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ABSTRACT

In this paper we study the estimators of two measures of dependence: the signed symmetric

covariation coefficient proposed by Garel and Kodia and the generalized association parameter put

forward by Paulauskas. In the sub-Gaussian case, the signed symmetric covariation coefficient and

the generalized association parameter coincide. The estimator of the signed symmetric covariation

coefficient proposed here is based on fractional lower-order moments. The estimator of the gener-

alized association parameter is based on estimation of a stable spectral measure. We investigate

the relative performance of these estimators by comparing results from simulations.

1 Introduction

Many types of physical phenomena and financial data exhibit a very high variability and stable

distributions are often used to model them. Since the seminal work of Mandelbrot (1963), who

suggested the stable laws as possible models for the distribution of income and speculative prices, the

interest in these laws has greatly increased and they are now widely applied in telecommunications

and many other fields such as physics, biology, genetics and geology, see Uchaikin and Zolotarev

(1999).

Stable distributions are a rich class of probability distributions, which includes the Gaussian,

Cauchy and Lévy distributions in a family that allows for skewness and heavy tails. These stable
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laws, characterized by Paul Lévy, are the only possible limiting laws for normalized sums of inde-

pendent, identically distributed random variables. While they present many attractive theoretical

properties, a major problem in working with stable laws, both univariate and multivariate, is that,

with the exception of the three distributions mentioned above, their densities cannot be written

in a closed form. The only available information for a stable random vector is its characteristic

function. In addition to this drawback, the fact that stable non-Gaussian random vectors do not

possess moments of second order has further limited their use. The concept of a correlation ma-

trix which allows us to understand the association between the coordinates of a random vector is

meaningless here. Therefore, other dependence coefficients are required.

Press (1972) developed the idea of a correlation coefficient, the so-called association parameter

(a.p.), applicable to a specific class of symmetric multivariate stable laws. Inspired by Press’ work,

Paulauskas (1976) proposed a generalized association parameter (g.a.p.) which is applicable to

general symmetric α-stable random vectors, but he did not deal with the estimation of this quan-

tity. Kanter and Steiger (1974) showed that, under certain conditions, the conditional expectation

of a stable random variable, given another, is linear and they proposed an estimator based on

screened ratio for the constant of linearity. Miller (1978) proposed a new measure of dependence,

called covariation, designed to replace the covariance when 1 < α < 2. The constant of linearity

of conditional expectation, mentioned above, has been expressed by means of this measure and

subsequently called the covariation coefficient. However, in general this coefficient is not symmetric

and may be unbounded, therefore Garel and Kodia (2009) proposed a new coefficient: the signed

symmetric covariation coefficient. This coefficient satisfies most properties of the classical Pearson

coefficient and coincides with it when α = 2. Here we use a slight modification of this coefficient,

in order to guarantee symmetry in all cases.

In this paper we define a modified signed covariation coefficient, give its properties, and consider

the estimation of this quantity. We have developed an estimator of the signed symmetric covariation

coefficient based on fractional lower order moments (FLOM). We also address the question of

estimating the g.a.p. In the general case, an estimator of the g.a.p. requires an estimation of the

index of stability α and an estimation of the stable spectral measure.

We focus particulary on sub-Gaussian random vectors because, in this case, the g.a.p. and the

signed symmetric covariation coefficient coincide. This provides a means of estimating the g.a.p.
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without knowing either α or the spectral measure. Moreover, we can compare results obtained from

estimators based respectively on FLOM and stable spectral measure. This also means that in the

sub-Gaussian case, the matrix of signed symmetric covariation coefficients is positive semi-definite.

Of course, these specificities open up new and interesting prospects.

This paper is organized as follows: Section 2 provides a reminder of basic definitions and some

properties of stable random vectors, the covariation and the g.a.p. while Section 3 details the signed

symmetric covariation coefficient. Garel and Kodia (2009) give an insight without proofs. That

note was an introduction while this paper details all the proofs. In the definition of the signed

symmetric covariation coefficient, we solve the asymmetry problem which appeared in the first

definition. Other properties of this coefficient are discussed in the context of sub-Gaussian random

vectors. We also give the expression of the signed symmetric covariation coefficient and the g.a.p.

in the case of linear transformation of independent stable random variables. We give estimators of

the signed symmetric covariation coefficient and the g.a.p. in Section 4. General performance of

these estimators are discussed on the basis of simulations.

2 Stable random variables and vectors and dependence coeffi-

cients

For our purposes, we define stable random variables and vectors by their characteristic function.

Following Samorodnitsky and Taqqu (1994), we denote the law of a stable random variable by

Sα(γ, β, d), with 0 < α ≤ 2, γ ≥ 0,−1 ≤ β ≤ 1 and d a real parameter. A random variable X has

a stable distribution Sα(γ, β, d) if its characteristic function has the form

ϕX(t) = E exp(i tX) = exp
{
− γα|t|α [1 + i βsign(t)w(t, α)] + i dt

}
, (1)

where

w(t, α) =





− tan πα
2 if α ̸= 1,

2
π ln |t| if α = 1,

with t a real number, and sign(t) = 1 if t > 0, sign(t) = 0 if t = 0 and sign(t) = −1 if t < 0.
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The parameter α is the characteristic exponent or index of stability, β is a measure of skewness, γ

is a scale parameter and d is a location parameter. The special cases α = 2, α = 1 and α = 0.5

correspond respectively to the Gaussian, Cauchy and Lévy distributions and it is only in these cases

that stable laws have a closed form expression for the density. When β = d = 0, the distribution is

symmetric (i. e. X and −X have the same law) and is denoted SαS(γ) or for short SαS.

Let 0 < α < 2. The characteristic function of a random vector X = (X1, X2) is given by

ϕX(t) = exp

{
−

∫

S2

|⟨t, s⟩|α [1 + i sign(⟨t, s⟩)w(⟨t, s⟩, α)]Γ(ds) + i ⟨t,d⟩

}
, (2)

where Γ is a finite symmetric measure on the unit circle S2 = {s ∈ R
2 : ∥s∥ = 1} and d is a vector

in R
2. Here ⟨t, s⟩ denotes the inner product of R2. The measure Γ is called the spectral measure

of the α-stable random vector X and the pair (Γ,d) is unique. The vector X is symmetric if, and

only if, d = 0 and Γ is symmetric on S2. In this case, its characteristic function is given by

ϕX(t) = exp

{
−

∫

S2

|⟨t, s⟩|αΓ(ds)

}
= exp {−IX(t)} , (3)

where

IX(t) =

∫

S2

ψα(⟨t, s⟩)Γ(ds), (4)

is the exponent function, with ψα(u) = |u|α. If necessary, we also denote the spectral measure

of X by ΓX. For any vector u ∈ R
2, the projection ⟨u,X⟩ =

∑2
k=1 ukXk has a univariate SαS

distribution. The spectral measure determines the projection parameter function γ(u) by:

γα(u) =

∫

S2

|⟨u, s⟩|αΓ(ds). (5)

From (4) and (5) we can write

IX(u) = γα(u). (6)

The spectral measure carries essential information about the vector, in particular the dependence

structure between the coordinates. So, it is not surprising that measures of dependence rely on
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this spectral measure. In the sequel, unless specified otherwise, we assume α > 1 and consider

symmetric stable random variables or vectors.

Miller (1978) introduced the covariation as follows.

Definition 2.1. Let X1 and X2 be jointly SαS and let Γ be the spectral measure of the random

vector (X1, X2). The covariation of X1 on X2 is the real number defined by

[X1, X2]α =

∫

S2

s1s
⟨α−1⟩
2 Γ(ds), (7)

where for real numbers s and a: if a ̸= 0, s⟨a⟩ = |s|asign(s) and if a = 0, s⟨a⟩ = sign(s). It is well

known that although the covariation is linear in its first argument, it is, in general, not linear in its

second argument and not symmetric in its arguments. We also have

[X1, X1]α =

∫

S2

|s1|
αΓ(ds) = γαX1

, (8)

where γX1
is the scale parameter of the SαS random variable X1. The covariation norm is defined

by

∥X1∥α = ([X1, X1]α)
1/α. (9)

When X1 and X2 are independent, [X1, X2]α = 0. Proofs of these properties and other details are

given in Samorodnitsky and Taqqu (1994) P. 87-97.

The covariation coefficient of X1 on X2 is the quantity:

λX1,X2
=

[X1, X2]α
∥X2∥αα

. (10)

It is the coefficient of the linear regression E(X1|X2). This coefficient is not symmetric and may

be unbounded. We see it easily by setting X2 = cX1, where c is a non-zero constant such that

c ̸= ±1. In this case we have

λX1,X2
=

[X1, cX1]α
∥cX1∥αα

=
1

c
and λX2,X1

=
[cX1, X1]α
∥X1∥αα

= c.

When c→ 0, λX1,X2
tends to infinity.
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Paulauskas (1976) introduced the generalized association parameter (g.a.p.), inspired by Press

(1972). This coefficient is applicable to all symmetric stable random vectors in R
2 and has all the

properties of the ordinary correlation coefficient of a bivariate Gaussian random vector.

Let (X1, X2) be SαS, 0 < α ≤ 2 and Γ its spectral measure on the unit circle S2. Let (U1, U2) be

a random vector on S2 with probability distribution Γ̃ = Γ/Γ(S2). Due to the symmetry of Γ, one

has EU1 = EU2 = 0. The g.a.p. is defined as:

ρ̃(X1, X2) =
EU1U2

(EU2
1EU

2
2 )

1/2
. (11)

It is a measure of dependence of (X1, X2). For a bivariate stable vector with characteristic function

(3) the g.a.p. ρ̃ has the following properties valid for 0 < α ≤ 2: (i) we always have −1 ≤ ρ̃ ≤ 1

and if a distribution corresponds to a random vector with independent coordinates, then ρ̃ = 0. (ii)

|ρ̃(X1, X2)| = 1 if, and only if, the distribution of (X1, X2) is concentrated on a line. (iii) For α = 2,

ρ̃ coincides with the correlation coefficient of the Gaussian random vector. (iv) ρ̃ is independent

of α and depends only on the spectral measure Γ. (v) If the characteristic function of (X1, X2) is

given by

ϕX(t) = exp
{
−C(γ2X1

t21 + 2rγX1
γX2

t1t2 + γ2X2
t22)

α/2
}
, (12)

where C is an appropriate constant, then r is the g.a.p. Paulauskas (1976) extended this concept

to a d-dimensional random vector with d > 2.

3 Signed symmetric covariation coefficient and its properties

The signed symmetric covariation coefficient is a close relative to the covariation coefficient. How-

ever, unlike the covariation coefficient, the new coefficient is bounded. We propose here a revised

version of the sign of this coefficient, avoiding the asymmetry problems which appeared in the

definition given in Garel and Kodia (2009).

3.1 Definition and first properties

Definition 3.1. Let (X1, X2) be a bivariate SαS random vector with α > 1. The signed symmetric

covariation coefficient between X1 and X2 is the quantity:

scov(X1, X2) = κ(X1,X2)

∣∣∣∣
[X1, X2]α[X2, X1]α

∥X1∥αα∥X2∥αα

∣∣∣∣
1

2

, (13)
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where

κ(X1,X2) =





sign([X1, X2]α) if sign([X1, X2]α) = sign([X2, X1]α),

−1 if sign([X1, X2]α) = −sign([X2, X1]α).

(14)

Remark: In (14) the value of sign κ(X1,X2) is natural in the first case. In fact, if (X1, X2) was

a random vector with finite variance, the equality sign([X1, X2]α) = sign([X2, X1]α) would always

be true, because [X1, X2]2 = 1
2Cov(X1, X2), see Samorodnitsky and Taqqu (1994) P. 87-88. But

in the case of non-Gaussian random vectors, we can have sign([X1, X2]α) = −sign([X2, X1]α), see

Garel et al. (2004) P. 773. If it is so, we set κ(X1,X2) = sign([X1, X2]α × [X2, X1]α) = −1.

The following proposition shows that the signed symmetric covariation coefficient has desirable

properties as does the ordinary correlation coefficient of a bivariate Gaussian random vector.

Proposition 3.2. Let (X1, X2) be a bivariate SαS random vector with α > 1. The signed sym-

metric covariation coefficient has the following properties:

1. −1 ≤ scov(X1, X2) ≤ 1 and if X1, X2 are independent, then scov(X1, X2) = 0;

2. |scov(X1, X2)| = 1 if and only X2 = λX1 for some λ ∈ R, λ ̸= 0;

3. let a and b be two non-zero reals, then

scov(aX1, bX2) =





sign(ab)scov(X1, X2) if sign([X1, X2]α) = sign([X2, X1]α),

scov(X1, X2) if sign([X1, X2]α) = −sign([X2, X1]α);

(15)

4. for α = 2, scov(X1, X2) coincides with the usual correlation coefficient.

7



Proof.

1. From (7) and using Holder’s inequality in which p = α and q = α
α−1 , we have

∣∣∣∣
∫

S2

s1|s2|
α−1sign(s2)Γ(ds)

∣∣∣∣ ≤
(∫

S2

|s1|
α
Γ(ds)

) 1

α
(∫

S2

|s2|
α
Γ(ds)

)α−1

α

.

Then using (9), we have |[X1, X2]α| ≤ ∥X1∥α∥X2∥
α−1
α which implies

|[X1, X2]α| × |[X2, X1]α| ≤ ∥X1∥
α
α∥X2∥

α
α and then

∣∣∣∣
[X1, X2]α[X2, X1]α|

∥X1∥αα∥X2∥αα

∣∣∣∣ ≤ 1.

Using Equation (13) we get −1 ≤ scov(X1, X2) ≤ 1. If X1 and X2 are independent, then

[X1, X2]α = [X2, X1]α = 0, which leads to scov(X1, X2) = 0.

2. Equality |scov(X1, X2)| = 1 is equivalent to

∣∣∣∣
∫

S2

s1|s2|
α−1sign(s2)Γ(ds).

∫

S2

s2|s1|
α−1sign(s1)Γ(ds)

∣∣∣∣ =
∫

S2

|s1|
α
Γ(ds).

∫

S2

|s2|
α
Γ(ds).

This is equivalent to equality in Holder’s inequality

∣∣∣∣
∫

S2

s1s
⟨α−1⟩
2 Γ(ds)

∣∣∣∣ =
(∫

S2

|s1|
α
Γ(ds)

) 1

α
(∫

S2

|s2|
α
Γ(ds)

)α−1

α

which is equivalent to s2 = λs1 a. e. Γ, for some λ ∈ R
∗. This last relation is equivalent to

X2 = λX1 a.s.

3. Let a and b be two non-zero reals, then we have

∣∣∣∣
[aX1, bX2]α[bX2, aX1]α

∥aX1∥αα∥bX2∥αα

∣∣∣∣ =
∣∣∣∣
[X1, X2]α[X2, X1]α

∥X1∥αα∥X2∥αα

∣∣∣∣ .

Using (14) we also have

κ(aX1,bX2) = sign([aX1, bX2]α) if sign([aX1, bX2]α) = sign([bX2, aX1]α)

= sign(ab)sign([X1, X2]α) if sign([X1, X2]α) = sign([X2, X1]α),

because

sign([aX1, bX2]α) = sign([bX2, aX1]α) ⇔ sign([X1, X2]α) = sign([X2, X1]α).
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In the same way,

κ(aX1,bX2) = −1 if sign([aX1, bX2]α) ̸= sign([bX2, aX1]α)

= −1 if sign([X1, X2]α) ̸= sign([X2, X1]α).

Thus we have

κ(aX1,bX2) =





sign(ab)sign([X1, X2]α) if sign([X1, X2]α) = sign([X2, X1]α),

−1 if sign([X1, X2]α) = −sign([X2, X1]α).

4. When α = 2, [X1, X2]2 = [X2, X1]2 =
1
2Cov(X1, X2) and κ(X1,X2) = sign(Cov(X1, X2)). Then

scov(X1, X2) = sign(Cov(X1, X2))

∣∣∣∣
[Cov(X1, X2)]

2

Var(X1)Var(X2)

∣∣∣∣
1

2

=
Cov(X1, X2)

Var(X1)
1

2Var(X2)
1

2

,

which is the usual correlation coefficient.

Is there a sub-family of SαS random vectors where the signed symmetric covariation coefficient

and the generalized association parameter coincide? The answer is yes for sub-Gaussian random

vectors.

3.2 Sub-Gaussian case

First recall the definition of a d-dimensional sub-Gaussian random vector, see Samorodnitsky and

Taqqu (1994) P. 77-84.

Definition 3.3. Let 0 < α < 2, let G1, G2, ..., Gd be zero mean jointly normal random variables

and let A be a positive random variable such that A ∼ Sα/2
((

cos πα
4

)2/α
, 1, 0), independent of

(G1, G2, ..., Gd), then X = A1/2G = (A1/2G1, A
1/2G2, ..., A

1/2Gd) is a sub-Gaussian random vector

with underlying Gaussian vector G = (G1, G2, ..., Gd).

The characteristic function of X has the particular form:

ϕX(t) = E exp
{
i

d∑

m=1

tmXm

}
= exp

{
−

∣∣∣1
2

d∑

j=1

d∑

k=1

tjtkRjk

∣∣∣
α/2}

, (16)
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where Rjk = EGjGk, j, k = 1, ..., d are the covariances of the underlying Gaussian random vector

G.

The following proposition summarizes the usefulness of the new coefficient.

Proposition 3.4. Let 1 < α < 2 and let X be a sub-Gaussian random vector with characteristic

function (16). Then the matrix of signed symmetric covariation coefficients of X coincides with

the correlation matrix of the underlying Gaussian random vector G.

Proof. Let (X1, ..., Xd) be a sub-Gaussian random vector with characteristic function (16), it is

sufficient to state that ∀ j, k, j ̸= k, scov(Xj , Xk) = rjk, where rjk is the correlation coefficient

between Gj and Gk.

First, Cambanis and Miller (1978) established that (7) is equivalent to

[X1, X2]α =
1

α

∂γα(t1, t2)

∂t1
|
t1=0,t2=1

, (17)

where t1 and t2 are real numbers. This second definition of the covariation is more easy to manip-

ulate in this case.

From (3) and (5) we see that the scale parameter γ(tj , tk) of Y = tjXj + tkXk, j, k = 1, 2, satisfies

γα(tj , tk) = 2−α/2(t2jRjj + 2tjtkRjk + t2kRkk)
α/2.

Using (17), we have

[Xj , Xk]α =
1

α

∂γα(tj , tk)

∂tj

∣∣∣
tj=0,tk=1

= 2−α/2RjkR
(α−2)/2
kk . (18)

From (18) we also have

γXj
= ∥Xj∥α = ([Xj , Xj ]α)

1/α = 2−1/2R
1/2
jj , j = 1, 2. (19)

Also we have κ(Xj ,Xk) = sign(Rjk) because sign([Xj , Xk]α) = sign([Xk, Xj ]α) = sign(Rjk). Using

(18) and (19) in (13), we get

scov(Xj , Xk) = sign(Rjk)
∣∣∣
R2

jk

RjjRkk

∣∣∣
1

2

=
Rjk

R
1/2
jj R

1/2
kk

= rjk.

Thus the matrix of signed symmetric covariation coefficients of X coincides with the correlation

matrix of the underlying Gaussian vector G.
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This is of consequence because in the sub-Gaussian case, information about the dependance struc-

ture lies in the correlation matrix of the underlying Gaussian vector. The following lemma is a

consequence of the above-mentioned proposition and states the link between the signed symmetric

covariation coefficient and the g.a.p.

Lemma 3.5. Let 1 < α < 2 and let X be a sub-Gaussian random vector with characteristic function

(16). Then the matrix of signed symmetric covariation coefficients of X coincides with the matrix of

generalized association parameters, called the generalized covariation matrix by Paulauskas (1976).

Proof. Without loss of generality, let us consider the sub-Gaussian random vector X = (X1, X2).

Let us state that the g.a.p. between the components of X coincides with the correlation coefficient

between the components of the underlying Gaussian vector G.

The characteristic function of X is

ϕX(t) = exp
{
−
∣∣2−1R11t

2
1 +R12t1t2 + 2−1R22t

2
2

∣∣α/2
}

= exp

{
−
∣∣∣2−1R11t

2
1 + rR

1/2
11 R

1/2
22 t1t2 + 2−1R22t

2
2

∣∣∣
α/2

} (20)

where r is the correlation coefficient between the components of the underlying Gaussian vector

G. The scale parameters of the sub-Gaussian random variables X1 and X2 are respectively γX1
=

(12R11)
1/2 and γX2

= (12R22)
1/2. The characteristic function (20) can be written

ϕX(t) = exp
{
−
∣∣γ2X1

t21 + 2rγX1
γX2

t1t2 + γ2X2
t22
∣∣α/2

}
. (21)

This characteristic function is equal to (12), in which C = 1. Thus, we establish that the correlation

coefficient r between G1 and G2 coincides with the g.a.p. between X1 and X2. Using Proposition

3.4 we obtain this result.

When α > 1, the signed symmetric covariation coefficient coincides with the g.a.p.

in the case of sub-Gaussian random vectors. However, it is not true in general. Linear

transformations of independent α-stable random variables will give a counterexample

in the next subsection.

When 0 < α ≤ 1, the signed symmetric covariation coefficient is not defined in all cases. For a

general α-stable random variable Xj ∼ Sα(γ, β, d) with 0 < α < 2, we have
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E|Xj |
p <∞ for any value 0 < p < α,

E|Xj |
p = ∞ for any value p ≥ α.

(22)

See Samorodnitsky and Taqqu (1994) P. 18. Let X = (X1, X2) be a sub-Gaussian random vector

with characteristic function (16). The following result states how the correlation coefficient between

the coordinates of the underlying Gaussian vector G is related to E|X1|
p, E|X2|

p and E|X1−X2|
p

with 0 < p < α ≤ 2.

Lemma 3.6. Let 0 < α ≤ 2. Let X = (X1, X2) be a sub-Gaussian random vector with under-

lying Gaussian vector G. The correlation coefficient between G1 and G2 can be expressed by the

relationship

r =

(
E|X1|

p
)2/p

+
(
E|X2|

p
)2/p

−
(
E|X1 −X2|

p
)2/p

2
(
E|X1|p E|X2|p

)1/p
, 0 < p < α ≤ 2. (23)

Proof. Let X = (X1, X2) be a sub-Gaussian random vector with underlying Gaussian vector G.

For the zero-mean random vector G = (G1, G2), the correlation coefficient between G1 and G2 is

r =
Var(G1) + Var(G2)−Var(G1 −G2)

2Var(G1)1/2Var(G2)1/2

=
γ2X1

+ γ2X2
− γ2X1−X2

2γX1
γX2

,

(24)

because γX1
=

(
Var(G1)

2

)1/2
, γX2

=
(
Var(G2)

2

)1/2
and γX1−X2

=
(
Var(G1−G2)

2

)1/2
.

The random variable X1 −X2 is symmetric because X1 and X2 are symmetric. Let 0 < α < 2, for

0 < p < α,

(E|Xj |
p)1/p = c(p, α)γXj

, (25)

for a SαS random variable Xj , c(p, α) is a constant (See Nikias and Shao (1995) P. 32). Using (25)

in (24), we finish the proof.

From the above, the g.a.p. between the components of X coincides with the correlation coefficient

between the components of G, for 0 < α ≤ 2.
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From Lemma 3.5 and Lemma 3.6, we obviously deduce that equation (23) is another way to express

the g.a.p. when 0 < α ≤ 2, and the signed symmetric covariation coefficient when α > 1.

3.3 Case of linear transformations of independent α-stable random variables

Let 1 < α ≤ 2. LetX1 andX2 be independent random variables such asXk ∼ Sα(γXk
, 0, 0), k = 1, 2

and X = (X1, X2). Let A = {ajk}, 1 ≤ j ≤ k ≤ 2, be a real matrix. The random vector

Y = (Y1, Y2) = AX, whose components are linear combinations

Yj =
2∑

k=1

ajkXk, j = 1, 2, (26)

of the Xk, is α-stable with characteristic function

E exp
{
i
∑2

j=1 tjYj

}
= exp

{
−

∑2
k=1 γ

α
Xk

|
∑2

j=1 ajktj |
α
}

= exp
{
−

∫
S2

|t1s1 + t2s2|
αΓY(ds)

}
.

(27)

For simplicity, we assume γX1
= γX2

. Expressions of the signed symmetric covariation coefficient

and g.a.p. are given below.

Proposition 3.7. Let 1 < α ≤ 2 and let Y = AX be a bivariate SαS random vector with

characteristic function

ϕY(t) = exp
{
− γα

2∑

k=1

|

2∑

j=1

ajktj |
α
}
. (28)

Then the signed symmetric covariation coefficient is given by:

scov(Y1, Y2) = κ(Y1,Y2)

∣∣|a11a21|α + |a12a22|
α + a11a22(a12a21)

⟨α−1⟩ + a12a21(a11a22)
⟨α−1⟩

∣∣ 12
(
|a11a21|α + |a12a22|α + |a12a21|α + |a11a22|α

)1/2
, (29)

where

κ(Y1,Y2) =





sign
(
a11
a21

|a21|
α + a12

a22
|a22|

α
)

if sign([Y1, Y2]α) = sign([Y2, Y1]α),

−1 if sign([Y1, Y2]α) = −sign([Y2, Y1]α).

13



The generalized association parameter is

ρ̃(Y1, Y2) =
a11a21(a

2
11 + a221)

α
2
−1 + a12a22(a

2
12 + a222)

α
2
−1

[D1D2]
1

2

, (30)

where D1 = a211(a
2
11+a

2
21)

α
2
−1+a212(a

2
12+a

2
22)

α
2
−1 and D2 = a221(a

2
11+a

2
21)

α
2
−1+a222(a

2
12+a

2
22)

α
2
−1.

Proof.

There is not particular difficulty to establish Equation (29). We simply use (13), taking into ac-

count X1 and X2 are independent (in the case of independence of random variables, the covariation

is also linear in its second argument) and γX1
= γX2

, i. e. ∥X1∥α = ∥X2∥α.

SinceY is a linear transformation of independent α-stable random variables, its spectral measure

is discrete and concentrated on 2 symmetric pairs of points of S2 (See Samorodnitsky and Taqqu

(1994) P. 69, 70). Taking into account γX1
= γX2

= γ, this spectral measure is given by

ΓY =
1

2
γα

2∑

k=1

(
a21k + a22k

)α/2[
δ
( a1k
(a21k + a22k)

1/2
,

a2k
(a21k + a22k)

1/2

)

+δ
( −a1k
(a21k + a22k)

1/2
,

−a2k
(a21k + a22k)

1/2

)]

where δ(a, b) denotes the Dirac measure at the point (a, b). Let (U1, U2) be a random vector on S2

with probability distribution Γ̃ = ΓY/ΓY(S2). The probability distribution Γ̃ is discrete such that

the symmetric points

( a1k
(a21k + a22k)

1/2
,

a2k
(a21k + a22k)

1/2

)
and

( −a1k
(a21k + a22k)

1/2
,

−a2k
(a21k + a22k)

1/2

)
(31)

have the same probability

(a21k + a22k)
α/2

2
[
(a211 + a221)

α/2 + (a212 + a222)
α/2

] , k = 1, 2.

Then we get E(U1U2), EU
2
1 , EU

2
2 and finally (30).

14



For example, when α = 1.3 if we set a11 = 12, a12 = −17, a21 = 1 and a22 = 12, scov = 0.60

and ρ̃ = 0.69.

4 Estimators of the g.a.p. and scov

In this section, we give a natural estimator of the g.a.p., using the stable symmetric spectral mea-

sure. We propose an estimator of the signed symmetric covariation coefficient, using the fractional

lower order moments (FLOM). Lemma 3.5 states that in the sub-Gaussian case, the signed symmet-

ric covariation coefficient coincides with the generalized association parameter. This result allows

us to compare all estimators. We also give an estimator of the correlation matrix of the underlying

Gaussian random vector, applicable in sub-Gaussian case when 0 < α < 2.

4.1 Estimator of the g.a.p. using the stable spectral measure

As mentioned above, the generalized association parameter of a stable random vector X = (X1, X2)

with spectral measure Γ is defined using a random vector U = (U1, U2) on S2 with probability

distribution Γ̃ = Γ/Γ(S2). When the spectral measure Γ is discrete and concentrated on a finite

number of points of the unit circle S2, it is written

Γ(·) =

m∑

j=1

σjδsj (·), (32)

where the σj are the weights and δsj are point masses at the points sj = (cosφj , sinφj) ∈ S2, j =

1, ...,m. When X can be expressed as a linear transformation of independent α-stable random

variables, its spectral measure is given by (32) (See Samorodnitsky and Taqqu (1994), P. 70,

Proposition 2.3.7).

Let X(1),X(2), ...,X(n) be an i.i.d. sample of symmetric α-stable bivariate random vectors with

spectral measure Γ and the φj are unknown. Let m be the number of points sj ∈ S2 in which

we assume that the spectral measure is concentrated. For this grid we choose sj =
(
cos(2π(j −

1)/m, sin(2π(j − 1)/m)
)
, j = 1, ..,m. Let σ̂j be the estimator of the weight σj . Then

15



ρ̂(X1,X2) =

m∑

j=1

σ̂j cos
(2π(j − 1)

m

)
sin

(2π(j − 1)

m

)

[ m∑

j=1

σ̂j cos
2
(2π(j − 1)

m

)
·

m∑

j=1

σ̂j sin
2
(2π(j − 1)

m

)]1/2 , (33)

is a natural estimator of the g.a.p. between X1 and X2, defined in (11). This estimator is applicable

to all symmetric α-stable random vectors, even if the spectral measure of (X1, X2) is not discrete.

It is known that a general spectral measure Γ∗ (not discrete and/or the location of the point masses

are unknown) can be approximated by a discrete spectral measure Γ, concentred in the points sj ,

j = 1, ...,m, such that Γ converges in the Prokhorov distance to Γ∗ if m → ∞. See, for instance,

Garel and Massé (2009) and Davydov and Paulauskas (1999).

Now, we outline the methods we use for getting the estimates of σ̂j ; these methods are detailed

in Nolan et al. (2001). From (4) and (32) we can write IX(t) =
∑m

j=1 ψα(⟨t, sj⟩)σj . Further, let

(t1, ..., tm) ∈ R
2m and define the m×m matrix

Ψ = Ψα(t1, ...., tm, s1, ..., sm) =




ψα(⟨t1, s1⟩), · · ·, ψα(⟨t1, sm⟩)

· · · · · · · · ·

· · · · · · · · ·

ψα(⟨tm, s1⟩), · · ·, ψα(⟨tm, sm⟩)



.

If σ⃗ = [σ1, ..., σm]′ and I⃗ = [IX(t1), ..., IX(tm)]′, then

I⃗ = Ψσ⃗. (34)

If t1, ..., tm are chosen so that Ψ−1 exists, then σ⃗ = Ψ−1I⃗ gives the weights of (32). Unfortunately,

in practice Ψ is ill-conditioned. To avoid the matrix inversion problem, McCulloch (2000) suggested

restating the system (34) as a constrained quadratic programming problem that guarantees non

negative weights:

minimize ∥I⃗∗ −Ψσ⃗∥2 . (35)

subject to σ⃗ ≥ 0.

To get the σ̂j , j = 1, ...,m, we need first to estimate Ψ and I⃗, and then to solve the problem

16



(35). Estimating Ψ is very straightforward. We define some grids tj = sj , j = 1, ...,m. Remem-

ber that from (4) we have ψα(u) = |u|α. Each element of the matrix Ψ̂ is got by ψ̂α(⟨tl, sj⟩) =

|tl1sj1+ tl2sj2|
α̂, j, l = 1, ...,m, with α̂ an estimator of the characteristic exponent detailed below.

Nolan et al. (2001) proposed two methods for estimating I⃗. The first uses the empirical char-

acteristic function (ECF) of the vector. Given the i.i.d. sample X(1),X(2), ...,X(n), let ϕ̂n(t)

and În be the empirical counterparts of ϕX and IX defined in (3) and (4). Then ϕ̂n(t) =

(1/n)
∑n

j=1 exp(i⟨t,X
(j)⟩) is the ECF and În(t) = − ln ϕ̂n(t). Given t1, ..., tm elements of S2,

I⃗ECF,n = [În(t1), ...., În(tm)]′ is the ECF estimate of I⃗. Let α̂j and σ̂j , j = 1, 2, be the estimators

of index and scale parameters of each j coordinate of the 2-dimensional data set. We use the quan-

tile based estimators of McCulloch (1986) and estimators of Koutrouvelis (1980) to estimate these

parameters. We define α̂ = αECF = (1/2)
∑2

j=1 α̂j as a consistent estimator of the joint index of

stability α.

The second method for estimating I⃗ generalizes the method of McCulloch (2000). This method

is called the Projection method because it is based on one-dimensional projections of the data

set. First, consider a projection of the bivariate symmetric α-stable random vector X: for any

u ∈ S2, ⟨u,X⟩ is a one-dimensional symmetric α-stable random variable with characteristic function

E exp(it⟨u,X⟩) = exp{−IX(tu)} and its scale parameter is given by (5). Now consider the sample

X(1),X(2), ...,X(n). Fix a grid t1, ..., tm on S2, where each tj is a direction on which the data set

is projected. In this way, define for each tj the one-dimensional data set ⟨tj ,X
(1)⟩, ..., ⟨tj ,X

(n)⟩.

From (6) define

ÎX(tj) = [γ̂(tj)]
α̂(tj), j = 1, ...,m, (36)

where the values of α̂(tj) and γ̂(tj) are respectively the estimates of the index of stability and the

scale parameter of the data ⟨tj ,X
(1)⟩, ..., ⟨tj ,X

(n)⟩, obtained using the quantile based estimators

of McCulloch (1986) and estimators of Koutrouvelis (1980). Define a joint characteristic exponent

by α̂ = αPROJ = (1/m)
∑m

j=1 α̂(tj). Then, (36) becomes ÎX(tj) = [γ̂(tj)]
α̂, j = 1, ...,m. Davyvod

and Paulauskas (1999) proposed a different method for estimating spectral measure. We empirically

observed the convergence of estimator (33) for all estimation procedures we used. Therefore we

conjecture that it is a weakly consistent estimator of g.a.p. if m→ ∞.
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4.2 Estimator of scov using Fractional Lower Order Moments

For 1 ≤ p < α, consider the quantity

ŝcov(X1, X2) = κ̂(X1,X2)

∣∣∣
( n∑

j=1

X1j X
⟨p−1⟩
2j

)( n∑

j=1

X2j X
⟨p−1⟩
1j

)∣∣∣
1/2

[( n∑

j=1

|X1j |
p
)( n∑

j=1

|X2j |
p
)]1/2 , (37)

where

κ̂(X1,X2) =





sign
( n∑

j=1

X1jX
⟨p−1⟩
2j

)
if sign

( n∑

j=1

X1jX
⟨p−1⟩
2j

)
= sign

( n∑

j=1

X2jX
⟨p−1⟩
1j

)
,

−1 if not.

The pairs (X11, X21), ...., (X1n, X2n) are independent and identical copies of (X1, X2).

When p = 1, (37) becomes

ŝcov(X1, X2) = κ̂(X1,X2)

∣∣∣
( n∑

j=1

X1j sign(X2j)
)( n∑

j=1

X2j sign(X1j)
)∣∣∣

1/2

[( n∑

j=1

|X1j |
)( n∑

j=1

|X2j |
)]1/2 , (38)

where

κ̂(X1,X2) =





sign
( n∑

j=1

X1jsign(X2j)
)

if sign
( n∑

j=1

X1jsignX2j)
)
= sign

( n∑

j=1

X2jsign(X1j)
)
,

−1 if not.

For 0 < q < α ≤ 2, consider the quantity

r̂ =

( n∑

j=1

|X1j |
q
)2/q

+
( n∑

j=1

|X2j |
q
)2/q

−
( n∑

j=1

|X1j −X2j |
q
)2/q

2
[( n∑

j=1

|X1j |
q
)( n∑

j=1

|X2j |
q
)]1/q . (39)

Basic convergence properties of estimators defined by (37) and (39) are given below.
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Proposition 4.1.

1. The quantity ŝcov is a strongly consistent estimator of the signed symmetric covariation co-

efficient. This estimator does not require a prior estimation of the spectral measure.

2. In the sub-Gaussian case, r̂ is a strongly consistent estimator of the correlation coefficient

between two components of the underlying Gaussian vector. When α > 1, it is also a strongly

consistent estimator of the signed symmetric covariation coefficient. For 0 < α ≤ 2, r̂ is a

strongly consistent estimator of the g.a.p.

Proof. Let (X1, X2) be SαS with α > 1. Then for all 1 ≤ p < α,

[X1, X2]α
∥X2∥αα

=
EX1X

⟨p−1⟩
2

E|X2|p
. (40)

This result is established in Cambanis and Miller (1981) and d’Estampes (2003). Using (40), the

signed symmetric covariation coefficient can be written, for 1 ≤ p < α,

scov(X1, X2) = κ(X1,X2)

∣∣∣∣∣
EX1X

⟨p−1⟩
2 EX2X

⟨p−1⟩
1

E|X1|pE|X2|p

∣∣∣∣∣

1/2

, (41)

where

κ(X1,X2) =





sign(EX1X
⟨p−1⟩
2 ) if sign(EX1X

⟨p−1⟩
2 ) = sign(EX2X

⟨p−1⟩
1 ),

−1 if not.

Let (X11, X21), ...., (X1n, X2n) be independent and identical copies of (X1, X2). The quantity

ŝcov(X1, X2) = κ̂(X1,X2)

∣∣∣
( 1

n

n∑

j=1

X1j X
⟨p−1⟩
2j

)( 1

n

n∑

k=1

X2k X
⟨p−1⟩
1k

)∣∣∣
1/2

[( 1

n

n∑

j=1

|X1j |
p
)( 1

n

n∑

k=1

|X2k|
p
)]1/2

= κ̂(X1,X2)

∣∣∣
( n∑

j=1

X1j X
⟨p−1⟩
2j

)( n∑

k=1

X2k X
⟨p−1⟩
1k

)∣∣∣
1/2

[( n∑

j=1

|X1j |
p
)( n∑

k=1

|X2k|
p
)]1/2

(42)

where

κ̂(X1,X2) =





sign
( n∑

j=1

X1jX
⟨p−1⟩
2j

)
if sign

( n∑

j=1

X1jX
⟨p−1⟩
2j

)
= sign

( n∑

j=1

X2jX
⟨p−1⟩
1j

)
,

−1 if not.
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As a consequence of the strong law of large numbers for independent copies, for k, l = 1, 2, k ̸= l,

1

n

n∑

j=1

Xkj X
⟨p−1⟩
lj −→ EXkX

⟨p−1⟩
l a.s. as n −→ ∞, (43)

and for k = 1, 2,
1

n

n∑

j=1

|Xkj |
p −→ E|Xk|

p a.s. as n −→ ∞. (44)

When Xn and Yn respectively converge to a and b almost surely, then XnYn converges to ab almost

surely and Xn/Yn converges to a/b almost surely. Thus, from (43) and (44), the estimator (42)

converges to scov(X1, X2) almost surely as n −→ ∞.

For 0 < q < α ≤ 2, the strong law of large numbers (44) implies that the estimator

r̂ =

( n∑

j=1

|X1j |
q
)2/q

+
( n∑

j=1

|X2j |
q
)2/q

−
( n∑

j=1

|X1j −X2j |
q
)2/q

2
[( n∑

j=1

|X1j |
q
)(∑

j=1

|X2j |
q
)]1/q

=

( 1

n

n∑

j=1

|X1j |
q
)2/q

+
( 1

n

n∑

j=1

|X2j |
q
)2/q

−
( 1

n

n∑

j=1

|X1j −X2j |
q
)2/q

2
[( 1

n

n∑

j=1

|X1j |
q
)( 1

n

n∑

k=1

|X2k|
q
)]1/q

converges to r almost surely as n −→ ∞.

4.3 Some simulation results in sub-Gaussian and Linear combination cases

The performance of the estimators ρ̂, ŝcov and r̂ is discussed in the sub-Gaussian case. In the case

of linear combinations of symmetric independent stable random variables, we discuss only the per-

formance of the estimators ρ̂ and ŝcov. We denote the scale parameters of X1 and X2 respectively

by γ1 and γ2.

Now, let us describe the abbreviations used in the tables :

20



• scovf: this estimate of scov is obtained using Fractional Lower Order Moments, as defined in

(37);

• core: this estimate of the correlation coefficient is got using (39);

• gapemc, gapeko, gappmc and gappko are the estimates of g.a.p. got using (33):

gapemc is got when the parameters α, γ1 and γ2 are estimated using the quantile based

estimators of McCulloch (1986) and the weights σ̂j are obtained by the ECF method;

gapeko is got when the parameters α, γ1 and γ2 are estimated using the estimators of Koutrou-

velis (1980) and the weights σ̂j are obtained by the ECF method;

gappmc is got when the parameters α, γ1 and γ2 are estimated using the estimators of

McCulloch (1986) and the weights σ̂j are obtained by the Projection method;

gappko is got when the parameters α, γ1 and γ2 are estimated using the estimators of Koutrou-

velis (1980) and the weights σ̂j are obtained by the Projection method;

The size of simulated samples is n and m is the number of points of the quantizer (32) and we make

u = 100 replications. The displayed value is the mean over replications. The positive values beneath

are the mean absolute deviations to the mean displayed above. We evaluated the estimations from

the estimator (37) for different values of p. Comparing the mean of the estimates and the mean

absolute deviations, a computationally efficient choice is p = 1. In (39), we computationally get the

best results for the estimates and the mean absolute deviations by taking q = α/3. We iteratively

evaluate q by q = (1/6u)
∑u

j=1(α̂1j + α̂2j), where α̂1j and α̂2j are respectively the estimates of the

index of stability of X1 and X2 for the replication j.

We also calculate the estimations obtained from (33) for different values ofm between 2 and 100. In

sub-Gaussian case, the best results were obtained when m = 10, and in the case of linear combina-

tions when m = 11. Therefore, here we report on only these values of m. In estimation of spectral

measure using the ECF method, scaling the data by the median of the values |X(1)|, ..., |X(n)| gives

consistently good results across all scales, see Nolan et al. (2001).
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Put Table 1 here.

Put Table 2 here.

When α > 1, the estimator ŝcov gives very good results for estimating the signed symmetric covari-

ation coefficient. In the sub-Gaussian case, the estimator r̂ is also a strongly consistent estimator

of this quantity. This last estimator should be favored for sub-Gaussian random vectors because

it gives the smallest mean absolute deviations and is applicable for all 0 < α ≤ 2. We use an ap-

proximation on 10 or 11 points for the estimator ρ̂. We observed that the results do not vary very

significantly when we increase the number of discretization points. This estimator, which requires

a prior estimation of α and an approximate spectral measure, gives worse results compared to the

previous ones. We have better results when α approaches 2. For 1,600 simulated data vectors,

timing for getting one estimate of the scov using (38) is null. It takes 3.32 seconds for getting one

estimate of the g.a.p. using (33) when the weights σ̂j , j = 1, ..., 10 are estimated by ECF Method,

and 6.75 seconds when the weights are estimated by Projection Method.

Put Table 3 here.

In the case of linear combinations of independent and identically distributed random variables, the

estimator ρ̂ gives consistently very good results for estimating the g.a.p. We use an approximation

on 11 points for the estimator ρ̂. The results obtained using ŝcov remain satisfying.

In general, a good estimation of the spectral measure requires large samples. For example,

Nolan et al. (2001) give estimates of the spectral measure for 10,000 simulated data vectors. For

sub-Gaussian random vectors and linear transformation of independent α-stable random variables,

we have calculated estimates of the spectral measure for 1,600 simulated data vectors and we have

obtained satisfying results.
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Table 1: Estimates of scov and g.a.p. for n = 1, 600 sub-Gaussian data vectors with α = 1.5,

γ1 = 5, γ2 = 10 and m = 10.

True value −1.00 −0.60 −0.40 −0.20 0.00 0.10 0.30 0.50 0.90

scovf −1.00 −0.60 −0.38 −0.20 −0.01 0.10 0.31 0.50 0.90

0.00 0.04 0.05 0.07 0.06 0.07 0.06 0.05 0.02

core −1.00 −0.60 −0.39 −0.20 0.00 0.10 0.31 0.50 0.90

0.00 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.01

gapemc −0.80 −0.55 −0.36 −0.18 −0.00 0.09 0.27 0.46 0.81

0.00 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.00

gapeko −0.80 −0.55 −0.36 −0.18 −0.00 0.09 0.27 0.46 0.81

0.00 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.00

gappmc −0.80 −0.56 −0.35 −0.17 −0.01 0.09 0.27 0.46 0.81

0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00

gappko −0.80 −0.55 −0.36 −0.18 −0.00 0.09 0.27 0.46 0.81

0.00 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.00

q 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

25



Table 2: Estimates of scov and gap for n = 1, 600 sub-Gaussian data vectors with α = 0.8, γ1 = 5,

γ2 = 10 and m = 11.

True value −1.00 −0.60 −0.40 −0.20 0.00 0.30 0.70 0.90

core −1.00 −0.60 −0.40 −0.20 −0.00 0.30 0.70 0.90

0.00 0.04 0.04 0.04 0.04 0.04 0.02 0.01

gapemc −0.80 −0.50 −0.33 −0.16 −0.00 0.24 0.61 0.80

0.01 0.05 0.05 0.05 0.04 0.04 0.05 0.02

gapeko −0.80 −0.50 −0.32 −0.15 −0.00 0.23 0.60 0.80

0.00 0.04 0.06 0.04 0.05 0.04 0.05 0.02

q 0.27 0.27 0.26 0.26 0.27 0.26 0.27 0.27
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Table 3: Estimates of scov and g.a.p. for n = 1, 600 linear combination data with α = 1.5, γ = 10

and m = 11.

a11 100 12 10 −13 −11 −12 22 9

a12 16 −17 0 9 13 21 12 −17

a21 −50 2 0 2 2 2 2 19

a22 −8 12 10 5 4 5 20 −10

scov −1.00 −0.60 0.00 0.11 0.30 0.50 0.71 0.91

scovf −1.00 −0.58 0.00 0.10 0.30 0.50 0.70 0.90

0.00 0.06 0.05 0.11 0.06 0.06 0.02 0.01

gap −1.00 −0.65 0.00 0.27 0.35 0.53 0.56 0.83

gapemc −0.94 −0.64 0.00 0.27 0.36 0.53 0.56 0.82

0.00 0.02 0.02 0.02 0.03 0.03 0.02 0.01

gapeko −0.94 −0.64 0.00 0.27 0.36 0.53 0.56 0.82

0.00 0.02 0.02 0.02 0.02 0.03 0.02 0.01

gappmc −0.94 −0.64 0.00 0.27 0.36 0.53 0.56 0.82

0.00 0.02 0.03 0.03 0.04 0.05 0.02 0.01

gappko −0.94 −0.65 0.00 0.27 0.36 0.53 0.56 0.82

0.00 0.02 0.02 0.03 0.03 0.03 0.02 0.01
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