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Theory of Talbot lasers

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin and O. Hugon∗

CNRS/Univ. Grenoble 1, Laboratoire Interdisciplinaire de Physique, UMR 5588, Grenoble, F-38041, France
(Dated: June 4, 2013)

We provide a theoretical study of frequency shifted feedback (FSF) lasers - i.e. lasers with an
internal frequency shifter- seeded with a monochromatic wave. The resulting spectrum consists in
a set of equidistant modes -labeled by n- whose phases vary quadratically with n. We prove the
emergence of a temporal fractional Talbot effect, leading to generation of Fourier transform-limited
pulses at a repetition rate tunable by the parameters of the FSF cavity (cavity length and frequency
shift per roundtrip), and limited by the spectral bandwidth of the laser. We characterize in detail
the output field of this so-called ”Talbot laser”, and emphasize its specific intensity fluctuations.
We evidence connections with some aspects of number theory by the appearance of Gauss sums
and theta series in the expression of the laser field. Our predictions are in full agreement with the
experimental results published in Guillet de Chatellus et al., Opt. Exp. (2013), in press. Practical
applications and limitations are discussed.

PACS numbers: 42.25.Fx, 42.30.Kq, 42.60.Fc,

Diffraction is a fundamental concept in optics. In the
far field of a grating shined with a monochromatic wave,
the waves diffracted by the slits can be considered as
plane waves with constant relative phase-shifts. When
the latter is a multiple of 2π, constructive interferences
occur and the light intensity is maximum. In the near
field however, things are more subtle and inferring the
diffracted pattern requires to consider the spherical na-
ture of the waves diffracted by the slits. Talbot reported
in 1836 a rich variety of phenomena in the vicinity of
the grating: the repetition of the image of the diffrac-
tion grating at distances multiples of the so-called Tal-
bot length, and most important for our point, the ap-
pearance at fractional distances of the Talbot length,
of light fringes with a spatial frequency equal to (pos-
sibly large) multiples of the fundamental frequency of
the grating [1, 2]. The Talbot effect was later simply
explained by the interference of waves in the paraxial ap-
proximation, i.e. showing quadratic phases [3, 4]. Similar
behaviors are also encountered in wave packets revivals
in quantum systems [5–8]: when the energy levels En

of the eigenmodes of a quantum system have a small
quadratic (or higher order) dependence with n, the dy-
namics of the system exhibits both periodic revivals of
the whole wavepacket and fractional revivals, that is the
appearance of multiple mini-wavepackets or clones. This
phenomenon, like the Talbot effect, is a particular illus-
tration of sums with quadratic phase-shifts and connect
to the mathematical properties of Gauss sums or Jacobi
theta sums [9–11]. Note that the interest for physical sys-
tems showing quadratic phase shifts have recently been
boosted by the demonstration of physical protocols for
factoring large numbers [12–17].

It is interesting to reconsider the equivalent of the frac-
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tional Talbot effect in the time domain. A frequency
comb of modelocked optical modes is the temporal equiv-
alent of a grating of slits in the far field: construc-
tive interferences occur periodically with time, generating
pulses at a repetition rate equal to the mode spacing of
the comb. Then in the time domain the fractional Tal-
bot effect corresponds to pulsing at (possibly high) mul-
tiples of the mode spacing (fig. 1) and constitutes there-
fore an exciting and promising challenge: applications
of ultrahigh repetition rate lasers concern the generation
of THz waves, transfer of clock signals between remote
users, optical sampling, optical cadencers for analog-to-
digital converters and ultrafast optical digital communi-
cations [18] as well as spectroscopy of metallic nanopar-
ticles [19, 20]. By analogy to the space domain, the
demonstration of a laser showing fractional Talbot ef-
fect requires a comb of modes -that is monochromatic
waves with a constant frequency spacing- with quadratic
phases. A first solution has been provided by engineering
the dispersion undergone by a modelocked laser in a spe-
cially designed Bragg gratings, so as to induce quadratic
phases to the modes of the comb [21, 22]. This technique
has been successfully applied and lead to multiplication
of the repetition rate by a factor up to 10 [23]. However
it is technically challenging to increase further the repe-
tition rate and moreover the dispersion is fixed and the
repetition rate is not easily tunable.

Interestingly a solution is brought naturally by a
frequency shifted feedback (FSF) laser seeded with a
monochromatic wave [24, 25]. A FSF laser is a cavity
closed on the first diffraction order of an acousto-optics
frequency-shifter (AOFS): each time a photon makes a
roundtrip in the cavity, it undergoes a constant frequency
shift. Typical diffraction efficiencies of AOFSs reach 90
%. The intracavity field consists therefore in a frequency
comb, with a mode spacing equal to the frequency shift
per roundtrip. However contrary to mode-locked fre-
quency combs where all modes share the same (or a lin-
ear) phase, the phases of the modes of the FSF laser
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FIG. 1: Temporal fractional Talbot effect by the interference
of monochromatic waves with a constant frequency spacing
fs. a): when the waves have constant (or linear) phases,
pulses are generated at repetition rate fs. b): when the waves
have quadratic phases the repetition rate is multiplied by an
integer, depending on the curvature of the parabola.

are quadratic. However this property has been somehow
unexploited: most research on seeded FSF laser has fo-
cussed so far on the spectral characteristics of this source
to realize optical synthesizers and frequency combs [26–
29].

More precisely regarding the temporal properties of
the light emitted by seeded FSF lasers, early work on
both passive and active FSF cavities reported the pos-
sibility to generate modelocked frequency combs when
the frequency shift is a multiple of the cavity free spec-
tral range [24, 30]. A more recent theoretical work has
shown numerically the possibility of increasing the repe-
tition rate by adjusting the frequency shift and the cavity
free spectral range as the ratio of two integers [31]. Very
recently, our team provided an experimental demonstra-
tion of this concept by injecting a dye FSF cavity with a
dye single mode seed laser: the generation of 6 ps Fourier
transform-limited pulses was demonstrated with repeti-
tion rates tunable by steps of 80 MHz between 0.24 and
36.6 GHz, that is over two orders of magnitude [32]. Here
we explain this result in depth by providing an extensive
description of the fractional Talbot effect in CW-seeded
FSF lasers [3]. In the first part of the manuscript we in-
troduce a simple model of a CW-seeded FSF laser. Then
we consider the case where the optical spectrum of the
CW-seeded FSF laser consists in a set of N optical modes
with the same amplitude showing a constant frequency
spacing and quadratic phases. We derive an expression of
the resulting electric field and intensity and show that,
depending on the curvature of the parabolic phases, it
is possible to generate a temporal fractional Talbot ef-
fect, i.e. the generation of Fourier transform limited
pulses with a tunable repetition rate. We characterize
the pulses and the intensity fluctuations with respect to
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FIG. 2: Left: generic sketch of a CW-seeded FSF laser. The
seed is injected in the cavity through the zero diffraction (i.e.
undiffracted) order of the AOFS. The output field is extracted
the same way. Right: resulting spectrum.

the curvature of the parabolic phases and show the emer-
gence of self-similarity when the number of modes is in-
creased. Our calculations are closely related to properties
of Gauss sums in number theory and theoretical aspects
of spatial Talbot effect. In the third part we consider a
more realistic description of the CW-seeded FSF laser by
taking into account the spectral shape arising from the
gain et losses of the cavity and we derive generic expres-
sions for the output intensity and its fluctuations. Finally
we discuss possible extensions of this work for generat-
ing ultra-stable ultrahigh repetition rates in broadband
CW-seeded FSF lasers and underline the fundamental
limitations and the related technical requirements.

I. THE CW INJECTION-SEEDED FSF LASER

We consider a FSF cavity characterized by the
roundtrip time τc = 1/fc = 2π/ωc and the frequency
shift per roundtrip fs = ωs/2π (fig. 2).

The cavity is injected continuously by the seeding field
E0e

−iω0(t+τc). (The choice of the phase is made arbi-
trarily to simplify the following expressions.) At each
roundtrip in the cavity the angular frequency is shifted
by ωs. A leak of the AOFS on the zero order enables
to extract a fraction of the intracavity field. The output
spectrum consists in a comb of optical modes separated
by the frequency fs. The angular frequency of the mode
n (i.e. after n roundtrips) is ω0 + nωs.

We define η as the diffraction efficiency in amplitude of
the AOFS and neglect the dependence of η with the fre-
quency. We consider the dependence of the gain medium
in the cavity with the frequency by defining h(n) as the
single-pass gain in the laser medium of a optical mode at
angular frequency ω0 + nωs. The resulting field at the
output of the AOFS is therefore:
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E(t) = E0(1 − η)2h(0)e−iω0t

+ E0η(1 − η)2h(0)h(1)e−i(ω0+ωs)teiφ1

+ E0η
2(1 − η)2h(0)h(1)h(2)e−i(ω0+2ωs)teiφ2

+ E0η
3(1 − η)2h(0)h(1)h(2)h(3)e−i(ω0+3ωs)teiφ3

+ ... (1)

with φ1 = (ω0+ωs)τc, φ2 = φ1+(ω0+2ωs)τc, φ3 = φ2+
(ω0 + 3ωs)τc... Therefore φn = nω0τc + n(n + 1)ωsτc/2.

We define g(n) = ηn(1− η)2Πn
k=0h(k). g can therefore

be seen as the envelope of the optical spectrum of the
laser resulting from the successive gain and losses of the
FSF cavity (fig. 2). We set g(n) = 0 when n < 0 and
n > N , the cutoff limit of g.

The expression of the electric field at the output of the
FSF laser seeded by a monochromatic wave is:

E(t) = E0e
−iω0t

∑

n

g(n)e−inωsteinω0τcei
n(n+1)

2 φ (2)

where φ = ωsτc = 2πfs/fc. Note the quadratic depen-
dence of the phases of the modes [24, 31].

II. INTERFERENCE OF N OPTICAL MODES

OF CONSTANT AMPLITUDE WITH

QUADRATIC PHASES

In this section, we treat the ideal case where the laser
output consists in a set on N modes with identical ampli-
tude. This calculation is closely related to [3] and leads
to interesting connections to number theory.

Setting g as a top-hat function of width N and ampli-
tude unity, the electric field has the following expression:

E(t) = E0e
−iω0t

N−1
∑

n=0

e−inωsteinω0τcei
n(n+1)

2 φ (3)

where φ = ωsτc = 2πfs/fc. Here E(t) appears
as a Fourier series with terms of equal amplitude and
quadratic phases. Since ω0 is orders of magnitude larger
than ωs, we consider the frame rotating at ω0 where
we study the envelope of electric field. Writing θ =
ωst−ω0τc, the electric field of the FSF laser is described
by the 2π-periodic function:

F (θ) =

N−1
∑

n=0

e−inθei
n(n+1)

2 φ. (4)

It is noteworthy that the electric field can be plotted in
the complex plane as a chain of N phasors with quadratic
phases. The resulting patterns consist in the repetition of
Cornu spirals, called ”curlicues” and evolving with time
(fig. 3) [33].

In the following we study the properties of this function
of the normalized time θ depending on the values of φ.

a) 

FIG. 3: Representation in the complex plane of F (θ) as a sum
of N = 200 phasors with quadratic phases. We set φ = 2πp/q.
In all six cases, p = 1 and q = 7, 15, 25, 27, 51, 89 from left to
right and top to bottom. For each value of φ, we plot F (θk)
for six consecutive values of θ: θk = 2kπ/1000 with 0 ≤ k ≤ 5.
The resulting total field corresponds to the straight line and
evolves clockwise with k.

A. Expression of the electric field

We consider the specific case where φ = 2πp/q (p and q
coprimes) and q < N . Then the phases of the modes are
given by φn = πn(n+1)p/q and we study F (θ) depending
on the parity of integers p and q. We define K as the
largest integer satisfying N = Kq + r, r integer.

1. Case p even or q odd

When p is even or when q is odd, one has:

φn+q = π(n2 + 2nq + q2 + n + q)p/q

= φn + 2πnp + πp(q + 1) = φn. (5)

φn is periodic with a period equal to q. Therefore:
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F (θ) =

Kq
∑

n=0

e−inθeiφn +

N−1
∑

n=Kq+1

e−inθeiφn (6)

=

q−1
∑

n=0

e−inθeiφn

K−1
∑

k=0

e−ikqθ +

N−1
∑

n=Kq+1

e−inθeiφn .

The geometric series can be easily calculated and fi-
nally:

F (θ) =
1 − e−iKqθ

1 − e−iqθ

q−1
∑

n=0

e−inθeiφn +

N−1
∑

n=Kq+1

e−inθeiφn .

(7)
In the following we suppose that q divides N (N = Kq)

and therefore the second term on the right hand of the
equation vanishes. Note that in the general case where q
does not divide N and for a large value of K (r ≪ Kq),
the contribution of this term becomes indeed negligible
(this point is discussed at the end of this section). There-
fore the field reduces to:

F (θ) =
1 − e−iNθ

1 − e−iqθ

q−1
∑

n=0

e−inθeiφn . (8)

The intensity of the laser is:

I(θ) = |F (θ)|2 =
sin2(Nθ/2)

sin2(qθ/2)

∣

∣

∣

∣

q−1
∑

n=0

e−inθeiφn

∣

∣

∣

∣

2

. (9)

When K is large that is when q is much smaller than
N , the fraction tends to a peaked function localized at
values of θ given by θλ = 2πλ/q, λ integer. This behavior
corresponds to the generation of q optical pulses per pe-
riod. In the time domain this corresponds to a repetition
rate equal to qfs = pfc. The amplitude of the pulses is
a priori modulated by the second term of the product:
the peak intensity of the λth pulse is given by:

I(θλ) = (N/q)2
∣

∣

∣

∣

q−1
∑

n=0

e−i2πnλ/qeiφn

∣

∣

∣

∣

2

(10)

= (N/q)2
∣

∣

∣

∣

q−1
∑

n=0

eiπ(n(n+1)p−2λn)/q

∣

∣

∣

∣

2

. (11)

We obtain the expression of the square modulus of a
Gauss sum that can be calculated relatively easily (see
appendix A):

I(θλ) = N2/q. (12)

It is remarkable that the intensity of the λth pulse does
not depend on λ: the resulting intensity consists in a set
of q pulses per period with identical amplitude (fig. 4).
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FIG. 4: Intensity of the FSF laser I(θ) computed with N = 45
modes when p/q = 0 (top left), p/q = 1/3 (top right), p/q =
1/5 (bottom left) and p/q = 1/9 (bottom right). A slight
modulation of the peaks appears when the relation q ≪ N is
no longer satisfied.

We now demonstrate that the width of the pulses when
q divides N is Fourier transform-limited. The intensity
is given by Eq. (9).

The first term is the familiar diffraction function of
a grating of slits. The width of the pulses is equal to
2π/Kq = 2π/N . The second term is a function defined
as a Fourier series whose highest frequency is q−1, which
means that the shortest variation scale of this term is
2π/(q − 1). Therefore this function can be considered as
constant and equal to q during a pulse, and the width of
the pulse is therefore 2π/N . Note that the pulse width
is limited only by the number of modes: the pulses gen-
erated by fractional Talbot effect are therefore Fourier
transform-limited. We recover here the fact that the
width of the diffraction fringes in fractional spatial Tal-
bot effect is independent from the spatial frequency of the
pattern. It is also noteworthy that the average intensity
per period is equal to < I >θ= 1/2π×q×I(θλ)×2π/N =
N which is consistent with the hypothesis of N optical
modes with amplitude unity.

2. Case q even and p odd

Similar conclusions can be obtained in the case where
q is even and p is odd. We have then:

φn+q = π(n2 + 2nq + q2 + n + q)p/q = φn + π. (13)

We also assume for simplicity reasons that q divides N
(N = Kq). Then:
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F (θ) =

q−1
∑

n=0

e−inθeiφn

K−1
∑

k=0

(−1)ke−ikqθ (14)

=
1 − e−iK(qθ+π)

1 − e−i(qθ+π)

q−1
∑

n=0

e−inθeiφn . (15)

The intensity of the laser is therefore:

I(θ) = |F (θ)|2 =
sin2(N(qθ + π)/2q)

sin2((qθ + π)/2)

∣

∣

∣

∣

q−1
∑

n=0

e−inθeiφn

∣

∣

∣

∣

2

.

(16)
When K is large that is when q is much smaller than

N , the fraction tends to a peaked function localized at
values of θ given by θλ = π/q + 2πλ/q, λ integer. As
before there are q pulses per period 2π and the repetition
rate in the time domain in qfs. Contrary to the previous
case, the pulses are shifted from the origin of times by
π/q.

The peak intensity of the λth pulse is given by:

I(θλ) = (N/q)2
∣

∣

∣

∣

q−1
∑

n=0

e−i(2πλ+π)n/qeiφn

∣

∣

∣

∣

2

(17)

= (N/q)2
∣

∣

∣

∣

q−1
∑

n=0

eiπ(n(n+1)p−n(2λ+1))/q

∣

∣

∣

∣

2

. (18)

A calculation similar to the previous case leads to:

I(θλ) = N2/q (19)

which shows that the pulses have a constant amplitude
(fig. 5).

The demonstration that the pulses are Fourier-
transform-limited follows the same scheme as the case
where p is even or q is odd.

3. Remarks

a. Case where q does not divide N In this case the
amplitude of the peaks is modulated because of the re-
maining terms in Eq. (7). The modulation rate depends
qualitatively on the distance between N and the closest
multiple of q. Fig. 6 shows that when N is not a multi-
ple of q, the amplitude of the pulses is not constant. For
instance when p/q = 1/22 only the two last terms of the
sum in Eq. (6) are not taken in the sum (200 ∼= 2mod 22)
which results in relatively small amplitude fluctuations
while in the case p/q = 1/23, 7 terms are not included
in the sum (200 ∼= −7mod 23) which results in larger
amplitude fluctuations.
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FIG. 5: Intensity of the FSF laser I(θ) computed with N =
48 modes when p/q = 0 (top left), p/q = 1/2 (top right),
p/q = 1/4 (bottom left) and p/q = 1/8 (bottom right).
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FIG. 6: Intensity of the FSF laser I(θ) computed with N =
200 modes when p/q = 1/20 (top left), p/q = 1/22 (top right),
p/q = 1/23 (bottom left) and p/q = 1/25 (bottom right).

b. Influence of the seed frequency The previous cal-
culations involve the normalized time θ = ωst − ω0τc. A
notable influence of ω0 is to shift temporally the train of
pulses. It can be of interest to describe the FSF laser as
a system transforming a seed monochromatic field (i.e.
a spectral Dirac) into a train of pulses (i.e. a temporal
Dirac comb) with a temporal shift proportional to the
seed frequency. The seeded FSF laser can be seen some-
how as a temporal optical Fourier transform processor,
where the spectrum of the seeding field is recorded in
the temporal trace of the output of the laser. This could
lead to applications in high speed signal processing using
space-time duality [34].



6

B. Phase and coherence of the pulses

We now characterize the phase of the pulses, which
corresponds to the phase of the complex numbers:

• F (θλ) = N
q

∑q−1
n=0 e−i2π nλ

q eiπ
np(n+1)

q when q is odd
or p is even

• F (θλ) = N
q

∑q−1
n=0 e−iπ

(2n+1)λ

q eiπ
np(n+1)

q when q is

even and p is odd.

A complete determination of the phase of the Gauss
sum arising in the expression of F (θλ) is cumbersome
but can be found in [4, 35, 36]:

• For q odd and p even:

F (θλ) =
N√
q

(

p
q

)

(20)

×exp

(

− iπ

(

q − 1

4
+

p

q

([1

p

]

q

)2(p + 2λ

2

)2
)

)

• For q odd and p odd:

F (θλ) =
N√
q

(

p
q

)

(21)

×exp

(

− iπ

(

q − 1

4
+

2p

q

[1

2

]

q

([ 1

2p

]

q

)2

(p + 2λ)2
)

)

• For q even (and p odd):

F (θλ) =
N√
q

(

p
q

)

(22)

×exp

(

iπ

(

p

4
− p

q

([1

p

]

q

)2(p + 2λ + 1

2

)2
)

)

where
[

1
a

]

q
is the (unique) positive integer smaller

than q satisfying a
[

1
a

]

q
= 1 mod q.

(

a
b

)

is the Jacobi

symbol, equal to +1 if there is an integer m such that
m2 ≡ a[b] and −1 otherwise. The resulting phases are
plotted on fig. 7.

C. Pulse to pulse coherence

We determine the coherence properties between
two pulses at times θλ and θλ+µ by calculating

F ∗

(

2π λ+µ
q

)

F
(

2π λ
q

)

. (We assume here that p is even or
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FIG. 7: Two-dimensional plot of cos[arg(F (θλ))] as a function
of q and λ, when p = 1 (top left), p = 2 (top right), p = 7
(bottom left) and p = 11 (bottom right). The grey scale is
adjusted between black (−1) and white (+1).

q is odd but the other case would be treated similarly.)
It can be shown (see appendix B) that:

〈

F ∗

(

2π
λ + µ

q

)

F
(

2π
λ

q

)

〉

λ

=
N2

q
δ(µmod q) (23)

where δ(µmod q) = 1 when µ divides q and 0 else.
<>λ denotes the average over λ.

The interference term between two pulses separated
by 2πµ/q vanishes in average when µ is not a multiple of
q. Note that this constitutes a substantial difference with
mode-locked lasers where all pulses show the same phase.
This property accounts for the fact that when an interfer-
ometric autocorrelation is performed by second harmonic
generation of the output of the CW-seeded FSF laser, the
satellite peaks (arising from the correlation of two differ-
ent pulses) show no interference fringes, contrary to the
central autocorrelation trace [32].

D. Intensity spectrum

We now turn to the intensity spectrum of the CW-
seeded FSF laser by deriving an expression if I(θ) as a
Fourier series. Starting from:

I(θ) = |F (θ)|2 =

N−1
∑

n,m=0

e−i(n−m)θei
n(n+1)−m(m+1)

2 φ (24)

we divide the double sums into three terms, according
to:
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N−1
∑

n,m=0

An,m =

N−1
∑

n=0

An,n+

N−1
∑

l=1

N−1
∑

n=l

An,n−l+

N−1
∑

l=1

N−1
∑

n=l

An−l,n.

(25)
The first term is equal to N . The third term is simply

the complex conjugate of the second one and:

I(θ) = N + 2ℜ
( N−1

∑

l=1

N−1
∑

n=l

e−ilθei
l(2n−l)

2 φ

)

(26)

= N + 2ℜ
(

N−1
∑

l=1

e−ilθei
l(l+1)

2 φ 1 − eil(N−l)φ

1 − eilφ

)

.

Assuming φ = 2πp/q,

I(θ) = N + 2ℜ
(

N−1
∑

l=1

e−ilθeiπ
pl(l+1)

q
1 − ei2π

lp(N−l)
q

1 − ei2π lp
q

)

.

(27)
The intensity is expressed as a Fourier series whose co-

efficient of order l is proportional to 1−e
i2π

lp(N−l)
q

1−e
i2π

lp
q

. Pro-

vided N is large enough compared to q this term vanishes
except when l is a multiple of q. Defining l = sq, with s
integer leads to:

I(θ) = N +2ℜ
( E

(

N−1
q

)

∑

s=1

(N−sq)e−isqθeiπps(sq+1)

)

(28)

where E(x) is the integer part of the real number x.
Finally,

I(θ) = N+2

E
(

N−1
q

)

∑

s=1

(N−sq) cos(sqθ−πps(sq+1)). (29)

It is noteworthy that contrary to the optical spectrum,
which consists in a comb with a frequency spacing equal
to fs, the intensity spectrum shows a frequency spac-
ing equal to qfs (fig. 8): the optical field is 2π periodic
while the intensity is 2π/q periodic. The corresponding
decimation in the spectral components results from the
interference of waves with quadratic phases. Actually the
difference between the optical and the intensity spectrum
is a general feature of FSF lasers [37]. Recall that in the
case where the FSF laser is injected with spontaneous
emission (modeless laser), the same kind of behavior is
observed: the optical spectrum is continuous while the
intensity spectrum is discrete [38]. The counterpart in
the temporal domain temporal is the fact that the de-
gree of first order coherence is peaked around null delay
while the degree of second order coherence is periodic in
modeless lasers [39].

Optical 
frequency 

ω0/2π 

fs 
qfs 

0 

fs 

RF 

FIG. 8: Left: optical spectrum. Right: corresponding in-
tensity spectrum when q = 3. Note the decimation in the
frequencies.

E. Intensity fluctuations

We now turn to the dependence of the intensity fluc-
tuations of the laser with φ. This constitutes a perti-
nent parameter to study the time properties of seeded
FSF lasers, since it enables to characterize the pulsing
regime and the repetition rate of the laser. Moreover
the intensity fluctuations can be measured experimen-
tally with second harmonic generation (SHG). We define
the relative fluctuations of the intensity as W (φ) =<
I(θ)2 >θ / < I(θ) >2

θ (φ) where <>θ denotes the aver-
age over time (θ). Recall that when φ = 2πp/q with q
much smaller that N, the laser output consists in Fourier
transform-limited pulses with a repetition rate equal to q.
The peak intensity of the pulses is N2/q and the pulse
duration is 2π/N . Therefore < I(θ)2 >θ∼ N3/q and
< I(θ) >2

θ∼ N2 which leads to a rough approximation of
W (φ):

W (φ = 2πp/q) =
< I(θ)2 >θ

< I(θ) >2
θ

(φ = 2πp/q) ∼ N/q. (30)

When N increases, this function tends to the so-called
self-similar Thomae’s function defined by function de-
fined on [0, 1] by: T (p/q) = 1/q when p and q are co-
primes, and T (η) = 0 when η is irrational

A more rigorous expression of the intensity fluctua-
tions can be derived using the expression of the inten-
sity as a Fourier series. Starting from Eq. (27) one has
< I(θ) >2

θ= N2 and:

< I(θ)2 > (φ) = N2 + 2

N−1
∑

l=1

sin2(l(N − l)φ/2)

sin2(lφ/2)
. (31)

Therefore:

W (2πp/q) = 1 +
2

N2

N−1
∑

l=1

sin2(πl(N − l)p/q)

sin2(πlp/q)
. (32)

A significant contribution to the sum arises only from
indexes l satisfying lp/q integer. Since p and q are co-
primes, l is then a multiple of q, i.e. l = kq. Then:
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W (2πp/q) = 1 +
2

N2

E( N−1
q

)
∑

k=1

(N − kq)2. (33)

In the case where q is much smaller than N ,
∑E( N−1

q
)

k=1 (N − kq)2 ≃ (1/q)
∫ N

0
x2dx = N3/3q.

Therefore we obtain:

W (2πp/q) = 1 +
2

3

N

q
. (34)

and we recover the previous link to the Thomae’s func-
tion as in Eq. (30). Note that this expression is valid in
the limit where q is much smaller that N . This expres-
sion shows a good agreement with the computed intensity
fluctuations plotted on fig. 9. Note the agreement with
the experimental variation of the intensity fluctuations
measured by SHG and reported in [32]

Finally an interesting situation occurs when p = 1 and
q = N . In this case, we have:

W (2π/N) = 1 +
2

N2

N−1
∑

l=1

sin2(πl(N − l)/N)

sin2(πl/N)
. (35)

It can be proven that the sum in this expression scales
as N3/2 [40], which ensures that W (2π/N) tends to 1
when N is large. In this case, the relative intensity fluc-
tuations tend to vanish. Note that by tuning φ between 0
and 2π/N , and with a constant spectral content, the FSF
laser can be used as a source of intensity fluctuations tun-
able continuously between 1+2N/3 and 1. In fact W can
be identified as g2(τ = 0), that is the degree of second or-
der coherence at zero delay. Recall that a chaotic source
(resp. a single mode laser) shows g2(0) = 2 (resp. 1)
[41]. A source with tunable intensity fluctuations could
find applications in the field of quantum imaging [42],
while the possibility to lower the intensity fluctuations
of a broadband laser could be used to cancel deleterious
non-linear effects. Finally it is interesting to reconsider
the equivalent of this temporal effect, in the spatial do-
main. The spatial equivalent of a comb of optical modes
showing a constant intensity would consist in a grating
with isotropic diffraction or constant albedo. It is re-
markable that this concept has been developed for years
in acoustics [43] where quadratic residue diffusers enable
isotropic scattering of sound and applied in the design of
concert halls [44, 45]. Similarly in the optical domain,
the use of quadratic residue diffusers could be applied
as a technique of speckle suppression in light projection
devices.

III. ARBITRARY AMPLITUDE OF THE

OPTICAL MODES

We now provide a more realistic description of a seeded
FSF laser by taking into account the spectral properties

FIG. 9: Intensity fluctuations W (φ) = <I(θ)2>θ

<I(θ)>2
θ

(φ) computed

when N = 20 (top left) and 100 (top right). Bottom left
(resp. right): zoom around φ = 5π/8 (resp. φ = 0) for
N = 100 . Note the dip in the intensity fluctuations when
φ = 2π/N = π/50.

of the laser as defined in the first section. In fact it turns
out that the results are basically unchanged, which cor-
responds to the fact in the spatial domain, that when
shining a grating of slits, the diffraction pattern does
not critically depend on the amplitudes of the secondary
sources or equivalently, on the intensity of the light inci-
dent at each slit. Moreover it turns out that a smooth
spectral shape results in a suppression in the modulation
of the amplitude of the pulses observed on fig. 6.

A. Electric field at the output of a FSF laser

We consider the general expression for the electric field
at the output of the CW injection-seeded FSF laser:

E(t) = E0e
−iω0t

∑

n

g(n)e−inωsteinω0τcei
n(n+1)

2 φ (36)

where φ = 2πfsτc = 2πfs/fc. The resulting field is
therefore a defined by a theta series consisting of a sum
of phasors with non-constant amplitudes and quadratic
phases. The corresponding plot in the complex plane
consists therefore in a succession of Cornu spirals with
variable sizes, in contrast to the previous case (fig. 10).

B. Intensity

The intensity of the laser field is I(t) = E(t)E∗(t).
Writing I0 = |E0|2, one has:
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FIG. 10: Representation in the complex plane of F (θ) as a
sum of N = 200 phasors with the gaussian envelope defined on
fig. 11 and quadratic phases. The resulting field corresponds
to the straight line. Six consecutive values of θ are consid-
ered: θ = 2kπ/1000, 0 ≤ k ≤ 5. The resulting field evolves
clockwise. For all cases p = 1, and q = 7, 15, 25, 27, 51, 89
from left to right and top to bottom.

I(t) = I0

∑

n,m

g(n + m)g(n)e−im(ωst−ω0τc)einmφei
m(m+1)

2 φ.

(37)
The resulting intensity in the case of a Gaussian spec-

trum is plotted on fig. 11. Note that the amplitude of
the pulses show no temporal modulation for all values of
q, contrary to fig. 6.

The Poisson summation formula applied to the sum
over n yields:

I(t) = I0

∑

n,m

G(m,n − mφ/2π)e−im(ωst−ω0τc)ei
m(m+1)

2 φ

(38)
where G(x1, x2) =

∫

g(y + x1)g(y)e−2iπyx2dy. In the
two-dimensional plane, G(x1, x2) is a function localized

4π 

4π 

f) 

2π 

4π 

0 θ 

θ 

θ 

θ 2π 2π 

2π 0 

0 0 

4π 

4π 

0 0 200 1 10 n n 100 

a) b) 

c) d) 

e) 

FIG. 11: a) Envelope of the (gaussian) spectrum of the FSF
laser. b) Zoom on the first modes. Bottom: intensity of the
FSF laser I(θ) computed with the previous gaussian spectrum
when p/q = 1/20 (c), p/q = 1/22 (d), p/q = 1/23 (e) and
p/q = 1/25 (f). Contrary to the case where all modes have
the same amplitude, the pulse-to-pulse fluctuations tend to
disappear.

at the origin. It is important to observe that the width
of G along the first coordinate evolves proportionally to
N , the cut-off limit of g while the width along the second
coordinate scales as 1/N . Therefore only integers n and
m satisfying m < N and n − mφ/2π < 1/N contribute
to the intensity. It is particularly interesting to consider
the case φ = 2πp/q where p and q are coprime integers
and q < N . In this specific case the main contribution
arises from integers n and m satisfying n/m = p/q (i.e.
m = kq and n = kp, k integer) and the intensity rewrites:

I(t) = I0

∑

k

G(kq, 0)e−ikq(ωst−ω0τc)eiπpk(kq+1). (39)

One assumes for simplicity that p is even (the case
of odd p can be treated similarly). Then I(t) =
I0

∑

k G(kq, 0)eikq(ωst+ω0τc). Since G(kq, 0) is real this
Fourier series corresponds to pulses at the repetition rate
qfs = pfc, according to φ = 2πfs/fc = 2πp/q [31]. We
recover here a repetition rate multiple of the frequency
spacing fs due to the temporal fractional Talbot effect.
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C. Temporal width of the pulses

It is also instructive to derive the temporal width of the
light pulses when φ = 2πp/q. The intensity is maximum
at time tm = −ω0τc/ωs. We assume again that p is
even but the other case would be treated similarly. Then
I(tm) = I0

∑

k G(kq, 0). Defining τ so that I(tm+τ/2) =
I(tm)/2 a Taylor expansion of I(t) around tm leads to:

(ωsτ/2)2 ≈
∑

k G(kq, 0)
∑

k(kq)2G(kq, 0)
. (40)

Provided N ≫ 1 that is ωs ≪ ∆ω, we have (ωsτ/2)2 ≈
∫

G(x, 0)dx/
∫

G(x, 0)x2dx ≈ (ωs/∆ω)2 = 1/N2. There-
fore the pulse duration when φ is a rational multiple of
2π, is independent from q and also inversely proportional
to the spectral width of the laser. We conclude that
the pulses emitted by the seeded FSF laser are Fourier
transform-limited and independent from the repetition
rate.

D. Intensity spectrum

In the spectral domain, going back to the general case
and defining Ĩ(Ω) =

∫

I(t)e−iΩtdt, Eq. (38) leads to:

Ĩ(Ω) = I0

[

∑

m

δ(Ω−mωs)e
iψm

][

∑

n

G(Ω/ωs, n−Ω/ωc)

]

(41)
where ψm = mω0τc + π(m + 1)Ω/ωc.
The intensity spectrum of the seeded FSF laser appears

as the product of a frequency comb with a spacing of
ωs by a second comb of peaks separated by ωc. The
width of the low-frequency modes of the second comb
can be estimated by using the fact that when Ω ≪ ∆ω,
Ω/ωs ≪ N and then G(Ω/ωs, n − Ω/ωc) ≃ G(0, n −
Ω/ωc). Therefore the width of the peaks is δΩ = ωc/N =
ωcωs/∆ω. Interestingly, δΩ can be interpreted as the
inverse of the photon cavity lifetime.

E. Intensity fluctuations

One now focuses on the intensity fluctuations in the
general case (i.e. p can be odd or even). One has:

W (φ) =
∑

n,m,l

G(m, n − mφ/2π)G∗(m,n − mφ/2π + l).

(42)
The leading contribution comes from l = 0. Then

W (φ) =
∑

n,m |G(m, n−mφ/2π)|2 which shows maxima

when φ = 2πp/q according to Eq. (38). In the neigh-
borhood of each maximum we set φ = 2π(p/q + ǫ) and
obtain in the limit ωs ≪ ∆ω and ǫ small, the continuum
approximation:

x1 

x2 

0 N 

1/N 
εεεε====1/Ν1/Ν1/Ν1/Ν2 

 

εεεε>>>>1/Ν1/Ν1/Ν1/Ν2 

 

εεεε<<<<1/Ν1/Ν1/Ν1/Ν2 

 

FIG. 12: Interpretation of the width of the peaks in the inten-
sity fluctuations. The grey rectangle represents the function
|G(x1, x2)|

2. The intensity fluctuations at φ = 2π(p/q + ǫ)
are given by the integration of |G(x1, x2)|

2 performed along
the lines x2 = ǫx1. When ǫ > 1/N2, the integral - and conse-
quently the intensity fluctuations - decrease.

W (2π(p/q + ǫ)) ≈ 1

q

∫

|G(x, ǫx)|2dx. (43)

The intensity fluctuations when φ = 2πp/q are there-
fore proportional to 1/q, and we recover the generic
self-similar Thomae’s function. When N = ∆ω/ωs in-
creases, the function

∫

|G(x, ǫx)|2dx becomes sharply
peaked around ǫ = 0. This result is in full agreement
with the experimental results reported in [32] where the
peaks in the plot of the intensity fluctuations measured
by SHG get narrower when the spectral bandwidth of the
laser (i.e. the total number of modes) is increased.

IV. PERSPECTIVES AND LIMITATIONS

A. Generation of ultra-high repetition rates

CW-seeded FSF lasers are a promising solution to gen-
erate Fourier transform limited pulses with tunable and
possibly ultrahigh repetition rates (in fact limited only
by the spectral bandwidth of the laser). We now address
the problem of the stability of the repetition rate of the
pulse train when φ is set close to 2πp/q. Then the rep-
etition rate is equal to qfs, that is a multiple of a RF
frequency. We assume that the latter can be driven by a
high precision RF clock and we evaluate the requirement
on the stabilization of the cavity length to maintain this
repetition rate. The question is how precisely the cavity
must be controlled to generate Fourier-transform limited
pulses at repetition rate qfs. A convenient criteria is
given by the width of the intensity fluctuations W (φ) in
the vicinity of φ = 2πp/q.

Starting from Eq. (43), it can be intuitively shown (fig.
12) that the cutoff value corresponds to ǫcut off = 1/N2.
Therefore the requirement on the precision of φ is δφ =
2π/N2: a plot of the intensity as a function of φ in the
vicinity of 2πp/q is given on fig. 13 and confirms that
within a range equal to 1/N2 around p/q, the repetition
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FIG. 13: Intensity of the FSF laser I(θ) computed with
the gaussian spectrum defined on fig. 11 for different val-
ues of φ in the vicinity of 2π(1/25). The vertical scale is
unchanged. From left to right and top to bottom: φ =
2π(1/25), 2π(1/25 + 1/2002), 2π(1/25 + 2/2002), 2π(1/25 +
5/2002), 2π(1/25 + 10/2002), 2π(1/25 + 20/2002).

range is unchanged. The corresponding requirement on
the cavity length, that is on ωc is δωc/ωc = ωc/(N2ωs).
This requirement was not critical yet in the experiment
we described [32], but becomes challenging for THz rates:
typically for a spectral bandwidth of 10 THz, a cavity
free spectral range and a frequency shift per roundtrip
both close to 300 MHz, a repetition rate of 1 THz (i.e.
q ≈ 3000) the cavity needs to be stabilized at the scale of
10 nm. It is instructive to compare this requirement with
the case of a mode-locked laser whose repetition rate is
fixed by the cavity length. In the case of a CW injection-
seeded FSF laser, provided the cavity free spectral range
is stabilized within δωc = ω2

c/(N2ωs), the pulses can
show some distortion but the repetition rate is unchanged
(fig. 13). In the case of a modelocked laser, the repetition
rate would change by δωc/2π. Finally another advantage
of CW-seeded FSF lasers for stable high repetition rates
is the possibility to lock the cavity length simply to the
local maximum of the intensity fluctuations W (φ). The
latter is easily accessible experimentally since it is pro-
portional to the second harmonic generation (SHG) sig-
nal: the cavity stabilization does not require a compar-
ison with an external RF clock signal as in modelocked
lasers.

B. Jitter and linewidth of the seed laser

As previously mentioned, the frequency stability of the
seed laser plays a determining role on the spectral purity
of the repetition rate of the pulse train. From Eq. (2) it
is clear that a frequency jitter of δω0 induces a time jitter
equal to δt = δω0

ωs
τc. Note that this expression is valid in

the case where the frequency jitter of the seed laser occurs
on a time scale larger than the photon cavity lifetime in
the cavity, that is to say Nτc. For faster fluctuations, the
timing jitter is accompanied by a temporal broadening of
the pulses. Therefore a special care must be dedicated
to the spectral properties of the seed laser. A standard
ECDL (extended cavity diode laser) has a linewidth of
about 100 kHz, which results in a typical time jitter of 3
ps. To reach time jitter below 10 fs as required in optical
sampling systems [18, 46], a seed linewidth no larger than
a few kHz is needed, which can be achieved by distributed
feedback fiber lasers [47]. Finally the stabilization of the
seed laser to a reference molecular absorbtion line or to
a ultrastable optical cavity can lower significantly the
time jitter of the train of pulses at the output of the
FSF laser. Therefore a FSF laser seeded with a single-
mode laser is expected to be a robust source of high-
fidelity clock signals and shows promising perspectives
for optoelectronic applications like optical sampling of
electric signals.

C. Dispersion and non-linear effects

Finally to ensure Fourier transform-limited pulses in
broadband ultra-high repetition rate FSF lasers, intra-
cavity dispersion becomes crucial. Consider in the cav-
ity a medium of length L showing both first and sec-
ond order dispersion terms. The wave vector is k(ω) =
k0 + α(ω − ω0) + β/2(ω − ω0)

2 where k0 = k(ω0),
α = (∂k/∂ω)(ω0) and β = (∂2k/∂ω2)(ω0). The addi-
tional phase shift acquired during roundtrip n is

φn − φn−1 = (ω0 + nωs)τc + k(ω0 + nωs)L

= ω0τc + k0L + n(ωsτc + αωsL) + n2 βω2
sL

2
. (44)

Finally the phase of mode n is:

φn = n(ω0τc + k0L) +
n(n + 1)

2
(ωsτc + αωsL)

+
n(n + 1)(2n + 1)

12
βω2

sL. (45)

The first order dispersion α results in an additional
contribution to the quadratic phase and can therefore be
compensated by tuning the cavity length or changing the
frequency of the AOFS. On the contrary the group ve-
locity dispersion β leads to the appearance in the phase
shift of a cubic term, which is expected to have a strong
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influence on the output laser field. However standard
techniques of cancelation of group velocity dispersion
should enable a precise control of this deleterious effect,
to recover Fourier-transform limited pulses. Finally it is
worth pointing out that possible non-linear effects in the
laser cavity (Kerr effect, self-phase modulation) have a
limited impact in high repetition rate FSF lasers: indeed
the energy is spread over p pulses per roundtrip and third
order non-linear effects are accordingly divided by p3.

Conclusion

We have given a comprehensive theoretical description
of Talbot lasers, i.e. CW injection-seeded FSF lasers, suf-
ficient to account for all experimental results published in
[32]. We provided a simple model of a Talbot laser, con-
sisting in a set of optical modes separated by a constant
frequency spacing fs and exhibiting quadratic phases de-
fined by φn = n(n + 1)φ/2. The resulting properties
have been related to the fractional Talbot effect in op-
tical diffraction and are connected to number theory by
the appearance of Gauss sums and theta series. First we
detailed the case where N equidistant optical modes have
a constant amplitude. We gave a description of the elec-
tric field, of the intensity in the case where φ is a rational
multiple of 2π: when φ = 2πp/q, with q < N the result-
ing field consists in a train of regular light pulses at the
repetition rate equal to qfs. The pulses are shown to be
Fourier transform-limited and the phases of the pulses are
uncorrelated on average. We characterized the intensity
fluctuations of the resulting light field and proved among
others, that Talbot lasers can also be used as a broadband
light source with tunable intensity fluctuations. Then we
considered a more realistic description of a CW-seeded
FSF laser by taking into account the spectral shape of
the resulting field. In this case we have shown a can-
celation of the pulse-to-pulse fluctuations, while results
similar to the previous case have been obtained.

This work is expected to have significant outcomes in
the domain of high repetition rate lasers. On the basis of
the experimental results obtained in [32], we anticipate
that much higher values of the repetition rate can be ob-
tained: a recent demonstration of a seeded Ti:Sa FSF
laser with a spectral bandwidth as large as a few nm [47]
leads to the possibility to generate lasers with THz repe-
tition rates, which can be used for the generation of THz
waves, for ultrafast digital communications systems, for
the time transfer of remote clocks and ultrafast optical
cadencers for analog-to-digital converters, or for the op-
tical sampling of microwave signals. Another advantage
of this source in opto-electronics relies on the fact that
contrary to conventional mode-locked lasers where the
repetition rate is set by the cavity length, the stability
of the repetition rate in CW injection-seeded FSF lasers
is directly linked to the stability of the shift frequency
which can be controlled with an extremely high preci-
sion through standard quartz or atomic clocks. Finally
we also expect Talbot lasers to find applications in spec-

troscopy, by enabling the resonant excitation of acoustic
modes of metallic nanoparticles [19, 20].

This work was supported in part by the CNRS and the
LIPhy. We warmly thank J. Marklof for his stimulating
interest in the subject, and H. Cohen for his help on
Gauss sums. We also acknowledge A . Garnache and Y.
Colin de Verdière for fruitful discussions.

V. APPENDIX

A. Calculation of the amplitude of the pulses

We consider the case where q is odd or p is even
(the other case would be treated similarly). The
amplitude of the pulse #λ is given by F (θλ) =

(N/q)
∑q−1

n=0 eiπ(n(n+1)p−2λn)/q. Note that F (θλ+q) =
F (θλ), which shows that the field reproduces itself af-
ter q pulses, a direct consequence of the fact F (θ) is 2π-
periodic. It can be shown that changing n into n + q
leaves the sum invariant. Then:

F (θλ) =
N

q

∑

n mod q

eiπ(n(n+1)p−2λn)/q. (46)

where the summation modulo q can be performed over
any set of q consecutive integers. The square modulus is
given by:

|F (θλ)|2 =
N2

q2

∑

m,n mod q

eiπ((n2
−m2)p+(n−m)(p−2λ))/q.

(47)
Writing l = n − m leads to:

|F (θλ)|2 =
N2

q2

∑

l,m mod q

eiπl((l+2m+1)p−2λ)/q (48)

=
N2

q2

∑

l mod q

eiπl((l+1)p−2λ)/q
∑

m mod q

ei2πlmp/q.

The second term of the product vanishes except when
q divides lp. Since p and q are coprimes, l must be a
multiple of q chosen modulo q. Therefore l = 0 which
leads to I(θλ) = |F (θλ)|2 = N2/q.

B. Pulse-to-pulse coherence

We consider the case where q is odd or p is even (the
other case would be treated similarly). The interference

term between two pulses at times θλ+µ = 2π λ+µ
q and

θλ = 2π λ
q is:



13

F ∗(θλ+µ)F (θλ)

=
N2

q2

∑

n,m mod q

eiπ((n2
−m2)p+(n−m)(p−2λ)+2mµ)/q

=
N2

q2

∑

l mod q

eiπ
l2p+l(p−2λ)

q

∑

m mod q

ei2π
m(µ+lp)

q . (49)

If µ is a multiple of q, the second sum vanishes excepted
when l = 0. In this case: F ∗(θλ+µ)F (θλ) = N2/q and
the phases of the pulses are identical: we recover here the
fact that F (θλ) = F (θλ+µ).

If q does not divide µ the second sum does not vanish
only when lp + µ is a multiple of q. Then there is an
integer l0 satisfying lp = sq − µ. Note that l0 6= 0. In
fact a single integer l in the range ]0, n − 1] satisfies the
previous condition: assume that l and l′ are solutions,
that is lp = sq − µ and l′p = s′q − µ. Then l′ = l − (s′ −
s)q/p. Since p and q are coprimes, s′ − s is a multiple
of p and then l′ − l is a multiple of q, which proves the
previous assertion. Therefore for l0p = sq − µ,

F ∗(θλ+µ)F (θλ) =
N2

q
eiπ(l0((l0+1)p−2λ))/q. (50)

The average over q pulses is:

< F ∗(θλ+µ)F (θλ) >λ=
N2

q
eiπ

l0(l0+1)p

q

∑

λ mod q

e−i2π
l0λ

q .

(51)

This expression vanishes since l0 is not a multiple of q
(l0 6= 0 and 0 ≤ l0 ≤ q − 1). Finally

〈

F ∗

(

2π
λ + µ

q

)

F
(

2π
λ

q

)

〉

λ

=
N2

q
δ(µmod q) (52)

where δ(µmod q) = 1 when µ divides q and 0 else.

This peculiar correlation property could also have been
demonstrated from the direct expressions of F (θλ) (Eq.
(19) to (21)). The lack of average correlation between dif-
ferent pulses of the pulse train is in fact a general feature
of Gauss sequences [45].
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1983).
[11] J. Marklof, Duke. Math. J. 97 127 (1999).
[12] W. Merkel et al., Fortschr. Phys. 54, 856 (2006).
[13] M. Mehring, K. Mueller, I. S. Averbukh, W. Merkel, and

W. P. Schleich, Phys. Rev. Lett. 98, 120502 (2007).
[14] D. Bigourd, B. Chatel, W. P. Schleich, and B. Girard,

Phys. Rev. Lett. 100, 030202 (2008).
[15] A. A. Rangelov, J. Phys. B: At. Mol. Opt. Phys. 42

021002 (2009).
[16] V. Tamma et al., Phys. Rev. A 83, 020304 (2011).
[17] S. Wolk et al., New J. Phys. 13, 1 (2011).
[18] G. C. Valley, Opt. Exp. 15, 1955 (2007).
[19] G. V. Hartland, Annu. Rev. Phys. Chem. 57, 403 (2006).
[20] M. Pelton et al., Nature Nanotech. 4, 492 (2009).
[21] J. Azana, M. A. Muriel, Opt. Lett. 24, 1672 (1999).
[22] J. Azana, M. A. Muriel, IEEE. J. Sel. Top. in Quant.

Elec., 7, 728 (2001).
[23] J. Azana et al., IEEE Photon. tech. Lett. 15, 413 (2003).

[24] F. V. Kowalski et al., Appl. Phys. Lett. 50, 711 (1987).
[25] P. D. Hale, F. V. Kowalski, IEEE. J. Quant. Elec. 26,

1845 (1990).
[26] P. Coppin, T. G. Hodgkinson, Elec. Lett. 26, 28 (1990).
[27] G. L. Bourdet, Appl. Opt. 42, 5457 (2003).
[28] H. Y. Ryu et al. Opt. Exp. 15, 11396 (2007).
[29] M. P. Nikodem et al. Opt. Exp. 17, 3299 (2009).
[30] M. W. Phillips, G. Y. Liang, J. R. M. Barr, Opt. Comm.

100, 473 (1993).
[31] L. P. Yatsenko et al., Opt. Comm. 236, 183 (2004).
[32] H. Guillet de Chatellus et al., Opt. Exp. (2013), in press.
[33] M. V. Berry, J. Goldberg, Nonlinearity 1, 1 (1988).
[34] M. A. Foster et al., Nature 456, 81 (2008).
[35] H. C. Rosu et al., Int. J. Mod. Phys. B 20, 1860 (2006).
[36] J. H. Hannay, M. V. Berry, Physica 1D, 267 (1980).
[37] H. Guillet de Chatellus et al., Opt. Comm. 284, 4965

(2011).
[38] F. V. Kowalski et al., Opt. Lett. 13, 622 (1988).
[39] H. Guillet de Chatellus, J.-P. Pique, Opt. Comm. 283,

1971 (2010).
[40] D. J. Newman, Proc. Am. Math. Soc. 16, 1287 (1965).
[41] R. Loudon, ”Quantum Theory of Light”, 3rd ed. (Oxford

U. Press, New York, 2000), Chap. 3.
[42] Y. Shih, IEEE J. Sel. Top. in Quant. Elec. 13, 1016

(2007).
[43] J. Pumplin, J. Acoust. Soc. Am. 78, 100 (1985).
[44] M. R. Schroeder, IEEE Trans. Inf. Theo. 85 (1970).
[45] M. R. Schroeder, ”Number Theory in Science and Com-

munications”, 5th ed. (Springer, Berlin Heidelberg 2009),
Chap. 16.

[46] A. Khilo et al., Opt. Exp. 20, 4454 (2012).



14

[47] M. F. Brandl, O. D. Muecke, Opt. Lett. 32, 4223 (2010).


