe Thomasa, Didier Theilliola

aCentre de Recherche en Automatique de Nancy, CNRS URA D821

ESSTIN, Rue Jean Lamour, 54500 Vandoeuvre, France

Abstract

The problem of non-linear Single Input Single Output system identification in the presence of large errors in data is considered.

Combining the capabilities of neural networks to solve non-linear problems by learning and a robust recursive prediction error

learning rule based on the modeling of the errors, a new algorithm is drawn up. Its potential is illustrated through simulation

studies.

Key words: Identification, Neural networks, Robustness, Non-Linear system, Outliers.

1. Introduction

Artificial neural networks have been the focus of a great deal

of attention during the last decade, due to their capabilities to

solve non-linear problems by learning. Such networks provide

a parallel structure with very simple processing elements. Al-

though a broad range of neural networks (NN) architectures and

learning rules are available (Grossberg, 1988; Kohonen, 1989;

Lippman, 1987; Widrow and Lehr, 1990), the backpropaga-

tion algorithm for multilayer feedforward networks (Rumelhart

et al., 1986) is the most popular approach for engineering appli-

cations. Backpropagation or derived algorithms have been suc-

cessfully applied for classification and pattern recognition (Ra-

javelu et al., 1989; Xue et al., 1992), fault detection (Hoskins

and Himmelblau, 1988; Kramer and Leonard, 1988), non-linear

control (Nahas et al., 1992) and process modelling and identifi-

cation (Bhat and McAvoy, 1990; Billings et al., 1991; Narendra

and Parthasarathy, 1990).

On the other hand, an extensive literature on system identifi-

cation can be found. Among general textbooks on the sub-

ject, Box and Jenkins (1970), Söderström and Stoica (1989) and

Ljung (1987) can be mentioned. Particularly, much effort has

been devoted to tackle the presence of outliers in experimen-

tal input and output data used for identification. Large errors

or outliers in data can be for instance caused by offset of sen-

sors, failure of transducers, analog to digital conversion errors

or even by malfunctioning of transmission devices. The related

works are mainly based on modeling such outliers to produce

so called robust identification algorithms. But these works are

limited to linear systems.

In this paper, the main feature of neural networks, the ability

to identify non-linear systems and a robust recursive prediction

error algorithm, based on the modeling of errors due to Huber

(1964), are combined. This modeling has been used by Puthen-

pura and Sinha (1990) for a robust linear recursive least squares

type identification algorithm. The convergence of this kind of

algorithms particularly for non-linear systems is very slow. So,

a robust feature is introduced in a recursive Gauss-Newton type

of algorithm, first employed by Chen et al. (1990a) for neural

networks. The goal is to accommodate to outliers in order to

eliminate their effects in the identification of non linear SISO

systems by an appropriate choice of the criterion to be mini-

mized.

2. Multilayer feedforward neural networks for identifica-

tion

In this part, the structure of the multilayer feedforward neural

network, used for identification of dynamical single input sin-

gle output (SISO) systems, is presented. The network, shown

in Figure 1, is composed of interconnected processing units in

three successive layers.

Figure 1: A three layers feedforward neural architecture.

The first or input layer is composed of ”transparent” units

which do not perform any computation but simply distribute

theirs inputs to all neurons in the next layer called hidden layer

(x0
k
= xk(t),∀k). For identification purposes, several authors

such as Cybenko (1989) or Funahashi (1989) have established

that multilayer feedforward neural networks with a single hid-

den layer are able to approximate continuous functions. The

last layer is the output layer, composed of a single neuron and

its output gives the estimated output of the SISO system.

Neurons in the hidden and output layers are identical and can

be represented as illustrated in Figure 2.

Figure 2: Neuron i in layer j.

The ith neuron in the layer j receives n j−1 inputs
{

x
j−1

1
, . . . , x

j−1
n j−1

}

from layer j − 1 with associated weights
{

w
j

i1
, . . . ,w

j

in j−1

}

. This

neuron first computes the weighted sum of the n j−1 inputs:

z
j

i
=

n j−1
∑

k=1

w
j

ik
x

j−1

k
+ b

j

i
, (1)

where b
j

i
is a bias or threshold term. The output of the neuron

is a non-linear function of the sum in (1):

x
j

i
= g(z

j

i
), (2)

where g denotes the activation function, chosen as often to be a

sigmoidal function, here:

g(x) =
1

1 + e−x
, (3)

with lim
x→−∞

g(x) = 0 and lim
x→+∞

g(x) = 1. So, for the structure and

the notations of Figure 1, a network with a single hidden layer

can be defined by the following model:

ŷ(t) = g(z) (4a)

z =

n1
∑

k=1

w2
k x1

k + b2 (4b)

x1
i = g(z1

i) (4c)

z1
i =

n0
∑

k=1

w1
ik xk(t) + b1

i (4d)

x(t) = [x1(t) . . . xn0
(t)]T is the n0.1 input vector. In the follow-

ing, nd, nu and ny refer respectively the input time delay, the

numbers of lagged system inputs and outputs to be applied to

input layer of the network. In the training phase of the neural

network, i.e. the identification step, input u(t− nd), u(t− nd − 1)

. . . and output y(t − 1), y(t − 2) . . . values of the process are suc-

cessively applied on the input layer of the network in order to

produce an estimated value of the system output:

ŷ(t,Θ) = NN
(

y(t−1), . . . , y(t−ny), u(t−nd), . . . , u(t−nd−nu+1)
)

(5)

where Θ = [θ1 . . . θnθ]
T comprises all the unknown weights and

biases of the network. The dimension nθ of the parameter vector

Θ is defined as:

nθ = (n0 + 1) n1 + (n1 + 1),

where n0 = ny +nu is the number of the input layer neurons and

n1 is the number of the hidden layer neurons. So the predictor

can be noted NN(ny, nu, nd, n1).

To avoid the saturation of the activation function (3), partic-

ularly for the output neuron, contained between 0 and 1, ob-

served input and output data of the system must ne scaled be-

tween 0 and 1. However, the same notation for original and

normalized data is used in the following.

3. Recursive prediction error method

The general framework of the learning rule used in the

following is now presented. The backpropagation algorithm

(Rumelhart et al., 1986) is the first training method to estimate

parameters of multilayer neural network and is a gradient algo-

rithm designed to minimize the mean square error between the

output of the network and the desired output.

The recursive prediction error or RPE algorithm, first intro-

duced by Chen et al. (1990a,b) for training neural networks,

is a general recursive parameter estimation method which mini-

mizes the prediction error using an approximation of the Gauss-

Newton search direction. Only the version of the RPE algo-

rithm introduced in (Chen et al., 1990a) has been considered

here. Billings et al. (1991) have shown that the RPE algo-

rithm provides an effective method of learning neural networks.

Backpropagation can be viewed as a simplified version of the

RPE algorithm. Compared with backpropagation, RPE algo-

rithm involves increased computational load at each iteration,

but presents faster convergence, yielding to shorter global com-

putational time. Furthermore, RPE removes the dependence of

the estimation algorithm on the user selectable parameters such

as learning rate and momentum. Indeed, with an inappropri-

ate combination of these parameters, backpropagation performs

badly. In any case, neither backpropagation nor RPE algorithm

ensure to reach a final estimation corresponding to a global min-

imum of the criterion.

The RPE algorithm starts from the general criterion:

J(t,Θ) = γ(t)

t
∑

k=1

β(t, k) ℓ(ε(k,Θ), k), (6)

where γ(t) is the adaptation gain a time t with
∑t

k=1 γ(t) β(t, k) =

1, ε(k,Θ) is the scalar prediction error and ℓ(ε(k,Θ), k) can be

chosen as a quadratic function weighted by the innovation vari-

ance Λ(k):

ℓ(ε(k,Θ), k) =
1

2
Λ
−1(k) ε2(k,Θ). (7)

The minimization of the criterion (6) can be performed accord-

ing to:

Θ̂(t) = Θ̂(t − 1) + ft(Θ̂(t − 1)), (8)

2

where Θ̂(t) is the estimate of Θ at time t and ft(Θ̂(t − 1)) is a

search direction based on information about J(t,Θ).

The parameter vector Θ is estimated for each t = 1, . . . ,N,

where N is the number of available observations. For off-line

estimation, the data set is presented several times and each pre-

sentation is called an iteration. The Gauss-Newton search di-

rection is used here and is defined by:

ft(Θ̂) = −[R(t)]−1∇J(t,Θ), (9)

where R(t) and ∇J(t,Θ) are respectively the nθ.nθ approximate

Hessian matrix and the nθ.1 gradient of J(t,Θ). The derivation

is given by Ljung (1987) and yields the general recursive pre-

diction error algorithm:

ε(t) = y(t) − ŷ(t/Θ̂(t − 1)), (10a)

R(t) = R(t − 1) + γ(t)
[

ψ(t) Λ−1(t) ψT (t) − R(t − 1)
]

, (10b)

Θ̂(t) = Θ̂(t − 1) + γ(t) R−1(t) ψ(t) Λ−1(t) ε(t), (10c)

where ψ(t) =
[

∂ŷ(t/Θ)

∂Θ

]

is the nθ.1 gradient of ŷ with respect to Θ.

The elements of ψ(t) must be written depending on the location

of the parameters in the network, in the spirit of backpropaga-

tion. It can be first shown from (3) that:

∂g(x)

∂x
= g(x) (1 − g(x)). (11)

For the parameters of the output layer, Eqs. (11), (4a) and (4b)

then yield:

∂ŷ

∂w2
k

=
∂ŷ

∂z

∂z

∂w2
k

= ŷ (1 − ŷ) x1
k , (12a)

∂ŷ

∂b2
=
∂ŷ

∂z

∂z

∂b2
= ŷ(1 − ŷ). (12b)

For the parameters of the hidden layer, Eqs. (11) and (4) yield:

∂ŷ

∂w1
ik

=
∂ŷ

∂z

∂z

∂x1
i

∂x1
i

∂z1
i

∂z1
i

∂w1
ik

= ŷ (1 − ŷ) w2
i x1

i (1 − x1
i) xk, (13a)

∂ŷ

∂b1
i

=
∂ŷ

∂z

∂z

∂x1
i

∂x1
i

∂z1
i

∂z1
i

∂b1
i

= ŷ (1 − ŷ) w2
i x1

i (1 − x1
i). (13b)

So, the differentiation of ŷ with respect to θ j, j = 1, . . . , nθ, can

be summarized as follows:

ψ j =







































ŷ (1 − ŷ) x1
k
, if θ j=w2

k
, 1≤ k≤ n1,

ŷ (1 − ŷ), if θ j=b2 ,

ŷ (1 − ŷ) w2
i

x1
i
(1 − x1

i
) xk, if θ j=w1

ik
, 1≤ k≤ n0,

ŷ (1 − ŷ) w2
i

x1
i
(1 − x1

i
). if θ j=b2.

(14)

As developed in the appendix, the practical implementation of

the algorithm (10) avoids to invert R(t) at each step:

Θ̂(t) = Θ̂(t − 1) + L(t) ε(t), (15a)

L(t) =
P(t − 1) ψ(t)

λ(t) Λ(t) + ψT (t) P(t − 1) ψ(t)
, (15b)

P(t) =
1

λ(t)

[

P(t − 1) − L(t) ψT P(t − 1)
]

, (15c)

where

P(t) = γ(t) R−1(t), (16)

and

λ(t) =
γ(t − 1)

γ(t)
(1 − γ(t)). (17)

The so-called forgetting factor is calculated practically by:

λ(t) = λ0(1 − λ(t − 1)) + (1 − λ0).

4. Robustification of the algorithm

Large errors or outliers are quite difficult to be detected and

picked out before identification and can cause the parameters to

be highly biased. In order to tackle this problem, Puthenpura

and Sinha (1990) have developed a robust recursive identifica-

tion method for linear dynamical systems. This scheme is a

weighted least squares algorithm with particular weights and

is very similar to the robust Kalman filter obtained by Masre-

liez and Martin (1977). Based on the modeling of outliers due

to Huber (1964), it considers that the measurement noise e(t)

which contaminates the noise free output is from the family Dµ,

defined by:

Dµ = {D | D = (1 − µ) G + µH, 0 ≤ µ ≤ 1} , (18)

where G is the usual normal distribution, H an arbitrary sym-

metric long-tailed distribution and µ the probability of occur-

ring large errors. In fact H is assumed to be also normal, but

with a larger variance compared to G:

e(t) ∼ (1 − µ)N(0, σ2
1) + µN(0, σ2

2), (19)

where N represents a normal distribution, with σ2
2
> σ2

1
.

The probability µ of occurring large errors being unknown, the

preceding model is replaced by:

e(t) ∼ (1 − δ(t))N(0, σ2
1) + δ(t)N(0, σ2

2), (20)

where δ(t) = 0 for |ε(t)| ≤ M and δ(t) = 1 for |ε(t)| > M,

with ε(t) the prediction error and M a preassigned bound which

can be taken as 3σ1 (Aström, 1980). So the weighting factor

appearing in (15) will be chosen as:

Λ(t) = (1 − δ(t))σ2
1 + δ(t)σ

2
2 (21)

to reduce the influence of large innovations. Moreover, the vari-

ances σ2
1

and σ2
2

can be updated as:

σ2
1(t) = σ2

1(t−1) +
1

t−τ
(ε2(t)−σ2

1(t−1)), for |ε(t)|≤3σ1(t−1),

σ2
1(t) = σ2

1(t−1) , otherwise, (22a)

and

σ2
2(t) = σ2

2(t−1) +
1

τ
(ε2(t)−σ2

2(t−1)), for |ε(t)|>3σ1(t−1),

σ2
2(t) = σ2

2(t−1) , otherwise, (22b)

3

with τ = 0, for t = 1 and τ = τ + 1 whenever |ε(t)|>3σ1(t−1).

As pointed out by Puthenpura and Sinha (1990), τ is the esti-

mated number of outliers.

σ2
2
(0) can be chosen as σ2

2
(0) = 3 σ2

1
(0). σ2

1
(0) should be cho-

sen much greater than the real value of the noise variance so

that in the beginning of the identification no residual ε(t) ap-

pears like outlier. With this choice, σ2
1

converges to the true

value of the noise variance. When σ2
1

is close to the noise vari-

ance, outliers are detected and their influence on identification

becomes insignificant. If σ2
1
(0) is chosen very small (or zero),

all residuals have an absolute value |ε(t)| greater than 3σ1(t−1),

only σ2
2

converges to the noise variance (but with the influence

of outliers) and the parameter estimation is biased when outliers

are present. If σ2
1
(0) is chosen very large, the accommodation

to outliers is just delayed.

In the next part, the three following algorithms are applied from

(15) to a simulated example:

• NN (Neural Network) with Λ(t) = 1 and λ(t) = 1,

• FNN (Neural Network with Forgetting factor) where

Λ(t) = 1 and λ(t) is calculated by the recursive relation

λ(t) = λ0(1 − λ(t − 1)) + (1 − λ0), with λ0 = 0.99 and

λ(0) = 0.95,

• RNN (Robust Neural Network) where λ(t) = 1 and Λ(t) is

computed by (21) and (22).

5. Simulation results

A non-linear Hammerstein system example, introduced by

Billings et al. (1991), is considered:

y(t) = 0.8y(t − 1) + 0.4 NL(u(t − 1)) + e(t)

NL(t − 1) = u(t − 1) + u(t − 1)2
+ u(t − 1),

(23)

where u(t) is the system input at time t, chosen as a sequence

uniformly distributed between - 4 and 4, in order to study the

system on the whole non-linearity, y(t) is the system output,

e(t) is a gaussian noise such as e ∼ N(0, σ2
1
) when no outliers

are present. In order to show the influence of the outliers on

the output, Figure 3 presents the 500 output values, where the

noise variance σ2
1

is equal to 2.56 (σ1 = 1.61), contaminated

by 25 randomly located outliers. These large errors are simply

simulated by multiplying the original values of the noise by a

factor f equal to 20.

Figure 4 shows the difference between the preceding series and

the corresponding outliers free and noise free simulation. The

impact of the outliers filtered by the process dynamics can be

noticed. Figure 5 presents the difference between the noisy and

outliers free series and the noise free series, which represents

the noise filtered by the process, in order to show its variation

range, significantly smaller than for the preceding figure.

For the different following experiments, the neural predictor has

the same structure NN(ny = 2, nu = 2, nd = 1, n1 = 3) and

the initial weights, randomly chosen between 0 and 1, are kept.

The initial value of the covariance matrices P is chosen equal

to 100I and σ2
1
(0) equal to 5 times the variance of the noise.

Figure 3: Output signal contaminated by outliers.

Figure 4: Impact of outliers on the output data.

Figure 5: Noise filtered by the process.

For the off-line identification considered in this part, the data set

is presented 20 times (iterations). Moreover, a second data set is

used for the (cross)-validation of the neural models. This fresh

data set is called validation set and has characteristics similar to

the original identification set, concerning the input shape, the

distribution of the noise and its variance, but is outlier free. The

following examples give the values of the residual criterion:

V =
1

N

N
∑

t=1

(ŷ(t) − y(t))2,

where y(t) is the system output at time t, ŷ(t) is the output esti-

mated by the neural model obtained after 20 identification iter-

ations and where N = 500.

Figure 6 presents, for σ2
1
= 0.64, the variation of the residual

criterion when the number of outliers (with multiplicative factor

f equal to 25) is varied from 0 (no outliers) to 50. Figure 6(a)

concerns the data set used for identification, Figure 6(b) the val-

4

idation set. NN and RNN algorithms yield very stable results

for the validation set contrary to those for FNN. But the resid-

ual criterion is reduced by 5 from NN to RNN.

Figure 6: Residual criterion w.r.t. the outliers number. (a) identification set, (b)

validation set.

Figures 7(a) and 7(b) show the evolution during learning of the

residual criterion for algorithms NN and RNN, respectively, for

0, 25 and 50 outliers. The convergence of the RNN algorithm

appears clearly faster. However, as shown in Figure 8, the varia-

tion of the criterion computed from the validation set is slower.

Figure 7: Residual criterion with respect to iterations. (a) NN. (b) RNN.

Figure 8: Residual criterion for validation set (RNN).

The second experiment deals with a variation of the multiplica-

tive factor f from 1 (no outliers) to 50, for 50 outliers and for

σ2
1
= 0.64. The results are similar as those of the preceding

experiment, as shown in Figure 9.

Figure 9: Residual criterion with respect to the factor f . (a) identification set,

(b) validation set.

In the third experiment, for 50 outliers with multiplicative factor

equal to 25, the noise variance σ2
1

is varied from 0 (no noise)

to 16. Results are given in Figure 10. As for the preceding

experiment, the behavior of the FNN algorithm appears discon-

certing, such an algorithm being misadapted for contaminated

data. Note also on Figure 10(b) that the RNN algorithm, better

than the simple NN, produces a good estimation of the noise

variance from 2.5.

In the last experiment, σ2
1

is fixed to 0.64 and a bias varying

from 0 (no bias) to 20 is added to the last 50 values of the orig-

inal outliers free noise. The results given in Figure 11 are very

significant. While increasing with RNN for the identification

set as the bias increases, the residual criterion is remarkably

stable for the validation set, contrary to the other algorithms.

5

Figure 10: Residual criterion with respect to σ2
1
. (a) identification set, (b) vali-

dation set.

These last results confirm the interest of the presented robust

non linear predictor for detection of process changes.

Figure 11: Residual criterion w.r.t. bias magnitude. (a) identification set, (b)

validation set.

6. Conclusion

The neural nets have a structure which allows, with the adap-

tation of the backpropagation, the use of the various and some-

times classical parameter estimation algorithms. The problem

of non-linear Single Input Single Output system identification

in the presence of outliers in data has been considered. Combin-

ing the capabilities of neural networks to solve non-linear prob-

lems by learning and a robust recursive prediction error learning

rule based on the modeling of the errors, a new algorithm has

been drawn up. The results obtained suggest that this algorithm

can be employed for identification from contaminated data, but

also for failure detection and for robust control. The proposed

method can be easily extended to MIMO systems.

Acknowledgements

The authors gratefully acknowledge the reviewers for their

instructive comments.

A. Appendix

Let us consider the general prediction error algorithm intro-

duced in (10):

ε(t) = y(t) − ŷ(t/Θ̂(t − 1)), (A.1a)

R(t) = [1 − γ(t)] R(t − 1) + γ(t)ψ(t) Λ−1(t) ψT (t), (A.1b)

Θ̂(t) = Θ̂(t − 1) + γ(t) R−1(t) ψ(t) Λ−1(t) ε(t). (A.1c)

To avoid inverting R(t) at each step, it is convenient to intro-

duce:

P(t) = γ(t) R−1(t), (A.2)

and apply to (A.1b) the matrix inversion lemma:

(A + BCD)−1
= A−1 − A−1B (C−1

+ DA−1B)−1DA−1. (A.3)

Taking A = [1−γ(t)] R(t−1), B = DT
= ψ(t), and C = γ(t)Λ−1(t)

gives:

P(t) =
γ(t)

1−γ(t)



















R−1(t−1) −
R−1(t−1)ψ(t)ψT (t)

R−1(t−1)

1−γ(t)

Λ(t)

γ(t)
+ ψT (t)

R−1(t−1)

1−γ(t)
ψ(t)



















. (A.4)

Let us recall that the forgetting factor λ(t) is linked to γ(t) by

(17):

λ(t) =
γ(t − 1)

γ(t)
(1 − γ(t)). (A.5)

Equation (A.2) can be rewritten as:

P(t − 1) = γ(t − 1) R−1(t − 1). (A.6)

Combining (A.5) and (A.6) gives:

P(t − 1)

λ(t)
=

γ(t)

1 − γ(t)
R−1(t − 1), (A.7)

and introducing (A.7) in (A.4) gives quite directly:

P(t) =
1

λ(t)

[

P(t − 1) −
P(t − 1)ψ(t)ψT (t)P(t − 1)

λ(t)Λ(t) + ψT (t)P(t − 1)ψ(t)

]

. (A.8)

Taking:

L(t) = γ(t) R−1(t) ψ(t) Λ−1(t) (A.9)

6

in (A.1c) gives:

Θ̂(t) = Θ̂(t − 1) + L(t)ε(t). (A.10)

Introducing (A.2) and (A.8) in (A.9) yields after some calcula-

tions:

L(t) =
P(t − 1) ψ(t)

λ(t) Λ(t) + ψT (t) P(t − 1) ψ(t)
, (A.11)

and substituting (A.11) in (A.8) gives with (A.1a), (A.11) and

(A.10) the final algorithm:

ε(t) = y(t) − ŷ(t/Θ̂(t − 1)), (A.12a)

L(t) =
P(t − 1) ψ(t)

λ(t) Λ(t) + ψT (t) P(t − 1) ψ(t)
, (A.12b)

P(t) =
1

λ(t)

[

P(t − 1) − L(t) ψT (t) P(t − 1)
]

, (A.12c)

Θ̂(t) = Θ̂(t − 1) + L(t) ε(t). (A.12d)

References

Aström, K. J., 1980. Maximum likelihood and prediction error methods. Auto-

matica 16 (5), 551–574.

Bhat, N., McAvoy, T. J., 1990. Use of neural nets for dynamic modeling and

control of chemical process systems. Computers & Chemical Engineering

14 (4-5), 573–582.

Billings, S. A., Jamaluddin, H. B., Chen, S., 1991. A comparison of the back-

propagation and recursive prediction error algorithms for training neural net-

works. Mechanical Systems and Signal Processing 5 (3), 233–255.

Box, G. E. P., Jenkins, G. M., 1970. Time Series Analysis: Forecasting and

Control. Holden Day, San Francisco.

Chen, S., Billings, S. A., Grant, P. M., 1990a. Non-linear system identification

using neural networks. International Journal of Control 51 (6), 1191–1214.

Chen, S., Cowan, C. F. N., Billings, S. A., Grant, P. M., 1990b. Parallel recur-

sive prediction error algorithm for training layered neural networks. Interna-

tional Journal of Control 51 (6), 1215–1228.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems 2 (4), 303–314.

Funahashi, K.-I., 1989. On the approximate realization of continuous mappings

by neural networks. Neural Networks 2 (3), 183–192.

Grossberg, S., 1988. Non-linear neural networks: Principles. mechanisms, and

architectures. Neural Networks 1 (1), 17–61.

Hoskins, J. C., Himmelblau, D. M., 1988. Artificial neural network models of

knowledge representation in chemical engineering. Computers & Chemical

Engineering 12 (9-10), 881–890.

Huber, P. J., 1964. Robust estimation of a location parameter. Ann. Math. Stat.

35 (1), 73–101.

Kohonen, T., 1989. Self-Organisation and Associative Memory, 3rd Edition.

Springer-Verlag, New-York.

Kramer, M. A., Leonard, J. A., 1988. Diagnosis using backpropagation neu-

ral networks - analysis and criticism. Computers & Chemical Engineering

14 (12), 1323–1338.

Lippman, R. P., 1987. An introduction to computing with neural nets. IEEE

ASSP Magazine 4 (2), 4–22.

Ljung, L., 1987. System Identification - Theory for user. Prentice Hall, Engle-

wood Cliffs, NJ.

Masreliez, C. J., Martin, R. D., 1977. Robust Bayesian estimation for the linear

model and robustifying the Kalman filter. IEEE Transactions on Automatic

Control 22 (3), 361–371.

Nahas, E. P., Henson, M. A., Seborg, D. E., 1992. Non-linear internal model

control strategy for neural network models. Computers & Chemical Engi-

neering 16 (12), 1039–1057.

Narendra, K. S., Parthasarathy, K., 1990. Identification and control of dynami-

cal systems using neural networks. IEEE Transactions on Neural Networks

1 (1), 4–27.

Puthenpura, S., Sinha, N. K., 1990. A robust recursive identification method.

Control Theory and Advanced Technology 6, 683–695.

Rajavelu, A., Musavi, M., Shirvaikar, M., 1989. A neural network approach to

character recognition. Neural Networks 2 (5), 387–393.

Rumelhart, D. E., McClelland, J. L., PDP Research Group, 1986. Parallel dis-

tributed processing. Vol. 1. MIT Press, Cambridge, MA.

Söderström, T., Stoica, P., 1989. System Identification. Prentice-Hall Interna-

tional, Hemel Hempstead, UK.

Widrow, B., Lehr, M., 1990. 30 years of adaptive neural networks: percep-

tron, Madaline, and backpropagation. Proceedings of the IEEE 78 (9), 1415–

1442.

Xue, Q., Hu, Y. H., Tompkins, W. J., 1992. Neural-network-based adaptive

matched filtering for QRS detection. IEEE Transactions on Biomedical En-

gineering 39 (4), 317–329.

7

