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ABSTRACT

Let K be a field equipped with a valuation. Tropical vari-
eties over K can be defined with a theory of Gröbner bases
taking into account the valuation of K.

We design a strategy to compute such tropical Gröbner
bases by adapting the Matrix-F5 algorithm. We show that
both Matrix-F5 and the signature-preserving Matrix-F5 are
available to tropical computation with respective modifica-
tions.

Our study is performed both over any exact field with
valuation and some inexact fields like Qp or Fq[[t]]. In the
latter case, we track the loss in precision, and show that the
numerical stability compare favorably to the case of classical
Gröbner bases. Numerical examples are provided.

Categories and Subject Descriptors

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulations—Algebraic Algorithms

General Terms

Algorithms, Theory

Keywords

Gröbner bases, tropical geometry, F5 algorithm, p-adic pre-
cision, p-adic algorithm

1. INTRODUCTION
Despite its young age, tropical geometry has revealed to

be of significant value, with applications in algebraic geom-
etry, combinatorics, computer science, and more recently
non-archimedean geometry (see [4]).

Effective computation over tropical varieties make deci-
sive usage of Gröbner bases, but before Chan and Macla-
gan’s definition of tropical Gröbner bases in [3], computa-
tions were only available over exact fields where standard
Gröbner bases techniques applied. In this document, we
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show that following Chan and Maclagan’s definition, both
Matrix-F5 and signature-based Matrix-F5 algorithms can be
performed to compute tropical Gröbner bases. Moreover, if
the input polynomials are in, for example, Qp or Q[[t]], and
known with enough precision, then Matrix-F5 can still be
performed. Tropical Gröbner bases provide therefore a nu-
mericaly more stable substitute for classical Gröbner bases.

Related works on tropical Gröbner bases

We refer to the book of Maclagan and Sturmfels [9] for an
introduction to computational tropical algrebraic geometry.

The computation of tropical varieties over Q with trivial
valuation is available in the Gfan package by Anders Jensen
(see [7]), by using standard Gröbner basis computation. Yet,
if we want to compute tropical varieties over general fields,
with non-trivial valuation, such techniques are not readily
available. This is why Chan and Maclagan have developed in
[3] a way to extend the theory of Gröbner bases to take into
account the valuation and allow tropical computation. Their
theory of tropical Gröbner bases is effective and allows, with
a suitable division algorithm, a Buchberger algorithm.

Main results

Let K be a field equipped with a valuation. Let ≥ be an or-
der on the terms of K[X1, . . . , Xn] as in definition 2, defined
with ω ∈ Im(val)n and a monomial ordering ≥1 . Follow-
ing [3], we define tropical D-Gröbner bases as for classical
Gröbner bases.

Then, we provide as algorithm 1 a tropical row-echelon
form computation algorithm for Macaulay matrices. We
show that the F5 criterion still holds in a tropical setting.
We therefore define the tropical Matrix-F5 algorithm (algo-
rithm 2) as the adaptation of the classical Matrix-F5 algo-
rithm with the tropical row-echelon form computation. We
then have the following result :

Proposition 1.1. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be

a sequence of homogeneous polynomials. Then, the tropical
Matrix-F5 algorithm computes a tropical D-Gröbner basis of
〈f1, . . . , fs〉. Time-complexity is asymptotically the same as

in the classical case : O
(
s2D

(
n+D−1

D

)3)
operations in K,

as D → +∞.

Not only does the tropical Matrix-F5 algorithm computes
tropical D-Gröbner bases, but it is compatible with finite-
precision coefficients, under the assumption that the sequence
is regular. Let us assume that K = Qp or Fq[[t]]. Let
(f1, . . . , fs) ∈ K[X1, . . . , Xn]

s.



We define a bound on the precision, precF5trop ({f1, . . . , fs} , D,≥) ,
and one on the loss in precision, lossF5trop ({f1, . . . , fs} , D,≥) ,
which depend explicitly on the coefficients of the fi’s.

Then we have the following proposition regarding to nu-
merical stability of tropical Gröbner bases :

Proposition 1.2. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be

a regular sequence of homogeneous polynomials.
Let (f ′

1, . . . , f
′
s) be some approximations of (f1, . . . , fs),

with precision l better than precF5trop({f1, . . . , fs} , D,≥).
Then, with the tropical Matrix-F5 algorithm, one can com-

pute an approximation g′1, . . . , g
′
t of a Gröbner basis of 〈f1, . . . , fs〉 ,

up to precision l − lossF5trop({f1, . . . , fs} , D,≥).

This contrasts with the case of classical Gröbner bases
over p-adics (or complete discrete valuation fields) consid-
ered in [12]. Indeed, the structure hypothesis H2 which
requires that the ideals〈f1, . . . , fi〉 are weakly-w is no longer
necessary. It is only replaced by the stronger assumption on
the initial precision precF5trop and lossF5trop.

Finally, we show that the signature-based F5M algorithm
can be adapted to compute tropical Gröbner bases. We
first provide a tropical LUP form computation for Macaulay
matrices that is compatible with signatures, and then the
tropical signature-based Matrix-F5 algorithm (algorithms 3
and 4). We prove the following result :

Proposition 1.3. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be

a sequence of homogeneous polynomials. Then, the tropical
signature-based Matrix-F5 algorithm computes a tropical D-
Gröbner basis of 〈f1, . . . , fs〉 .

Concerning this algorithm, time-complexity is asymptot-

ically the same as in the classical case : O
(
s2D

(
n+D−1

D

)3)

operations in K, as D → +∞. Yet, a more refined anal-
ysis show that compared with the first tropical Matrix-F5
algorithm, complexity is better.

Structure of the paper

In section 2, we provide motivations from tropical geometry,
and expose the ideas of Chan and Maclagan’s algorithm.

In section 3, we show that matrix algorithms can be per-
formed to compute tropical Gröbner bases. To that in-
tent, after an introduction to matrix algorithms for Gröbner
bases, we provide a row-reduction algorithm that will make
the Matrix-F5 algorithm available. We then prove and ana-
lyze this tropical Matrix-F5 algorithm. Section 4 is devoted
to the analysis of this algorithm over inexact fields with val-
uations, such as Qp.

In section 5, we provide a tropical LUP algorithm that is
suited to a signature-based Matrix-F5 algorithm. We then
present and prove a tropical signature-based Matrix-F5 al-
gorithm. Section 6 is devoted to some numerical examples.
Finally, section 7 will be a glance at some future develop-
ment for tropical Gröbner bases.

2. TROPICAL MOTIVATIONS

Setting

From now on, let K be a field equipped with a valuation
val : K∗ → R+. Let Γ = Im(val). An example of such a
field is Q with p-adic valuation. In that case, Γ = Z.

Let also n ∈ Z>0, and A = K[X1, . . . , Xn]. We write |f |
for the degree of a homogeneous polynomial f ∈ A, and
Ad = K[X1, . . . , Xn]d for the K-vector space of homoge-
neous polynomials of degree d.

2.1 Tropical varieties and tropical Gröbner bases
If I is an homogeneous ideal in A = K[X1, . . . , Xn], and

V (I) ⊂ Pn−1
K is the projective variety defined by I . Then the

tropical variety defined by I , or the tropicalization of V (I),
is Trop(I) = val (V (I) ∩ (K∗)n) . T rop(I) is a polyhedral
complex and acts as a combinatorial shadow of V (I) : many
properties of V (I) can be recovered combinatorially from
Trop(I).

If w ∈ Γn, we can define an order on the terms ofK[X1, . . . , Xn].

Definition 1. If a, b ∈ K and xα and xβ two monomials in
K[X1, . . . , Xn], ax

α ≥w bxβ if val(a)+w ·α ≥ val(b)+w ·β.
Naturally, it is possible that axα 6= bxβ and val(a)+w ·α =
val(b) +w · β.

For any f ∈ K[X1, . . . , Xn], we can define LT≥w (f), and
then LT≥w (I), for I ⊂ K[X1, . . . , Xn] an ideal, accordingly.

We shall note that LT≥w (f) might be a polynomial (with
more than one term). For example, if we take w = [1, 2, 3]
in Q2[x, y, z] (with 2-adic valuation), then

LT≥w

(
x4 + x2 ∗ y + 2y4 + 2−8z4

)
= x4 + x2 ∗ y + 2−8z4.

Therefore, in order to compute Trop(I), one might want
to use the following property :

Theorem 2.1 (Fundamental th. of tropical geometry).
Trop(I) is the closure in Rn of those w ∈ Γn such that
LT≥w (I) does not contain a monomial.

Proof. See Theorem 3.2.5 of the book of Maclagan and
Sturmfels [9].

Andrew Chan and Diane Maclagan have developed in [3] a
way to compute LTw(I) by adding another (classical) mono-
mial order in order to break ties when LTw(f) has more than
one monomial.

Definition 2. Let us take ≥1 be a monomial order on
K[X1, . . . , Xn].

Given a, b ∈ K and xα and xβ two monomials inK[X1, . . . , Xn],
we shall write axα ≥ bxβ if val(a) + w · α < val(b) + w · β,

or val(a) + w · α ≥ val(b) + w · β and xα
1 ≥1 xβ

1 .
We define LT (f) and LT (I) accordingly. We shall remark

that LT (I) = LT≥1
(LTw(I)). We define LM(f) to be the

monomial of LT (f), and LM(I) accordingly.

Remark 1. We use the same notations as in the article
of Chan and Maclagan [3], except that we write axα ≥
bxβ, instead of axα ≤ bxβ. According to our order, the
LT≥1

(LTw(f)) = LT (f) of f (in contrary to Chan and
Maclagan) is indeed its biggest monomial.

We will first briefly describe their à la Buchberger al-
gorithm to compute LT (I) for I a homogeneous ideal of
K[X1, . . . , Xn], and the rest of the article will be devoted to
the study of two matrix-F5 algorithms



2.2 The algorithm of Chan and Mcalagan
In their article [3], Chan & Maclagan have proved that if

you modify the classical division algorithm of a polynomial
by a finite family of polynomials with a variant of Mora’s
tangent cone algorithm, then you can get a division algo-
rithm suited to the computation of tropical Gröbner bases.
Indeed, they proved that Buchberger’s algorithm using this
division algorithm computes tropical Gröbner bases.

The main ideas of their division algorithm is to allow di-
vision by previous partial quotients, and chose the divisor
polynomial with a suited écart function.

Following these ideas of tropical Buchberger algorithms,
we prove in the following section that, when the ideal con-
sidered is generated by homogeneous polynomials, matrix
algorithms are available.

3. A TROPICAL MATRIX-F5 ALGORITHM
From now on, and through the end of the article, we fix

w ∈ Γn and ≥1 a monomial ordering on A. We denote by ≥
the term ordering defined by w and ≥1, as in definition 2.

3.1 Matrix algorithm
Here we show that to compute a tropical Gröbner basis

of an ideal given by a finite sequence of homogeneous poly-
nomials, a matrix algorithm can be written. The first main
idea is due to Daniel Lazard in [8], and comes from the fol-
lowing property, valid over any field :

Proposition 3.1. For an homogeneous ideal I ⊂ A, gen-
erated by homogeneous polynomials (f1, . . . , fs), for d ∈ N,
then as K-vector space :

I ∩ Ad = 〈xαfi, |α|+ |fi| = d〉 .

One of the main features of this property is that it can be
given in term of matrices. First, we define the matrices of
Macaulay :

Definition 3. Let Bn,d be the basis of the monomials of
degree d, ordered decreasingly according to ≥ . Then for
f1, . . . , fs ∈ A[X1, . . . , Xn] homogeneous polynomials, d ∈
N, we define Macd(f1, . . . , fs) to be the following matrix :

xd1 > . . . > . . . > x
d
( n−1
n+d−1)

xα1,1f1
...

x
α
1,( n−1

n+d−d1−1)

xα2,1f2
...

x
α
s,( n−1

n+d−ds−1)fs


 *




with |αi,∗| + |fi| = d. The rows of Macd(f1, . . . , fs) are
the polynomials xαfi written in the basis Bn,d.

Then, naturally, if we identify the rows vectors of k

(
n+d−1

n

)

with homogeneous polynomials of degree d,

Proposition 3.2. Im(Macd(f1, . . . , fs)) = I ∩ Ad, with
Im being the left image of the matrix.

When performing classical matrix algorithm to compute
Gröbner bases (see [1]), the idea is to compute row-echelon
forms of the Macd(f1, . . . , fs) up to some D : if D is large
enough, the reduced rows forms a Gröbner basis of I .

Although, it is not easy to guess in advance up to which
D we have to perform row-reductions of Macaulay matri-
ces. This why the idea of tropical D-Gröbner bases can be
introduced.

Definition 4. Let I be an ideal of A, ≥ a tropical term
ordering on A as in definition 2 and D an integer.

Then (g1, . . . , gl) is aD-Gröbner basis of I if for any f ∈ I ,
homogeneous of degree less than D, there exists 1 ≤ i ≤ l
such that, regarding to ≥, LT (gi) divides LT (f).

3.2 Tropical row-echelon form computation
This subsection is devoted to define an algorithm that will

compute echelonized bases of the Macd(f1, . . . , fi), as long
as LT (〈f1, . . . , fi〉 ∩Ad).

An algorithm

To perform this computation, we define the class of Macaulay
matrices :

Definition 5. A Macaulay matrix of degree d in A is a
couple (M,mon) where M is a matrix with

(
n+d−1
n−1

)
columns

and coefficients in K and mon is the list of the
(
n+d−1
n−1

)

monomials of degree d of A, in decreasing order according
to ≥ . If mon is not ordered, (M,mon) is only called a
labeled matrix.

The algorithm 1 computes tropical row-echelon form of
Macaulay matrices.

Algorithm 1: The tropical row-echelon algorithm

input : M , a Macaulay matrix of degree d in
A = K[X1, . . . , Xn], with nrow rows and
ncol columns.

output: M̃ , the tropical row-echelon form of M

begin

M̃ ←M ;
if ncol = 1 or nrow = 0 or M has no non-zero
entry then

Return M̃ ;
else

Find i, j such that M̃i,j has the greatest term

M̃i,jx
monj ;

Swap the columns 1 and j of M̃ , and the 1
and j entries of mon;

Swap the rows 1 and i of M̃ ;
By pivoting with the first row, eliminates the
coefficients of the other rows on the first
column;
Proceed recursively on the submatrix

M̃i≥2,j≥2;

Return M̃ ;

Definition 6. We define the tropical row-echelon form of a
Macaulay matrix M as the result of the previous algorithm,

and denote it by M̃. M̃ is indeed under row-echelon form.



Correctness

We prove here that ˜Macd(f1, . . . , fi) provides what we ex-
pect for matrix algorithms :

Proposition 3.3. Let M = Macd(f1, . . . , fs) be the Macaulay
matrix of degree d in A defined by the homogeneous polyno-
mials f1, . . . , fs. Let I =< f1, . . . , fs > be the ideal gener-
ated by the fi.

Let M̃ be the tropical row-echelon form of M . Then the

rows of M̃ form a basis of I ∩ Ad, whose initial terms cor-
responds to the initial terms of the polynomials of I ∩Ad.

Proof. The fact that the rows of M̃ form a basis of I∩Ad

is clear : it forms an echelonized basis (considering the basis
mon of Ad).

Considering the initial terms of I ∩ Ad, we begin by the
following lemma :

Lemma 3.4. if axα > b1x
β and axα > b2x

β, then axα >
(b1 + b2)x

β.

Proof. Since val(b1 + b2) ≥ min(val(b1), val(b2)), this
result is clear.

As a consequence, if piv is the pivot coefficient on the first
column, then for any 1 ≤ i ≤ nrow, for any 2 ≤ j ≤ ncol,

piv · xmon(1) ≥ M̃i,j · x
mon(j).

The only fact to prove now is that for any f ∈ I ∩Ad, the
initial monomial of f is the initial monomial of one of the

rows of M̃ .
Since the rows of M̃ generates I ∩ Ad, then we can write

f = a1L1 + · · ·+ alLl with the ai ∈ K. We can assume that
the Li are non-zero rows.

With the previous remark about M̃ , the lemma, and tran-
sitivity, it is clear that the initial term of a1L1+a2L2 is either

a1M̃1,1x
d1 or (a2M̃2,2 + a1M̃1,2)x

d2 . The general result for
a1L1 + · · ·+ alLl can then be easily inductively derived.

Therefore, we can find all the polynomials of a tropical D-
Gröbner basis of < f1, . . . , fs > by computing the tropical
row-echelon forms of the Maci(f1, . . . , fs) for i from 1 to d.

3.3 The F5 criterion
Faugère proved in [6] that with classical monomial order-

ings, if we know which monomials xα are in LM(Ii−1), we
are able to discard corresponding rows xαfi of the Macaulay
matrices. We prove here that his criterion is compatible with
tropical initial ideals :

Theorem 3.5 (F5-criterion). Let (f1, . . . , fi) be ho-
mogeneous polynomials of K[X1, . . . , Xn] of degree d1, . . . , di.
Let aα1

xα1 , . . . , aαux
αu be the initial terms of the rows of

˜Macd−di(f1, . . . , fi−1), ordered by decreasing order (regard-
ing the initial term). Let xβj denote the remaining mono-
mials of degree d − di (i.e. the monomials that are not an
initial monomial of (f1, . . . fi−1) ∩ Ad−di). Then, the row
xαkfi of Macd(f1, . . . , fi) is a linear combination of the rows
of the form xαk+k′ fi (k′ > 0), xβjfi or xγfj (j < i) of
Macd(f1, . . . , fi).

Proof. Since aαux
αu is the initial term of the last non-

zero row operated during the computation of ˜Macd−di(f1, . . . , fi−1),

we can write aαux
αu +

∑v

j=1 bjx
βj =

∑i−1
j=1 cjfj for some

v ∈ N, βj monomials of degree d − di, bj ∈ K and cj ∈
K[X1, . . . , Xn], with bjx

βj < aαux
αu .

Thus, aαux
αufi = −

∑v

j=1 bjx
βjfi +

∑i−1
j=1(cjfi)fj , and

the row xαufi is indeed a linear combination of the rows of
the form xβkfi or x

γfj (j < i) of Macd(f1, . . . , fi).
In the same way, we can write aαu−1

xαu−1 + a′
αu

xαu +∑v

j=1 bjx
βj =

∑i−1
j=1 cjfj as aαu−1

xαu−1 is the initial term of
the second to last non-zero row computed when dealing with

˜Macd−di(f1, . . . , fi−1), thus aαu−1
xαu−1fi = −a′

αu
xαufi −∑v

j=1 bjfix
βj +

∑i−1
j=1(ficj)fj . The result shall therefore be

proven inductively.

Corollary 3.6. As a consequence,

Ii∩Ad = V ect ({xαfk, s.t. 1 ≤ k ≤ i, |xαfk| = d and xα /∈ LM(Ik−1)

Thus, it is now clear which rows we can remove with the
F5 criterion. The following subsection will provide an effec-
tive way of taking advantage of this criterion.

3.4 A matrix-F5 algorithm

The tropical F5M algorithm

We apply Faugère’s idea to the tropical setting and therefore
provide a tropical F5 algorithm :

Algorithm 2: A tropical F5 algorithm

input : F = (f1, . . . , fs) ∈ As, with respective
degrees d1, . . . , ds, and D ∈ N

output: (g1, . . . , gk) ∈ Ak, a Gröbner basis of
Id(F ), if D is large enough.

begin

G← F
for d ∈ J0, DK do

M̃d,0 := ∅
for i ∈ J1, sK do

Md,i := M̃d,i−1

for α such that |α|+ di = d do
if xα is not the leading term of a row

of ˜Md−di,i−1 then

Add xαfi to Md,i

Compute M̃d,i, the tropical row-echelon
form of Md,i

Add to G all the rows with a new leading
monomial.

Return G

Correctness

What we have to show is that for any d ∈ J0, DK and i ∈
J1, sK, Im(Md,i) = Ii ∩ Ad.

This can be proved by induction on d and i.
We shall remark that there is nothing to prove for i = 1

and any d.
Now let us assume that there exists some i ∈∈ J1, sK such

that for any j with 1 ≤ j < i and for any d, 0 ≥ d ≥ D,
Im(Md,i) = Ii ∩ Ad.

Then, for i, the first d such that Md,i 6= Md,i−1 is di.
Let d be such that di ≤ d ≤ D.



Then, with the induction hypothesis and corollary 3.6 :

Ii∩Ad = Im(Md,i−1)+V ect ({xαfi, s.t. xα /∈ LM(Ii−1)}) .
(1)

Besides, by the induction hypothesis and the correctness
of the row-echelon algorithm (see proposition 3.3), the lead-
ing terms of Ii−1 ∩ Ad−di are exactly the leading terms of

rows of ˜Md−di,i−1. Thus, the rows that we add to M̃d,i−1

in order to build Md,i are exactly the xαfi, such that xα /∈
LM(Ii−1).

Finally, we remark that Im(Md,i−1) = Im(M̃d,i). There-
fore, Im(Md,i) contains both the summands of (1), and
since it is clearly included in Ii ∩ Ad, we have proved that
Ii ∩ Ad = Im(Md,i).

To conclude the correctness of the tropical F5M algorithm,
we point out that the correctness of the tropical row-echelon
computation (see prop 3.3) show that the leading terms of

rows of M̃d,i do indeed corresponds to the leading terms of
Ii ∩ Ad.

3.5 Regular sequences and complexity

Principal syzygies and regularity

The behavior of this algorithm with respect to principal
syzygies is the same as the classical F5 algorithm to compute
Gröbner bases. See [1] for a precise description of the link
between syzygies and row-reduction. We shall instead only
prove the main result linking principal syzygies and tropical
row-reduction of Macaulay matrices.

Proposition 3.7. If a row reduces to zero during the trop-
ical row-echelon form computation of the tropical F5 algo-
rithm, then the sizygy it yields is not in the module of prin-
cipal syzygies.

Proof. We use the concept of label and signature of def-
initions 9 and 10 in section 5.

If a row L reduces to zero during the tropical row-echelon
form computation of Md,i such that the sizygy it yields is in
the module of principal syzygies, then, the label of this row
is of the form (a1, . . . , ai) and without loss of generality, we
might assume ai 6= 0.

Then, by definition of the module of principal syzygies,
ai ∈ (f1, . . . , fi−1), therefore, the signature of L is xα, an
initial monomial of (f1, . . . , fi−1)∩Ad−di , and so, of the rows

of ˜Md−di,i−1. Yet, there is no row in Md,i with a monomial
xα on the i − th component of its label that is the initial
term of a row of Md−di,i−1, because of the F5 criterion in
the building of the matrix. Therefore, no linear combination
of rows of Md(f1, . . . , fi) can yield a row of with such a label.
Thus, no row of Md(f1, . . . , fi) can reduce into a principal
syzygy.

Corollary 3.8. If the sequence (f1, . . . , fs) is regular,
then no row of a Macaulay matrix in the tropical F5M al-
gorithm reduces to zero. In other words, the Md,i are all
injective, and have less rows than columns.

Proof. For a regular sequence of homogeneous polyno-
mials, all syzygies are principal. See [5] page 69 for more
about this.

Complexity

Complexity has exactly the same behavior as in the classical
case, for which we refer to [2] :

• O
(
s2D

(
n+D−1

D

)3)
operations in K, as D → +∞.

• O
(
sD

(
n+D−1

D

)3)
operations in K, as D → +∞, in

the special case where (f1, . . . fs) is regular, because of
corollary 3.8.

4. THE CASE OF FINITE-PRECISION CDVF

4.1 Setting
Throughout this section, K is a complete discrete valua-

tion field, whose valuation is also denoted by val : K∗ → R+.
We refer to Serre [10] for an introduction to such fields. We
denote by R = OK its ring of integers, mK its maximal
ideal and k = OK/mK its fraction field. Let π ∈ R be a
uniformizer for K and let SK ⊂ R be a system of represen-
tatives of k = OK/mK .

All numbers of K can be written uniquely under its π-adic
power series development form :

∑
k≥l

akπ
l for some l ∈ Z,

ak ∈ SK .
We assume that K is not an exact field, but k is, and

symbolic computation can only be performed on truncation
of π-adic power series development. We shall denote by
finite-precision CDVF such a field. An example of such a
CDVF is K = Qp, with p-adic valuation.

We are interested in the computation of tropical Gröbner
bases over finite-precision CDVF. We first study when does
the leading monomial of a polynomial known only up to
finite-precision is well-defined, and which row-echelon form
computation can be performed when the precision is finite.

4.2 Precision issues
Indeed, if the precision on f ∈ A is not enough, then

one can not determine what the leading term of f is. For
example, on Qp[X1, X2], with w = (0, 4) and lexicographical
order, then one can not compare O(p2) ∗X1 and X2.

Yet, if the precision is enough, such an issue should not
occur when computing tropical row-echelon form. The fol-
lowing proposition provides a bound on the precision needed
on f to determine its leading term.

Proposition 4.1. Let f ∈ A be an homogeneous polyno-
mial, and let aXα be its leading term.

Then the precision needed on f for its leading term to be
well-defined is val(a) + max|β|=d ((α− β) · w). The leading
monomials according to ≥w are then also well-defined.

Proof. We only have to remark that O(pn)Xβ < aXα if
and only if n > val(a) + (α− β) · w.

4.3 Row-echelon form computation

Regular sequences

As usual when dealing with finite-precision coefficients, one
can not decide whether a coefficient O(πk) is zero or not.
Fortunately, thanks to corollary 3.8, when the input poly-
nomials form a regular sequence, all matrices in the tropical
F5M algorithm are injective. It means that if the precision
is enough, the tropical row-echelon form computation per-
formed over these matrices will have no issue with finding
pivots and deciding what the leading terms of the rows are.

We estimate which precision is ”enough” in order to be
able to compute D-Gröbner bases of such a sequence.



A sufficient precision

Proposition 4.2. Let M be an injective tropical Macaulay
matrix, of degree d. Let a1, . . . , au be the pivots chosen dur-
ing the computation of its tropical row-echelon form. Let
xαk be the corresponding monomials. Let prec be :

prec =
∑

k

val(ak) + max
k

val(ak) + max
k,|β|=d

(αk − β) · w.

Then, if the rows are known up to flat precision O(πprec),
the tropical row-echelon form computation of M can be com-
puted.

Proof. We begin with a matrixM with coefficients known
with finite flat precision O(πl), and we first assume that
there is no issue with finding the pivots. Thus, we shall first
understand what the loss in precision is when we pivot.

That is, we wish to put a “real zero” on the coefficient
Mi,j = επn1 +O(πn), by pivoting with a pivot piv = µπn0 +
O(πn) on row L, with n0, n1 < n be integers, and ε =∑n−n1−1

j=0 ajπ
j , µ =

∑n−n0−1
j=0 bjπ

j , with aj , bj ∈ SK , and
a0, b0 6= 0. We remark that by definition of the pivot, neces-
sarily, n0 ≤ n1.

Now, this can be performed by the following operation on
the i-th row Li :

Li ← Li −
Mi,j

piv
L = Li + (εµ−1πn1−n0 +O(πn−n0))L,

along with the symbolic operation Mi,j ← 0.

Indeed,
Mi,j

piv
= επn1+O(πm1)

µπn0+O(πm0)
, therefore

Mi,j

piv
= εµ−1πn1−n0+

O(πn−n0 ).
As a consequence, after the first pivot is chosen and other

coefficient of the first column have been reduced to zero,

the coefficients of the submatrix M̃i≥2,j≥2 are known up to

O(πl−val(a1)).
We can then proceed inductively to prove that after the

termination of the tropical row-echelon form computation,

coefficients of M̃ are known up to O(πl−val(a1,...,au)).
Now, since we have to be able to determine what the

leading terms of the rows are in order to determine what
the pivots are, then, with proposition 4.1, it is enough that
l − val(a1, . . . , au) is bigger than maxk,|β|=d (α− β) · w.

Hence, the result is proved.

4.4 Tropical F5M algorithm
We apply this study of the row-echelon computation to

prove proposition 1.2 concerning the tropical Matrix-F5 al-
gorithm over CDVF. To facilitate this investigation, and

only for section 4, the step Md,i := M̃d,i−1 in algorithm 2
is replaced with Md,i := Md,i−1. We first define bounds on
the initial precision and loss in precision. Let (f1, . . . , fs) ∈
K[X1, . . . , Xn]

s be a regular sequence of homogeneous poly-
nomials.

Definition 7. Let d ≥ 1 and 1 ≤ i ≤ s. Let xα1 , . . . , xαu

be the monomials of the leading terms of 〈f1, . . . , fi〉 ∩ Ad.
Let ∆d,i be the minor over the columns corresponding to

the xαl with smallest valuation. Let

✷d,i = 2∆i + max
k,|β|=d

(αk − β) · w.

We define precF5trop({f1, . . . , fs} , D,≥) = maxd≤D,i ✷d,i,
and lossF5trop({f1, . . . , fs} , D,≥) = maxd≤D,i ∆d,i.

As a consequence of proposition 4.2, these bounds are
enough for proposition 1.2.

Furthermore, we can precise the special case of w = 0 :

Proposition 4.3. If w = 0, then the loss in precision
corresponds to the maximal minors of the Md,i with the
smallest valuation. In particular, w = 0 corresponds to the
smallest lossF5trop.

4.5 Precision versus time-complexity
We might remark that if one want to achieve a smaller

loss in precision, one might want to drop the F5 criterion
and use the tropical row-reduction algorithm on the whole
Macaulay matrices until enough linearly-free rows are found.
The required number of rows can be computed thanks to
the F5-criterion and corollary 3.6 if Macaulay matrices are
operated iteratively in d and i.

This way, one would be assured that its pivots will yield
the smallest loss of precision possible over Macd(f1, . . . , fs).
Yet, such an algorithm would be more time-consuming, be-

ing in O
(
s2D

(
n+D−1

D

)3)
instead of O

(
sD

(
n+D−1

D

)3)
.

4.6 Comparison with classical Gröbner bases
We compare here the results over finite-precision CDVF

for computation of tropical Gröbner bases and for computa-
tion of classical Gröbner bases, as it was performed in [12].

We recall the main result of [12] :

Definition 8. Let (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s be homo-

geneous polynomials. Let Md,i be the Macaulay matrix in
degree d for (f1, . . . , fi), without the rows discarded by the
F5-criterion. Let ld,i be the maximum of the l ∈ Z≥0 such
that the l-first columns of Md,i are linearly free. We define

∆d,i = min (val ({minor over the ld,i-first columns of Md,i})) .

We define theMatrix-F5 precision of (f1, . . . , fs) regarding
to w and D as :

precMF5({f1, . . . , fs} , D,w) = max
d≤D, 1≤i≤s

val (∆d,i) .

Then, precMF5({f1, . . . , fs} , D,w) is enough to compute
approximate D-Gröbner bases :

Theorem 4.4. Let (f ′
1, . . . , f

′
s) be approximations of the

homogeneous polynomials (f1, . . . , fs) ∈ K[X1, . . . , Xn]
s, with

precision better than precMF5 = precMF5({f1, . . . , fs} , D, w).
We assume that (f1, . . . , fs) is a regular sequence (H1) and
all the 〈f1, . . . , fi〉 are weakly-w-ideals (H2). Then, the weak
Matrix-F5 algorithm computes an approximate D-Gröbner
basis of (f ′

1, . . . , f
′
s), with loss in precision upper-bounded by

precMF5. The complexity is in O
(
sD

(
n+D−1

D

)3)
operations

in K, as D → +∞.

We remark that for tropical Gröbner bases, the structure
hypothesis H2 is compensated by the precision requirement
for the tropical row-echelon computation : maxk val(ak) +
maxk,|β|=d (αk − β) ·w. There is no position problem for the
leading terms when a tropical Gröbner basis is computed,
as long as the precision is enough. This leads to a suffi-
cient precision precF5trop({f1, . . . , fs} , D,≥) that might be
bigger than precMF5.

Yet, for tropical Gröbner bases, the only structure hy-
pothesis is H1, and is clearly generic, whereas for classical



Gröbner bases, H1 and H2 might be generic only for the
grevlex ordering, if Moreno-Socias’ conjecture holds.

Therefore, tropical Gröbner bases computation may re-
quire a bigger precision on the input than classical Gröbner
bases, but it can be performed generically, while it is not
clear for classical Gröbner bases.

5. A FASTER TROPICAL F5M ALGORITHM
In this section, we see that one can perform a signature-

based tropical Matrix-F5 algorithm where the fact that M̃d,i

is under echelon form is used to build a Md,i closer to its
echelon-form.

To that intent, we introduce labels and signatures for poly-
nomials, and a tropical LUP form computation. They allow
us to adapt the classical signature-based Matrix-F5 algo-
rithm (see [1]).

5.1 Label and signature

Definition 9. Given (f1, . . . , fs) ∈ As, a labeled polyno-
mial is a couple (u, p) with u = (l1, . . . , ls) ∈ As, p ∈ A and∑s

i=1 lifi = p.
u is called the label of the labeled polynomial. We write

(e1, . . . , es) to be the canonical basis of As.
If u = (l1, . . . , li, 0, . . . , 0) with li 6= 0, then the signa-

ture of the labeled polynomial (u, p) is (HM(li), i), with the
following definition : HM(li) is the highest monomial, re-
garding to ≤, that appears in li with a non-zero coefficient.

Remark 2. We must point out that in the definition of the
signature, we do not take into account the valuations of the
coefficients in the label, hence the HM(li) instead of LT (li)
or LM(li). HM(li) is not, in general, the monomial of the
leading term of li.

Signatures can be compared :

Definition 10. We define a total order on the set {monomials in R}×
{1, . . . , s} of the signatures with the following definition :
(xα, i) ≤ (xβ, k) if i < k, or xα ≤ xβ and i = k.

We shall also remark some compatibility of signatures
with operations over labeled polynomials :

Proposition 5.1. Let (u, p) be a labeled polynomial, and
let xα be a monomial in A. Then

sign((xαu, xαp)) = xαsign((u, p)).

If (v, q) is another labeled polynomial such that sign((v, q)) <
sign((u, p)), and if µ ∈ K, then sign((u + µv, p + µq)) =
sign((u, p)).

5.2 Signature-preserving LUP form computa-
tion

From now on throughout this subsection, an additional
datum will be attached to the rows of the Macaulay matrices
: its label and signature. We make the further assumption
that the rows are ordered with increasing signature. Such
a matrix will be called a labeled Macaulay matrix. When
adding a row, both its label and its signature will be noted,
and all the operations on the rows shall be carried on to the
labels of these rows.

Algorithm 3: The tropical LUP algorithm

input : M , a labeled Macaulay matrix of degree d
in A = K[X1, . . . , Xn], with nrow rows and
ncol columns.

output: M̃ , the tropical LUP form of M

begin

M̃ ←M ;
if ncol = 1 or nrow = 0 or M has no non-zero
entry then

Return M̃ ;
else

for i = 1 to nrow do

Find j such that M̃i,j has the greatest

term M̃i,jx
monj over the row;

Swap the columns 1 and j of M̃ , and the
1 and j entries of mon;
By pivoting with the first row, eliminates
the coefficients of the other rows on the
first column;
Proceed recursively on the submatrix

M̃i≥2,j≥2;

Return M̃ ;

The algorithm

We provide a tropical LUP algorithm for labeled Macaulay
matrices.

We remark :

• At the end of the algorithm, there exist a unipotent
lower-triangular matrix L, a permutation matrix P ,

such that M̃ = LMP.

• Moreover, M̃ is under row-echelon form up to permu-
tation.

• Since we only add to a row L a linear combination
of rows that are above L, those rows have a strictly
lower signature than L, and therefore the operations
performed on the rows (and on the columns) preserve
the signature.

Furthermore,

Proposition 5.2. For any 1 ≤ i ≤ nrow(M), if j is the

index of the i-th row of M̃ , then M̃i,jx
monj is the leading

term of the polynomial corresponding to this row.

Those remarks justify the name of tropical LUP algo-
rithm, and the facts that this algorithm computes the lead-
ing terms of V ect(rows(M)).

Finally, since signature remains unchanged throughout
the tropical LUP reduction, we can omit the labels and only
handle Macaulay matrices on which the signatures of the
rows are marked.

5.3 A signature-based tropical F5M algorithm

The signature-based F5 criterion

Proposition 5.3. Let (u, f) be a labeled homogeneous poly-
nomial of degree d, such that sign(u) = xαei, with 1 < i ≤ s



and xα ∈ Ii−1. Then,

xα ∈ V ect
({

xβfk, |x
βfk| = d, k < i, or i = k and xβ < xα

})
.

As a consequence, if (u, f) is a labeled homogeneous poly-
nomial of degree d with sign(u) = xαei and xα /∈ LM(Ii−1).
Then f can be written f = xαfi + g, with

g ∈ V ect
({

xβfk, |x
βfk| = d, k < i, or i = k and xβ < xα

})
,

i.e., g is a linear combination of xβfk such that xβek < xαei.

A faster tropical Matrix-F5 algorithm

Algorithm 4: The tropical signature-based Matrix-
F5 algorithm

input : F = (f1, . . . , fs) ∈ As, with respective
degrees d1, . . . , ds, and D ∈ N

output: (g1, . . . , gk) ∈ Ak, a D-tropical Gröbner
basis of Id(F ), if D is large enough.

begin

G← F
for d ∈ J0, DK do

M̃d,0 := ∅
for i ∈ J1, sK do

Md,i := M̃d,i−1

for L a row of M̃d−1,i do

for x ∈ {X1, . . . , Xn} do
xαek := sign(xL)
if k = i, xα is not the leading

term of a row of ˜Md−di,i−1, and
Md,i has not already a row with
signature xαei then

Add xL to Md,i.

Compute M̃d,i, the tropical LUP form of
Md,i.
Add to G all the rows with a new leading
monomial.

Return G

Correctness

Proposition 5.4. This algorithm indeed compute a trop-
ical D-Gröbner basis.

Proof. The first thing to prove is that with the building
of the Macaulay matrices suggested in the algorithm, the
two following properties are satisfied : Im(Md,i) = Ii ∩ Ad

and for any monomial xα of degree d − di such that xα /∈
LM(Ii−1), Md,i has a row with signature xαei.

This can be proved by induction on d and i.
If i = 1, the result is clear, for any d. Now, we may assume

that this result is true for i− 1 ∈ Z≥0.
The first d for which Md,i 6= Md,i−1 is di, where the result

is also clear.
Let us assume that our inclusions are true for some d ≥ di.
Let xα be a monomial of degree d − di such that xα /∈

LM(Ii−1). If d − di = 0, there is nothing to prove. Other-
wise, let xβ be a monomial of degree d− di− 1 such that xβ

divides xα. Then, necessarily, xβ /∈ LM(Ii−1), and by the
induction hypothesis, Md−1,i has a row of signature xβ.

The tropical LUP algorithm preserves the signature, there-

fore, M̃d−1,i also has a row with signature xβ. The building

of Md,i from M̃d−1,i will thus provide a row with signature
xα for Md,i.

Now, let Md,i be the Macaulay matrix whose rows are
xαfk, with k ≤ i, xα /∈ LM(Ii−1), ordered as in definition
3. By corollary 3.6, Im(Md,i) = Ii ∩ Ad.

Then, with the second F5 criterion, proposition 5.3, and
the definition of tropical LUP reduction, there exist some
permutation matrix P and some lower-triangular, unipotent,
matrix L such that Md,i = LMd,iP.

It is therefore clear that Im(Md,i) = Ii ∩ Ad, which ter-
minates the proof by induction.

Now, since the tropical LUP reduction indeed computes
an echelon-basis of the Md,i, as in the previous tropical F5M
algorithm, one can directly prove that the signature-based
tropical F5M algorithm computes a tropical D-Gröbner ba-
sis.

Complexity

Asymptotically, the complexity to compute a tropical D-
Gröbner basis of (f1, . . . , fs) is the same as the previous

tropical F5M algorithm, that is to say, O
(
s2D

(
n+D−1

D

)3)

operations in K, as D → +∞. Yet, the, quadratic, step
where one look for a pivot is replaced by finding the lead-
ing term of a row, which is linear (in the size of the ma-

trix). Moreover, We use M̃d−1,i, which is already under
row-echelon form, to build Md,i. Thus, Md,i, is ”closer” to
be under row-echelon form, and the row-reduction is easier.

6. IMPLEMENTATION
A toy implementation in Sage [11] of the previous algo-

rithm is available at http://perso.univ-rennes1.fr/tristan.vaccon
The purpose of this implementation was the study of the

precision. It is therefore not optimized regarding to time-
complexity.

We have experimented the tropical Matrix-F5 algorithm
with homogeneous polynomials with varying degrees and
random coefficients in Zp : f1, . . . , fs, of degree d1, . . . , ds
in Qp[X1, . . . , Xs], known up to initial precision 30, with a
given weight w and the grevlex ordering to break the ties.
We present the results in the following array :

d = w D p iterations maximal loss mean loss

[3,4,7] [1,-3,2] 12 2 20 17 .81
[3,4,7] [0,0,0] 12 2 20 0 0
[3,4,7] [1,-3,2] 12 7 20 1 .01
[2,3,4,5] [1,4,1,1] 11 2 2 2 .3
[2,3,4,5] [0,0,0] 11 2 1 0 0
[2,3,4,5] [1,4,1,1] 11 7 2 0 0
[2,4,5,6] [1,4,1,1] 14 2 2 19 6.13

We emphasize that the precision was enough on every at-
tempt.

We remark that these results suggest that the loss in preci-
sion is less whean working with bigger primes. It seems rea-
sonnable since the loss in precision comes from pivots with
positive valuation, wheras the probability that val(x) = 0
for x ∈ Zp is p−1

p
. Those results also corroborate the facts

that w = [0, . . . , 0] lead to significantly smaller loss in preci-
sion.

http://perso.univ-rennes1.fr/tristan.vaccon/toy_F5.py


7. FUTURE WORKS
Since both the Buchberger algorithm and the signature-

based Matrix-F5 algorithm are available, it is reasonnable
to consider a tropical F5-algorithm. We conjecture that
Faugère’s algorithm applied in a tropical setting will com-
putes tropical Gröbner bases. We might have to use signa-
tures as in section 5 and adapt the TopReduction of [6].

With the numerical stability of proposition 1.2, one might
want to study which computations with tropical Gröbner
bases can be performed under a finite-precision setting. One
could be interested in investigating the computation of the
degree of an ideal or the elimination by using block-order.
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