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Abstract

The use of frequency-shifted feedback (FSF) lasers in optical metrol-
ogy is based on a unique coherence property: the appearance of beats in
the noise spectrum at the output of a two-beam interferometer, whose
frequencies vary linearly with the path delay of the interferometer. A
description of the output of a FSF laser as a moving comb of optical
frequencies is generally admitted to explain these specific coherence prop-
erties. Here starting from the model of a passive FSF cavity seeded by
spontaneous emission we give a rigorous description of the time-spectrum
properties of FSF lasers and show that the moving comb exists only in
the limit of small frequency shift.

1 Introduction

A frequency shifted feedback (FSF) laser is a laser cavity in which a frequency
shifter -usually an acousto-optics modulator (AOM)- has been inserted [1]. FSF
cavities are characterized by ∆ the angular frequency of the frequency shifter
and τr the cavity roundtrip time. They show some similarity with Q-switch
mode locked lasers, but with the difference that the FSF cavity is closed on
the first diffraction order of the AOM. Moreover the shift frequency is generally
chosen independently from the cavity free spectral range. FSF lasers can be
seeded by a an external laser field, or by the spontaneous emission from the
gain medium of the laser cavity. Each time a photon makes a roundtrip in the
cavity, it undergoes a frequency shift (usually in the MHz to GHz range), which
suppresses the interference effect responsible for the formation of the optical
frequency comb of multimode lasers. When the seeding arises from spontaneous
emission the output optical spectrum is broadband and continuous despite the
fact that the noise spectrum is discrete [2]. The interest for these lasers has been
triggered by both theoretical challenges and potential applications in different
fields. A detailed review of ”early” demonstrations can be found in [3]. In the
last ten years, the field of applications of FSF lasers have spread to various
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Figure 1: The moving comb model. The optical spectrum is plotted as a function
of t.

areas, such as manipulation of atoms by laser [4, 5, 6], optical communications
[7], optical frequency combs [8, 9] and optical frequency domain ranging [10, 11,
12, 13].

Most of applications of FSF lasers in optical metrology rely on a property
specific to these lasers: when a FSF laser enters a two beams interferometer
the noise spectrum of the laser at the output of the interferometer exhibits
additional beats, whose frequencies evolve linearly with the path delay of the
interferometer. This property remains valid for path delays orders of magnitude
larger than the coherence length of the laser [14]. In 1993 experimental studies
carried out on a FSF laser in the limit of a small frequency shift (i.e. ∆ ≪ 2π/τr)
have demonstrated that the output field of a FSF laser is a chirping comb of
frequencies or moving comb (MC), consisting in the superposition of optical
modes whose instantaneous frequency chirps with time (Fig. 1) [15]. As the
instantaneous frequency changes with time the amplitude of the mode evolves
according to the optical spectral density of the FSF laser. The MC shows a
periodicity of 2π/∆ and 1/τr in the time and frequency domain respectively. The
MC model gives an intuitive understanding of the RF properties of FSF lasers:
at the output of the two-beam interferometer the optical spectrum consists in
a system of two moving combs shifted by the time delay of the interferometer
and the beat frequencies in the noise spectrum are directly deduced from the
differences between the instantaneous optical frequencies of the modes of the
two combs [12]. Numerical simulations tend to prove the existence of such a
comb even when the small shift approximation does not hold [16].

Therefore the observation of additional beats at the output of the Michel-
son interferometer has become systematically interpreted as the signature of a
chirping frequency comb [17]. In the case of a monochromatic seeding the per-
tinence of the MC model has been demonstrated [18]. However the MC model
lacks a rigorous justification in the case of a seeding by spontaneous emission.
Moreover it can be pointed out that the description of the FSF laser field by the
moving comb is abusive in most experimental cases. From Fourier analysis the

2



size of an elementary cell in the time-frequency representation is equal to unity
[19]. To resolve an element of the comb, the integration time must be much
smaller than 2π/∆ and the corresponding frequency bandwidth is then larger
than ∆/2π. However to resolve the comb the frequency bandwidth should be
much smaller than 1/τr. Therefore the time-frequency MC has a physical reality
only in the case where ∆/2π ≪ 1/τr that is in the small shift approximation: it
appears that the MC model remains a convenient - but improper - hypothesis.

Surprisingly a deeper theoretical analysis on FSF lasers seeded with stochas-
tic noise has recently led to an unexpected demonstration: there is no need to
consider the MC model to account for the additional RF beats observed at the
output of a Michelson interferometer [18, 20]. Authors consider a passive cav-
ity (PC) seeded by a stochastic field representing the spontaneous emission in
the spatial mode of the laser, and provide an analytical expression of the noise
spectrum of a FSF laser, including the additional beats at the output of the
interferometer, which seems to rule out the generally admitted hypothesis of
the MC model.

In this paper we focus on the apparent contradiction between the MC model
[15] and the PC model seeded by a stochastic field [20]. Starting from the
PC model in the time-frequency representation we show that there is indeed
a moving comb but only in the limit of small frequency shift. More generally
we show that the spectral density of the FSF light field in the time-frequency
representation involves a universal class of periodic functions defined by their
Fourier series. This class of functions only depend from the parameters of the
cavity. Their specificity lies in the fact that the phase of the nth spectral Fourier
component evolves quadratically with n: in the limit of a small frequency shift,
this class of functions tends to a discrete comb which justifies the MC model in
that case. It exhibits a more complicated behavior in the general case, where it
shows a close connection to Gauss sums [21]. We also evidence a correspondence
with the Talbot effect in optical diffraction [22]. Finally we link the fact that
FSF lasers show both a continuous optical spectrum and a discrete noise (or
RF) spectrum, to the intrinsic properties of this class of functions.

2 The passive cavity model

2.1 Presentation

The passive cavity model (PC) involves a ring-like optical cavity closed on the
first order of diffraction of an acousto-optics (AO) modulator. For more consis-
tence we adopt the notations used in [20] and [23]. The AO modulator is driven
at angular frequency ∆: each time a photon makes a roundtrip in the cavity it
experiences a frequency shift equal to ∆/2π. τr is the roundtrip time in the cav-
ity and we define R as the reflection coefficient for the whole cavity. R is slightly
smaller than one to account for diffraction losses in the AO modulator and par-
tial reflectivity of the output mirror. We neglect any frequency-dependent gain
or losses and consider a flat transmission function for any frequency component
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Figure 2: Sketch of the passive cavity model (PCM).

of the intracavity light field.
This cavity is injected by an optical field ξ which represents the generic

seeding of the passive cavity (spontaneous emission, monochromatic or phase-
modulated wave...). We consider E(t) as the light field just before the output
coupler of the passive cavity. The amplitude of the seeding at the same position
is named ξ(t). The laser field obeys the simple recurrence relationship:

E(t) = ξ(t) +Rei∆tE(t− τr) (1)

which leads to [20]:

E(t) =

∞
∑

n=0

Rn ξ(t− nτr) e
i(n∆t−Φn) (2)

where Φn = ∆τr
∑n−1

l=0 l =
n(n−1)

2 ∆τr.
One can define n0 as the smallest integer verifying Rn0 ≤ 0.01 i.e. n0 ≈

4.6/ ln(1/R). Therefore when necessary one can approximate the FSF light field
by the truncated sum:

E(t) =

n0
∑

n=0

Rn ξ(t− nτr) e
i(n∆t−Φn). (3)

2.2 Optical spectrum of FSF lasers

Without loss of generality we define the seeding field by its Fourier transform:

ξ(t) =

∫

ξ̃(ω) eiωt dω (4)

where:

ξ̃(ω) =
1

2π

∫

ξ(t) e−iωt dt. (5)

The spectrum of the FSF laser field writes:
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Ẽ(ω) =
1

2π

∞
∑

n=0

Rn e−iΦn

∫

ξ(t− nτr) e
−i(ω−n∆)t dt (6)

and then:

Ẽ(ω) =

∞
∑

n=0

Rn ξ̃(ω − n∆) e−inωτr eiΦn+1 . (7)

For a seeding by spontaneous emission, the spectrum ξ̃(ω) is a delta-correlated
process. For a given ω, Ẽ(ω) is a sum of incoherent terms with random phases.
Therefore Ẽ(ω) is a delta-correlated Rayleigh density function [24]. The opti-
cal spectrum of FSF lasers appears therefore as broadband and continuous, or
modeless [2]. In the case where the variations of |ξ̃(ω)| with ω occur on a scale
much larger than n0∆, we have:

Ẽ(ω) ≈ |ξ̃(ω)|
∞
∑

n=0

Rn e−iψn(ω) (8)

where ψn(ω) is a random distribution of phases between −π and +π. The
summation term is therefore the sum of phasors with negative exponential am-
plitude and random phase. The second momentum of the negative exponential
amplitude distribution is independent from ω and is equal to 1/(2 ln(1/R)).
Ẽ(ω) obeys a Rayleigh probability density function and the ensemble average
of the optical power spectrum of the FSF laser simply writes [24]:

< |Ẽ(ω)|2 >≈ |ξ̃(ω)|2
2 ln(1/R)

. (9)

Then the spectrum of the FSF laser reproduces the spectrum of the seeding
field.

3 Time-frequency representation of FSF lasers

We now consider the time-dependent spectral properties of FSF lasers. We write
the FSF laser field as:

E(t) =

∞
∑

n=0

Rn e−iΦn

∫

ξ̃(ω) ei(ω+n∆)t e−inωτr dω

=

∫

ξ̃(ω)FR,∆τr (ωτr −∆t) eiωt dω (10)

where FR,φ is a 2π periodic function defined by its Fourier series:

FR,φ(θ) =
∞
∑

n=0

Rn e−inθ e−in(n−1)φ/2. (11)
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The amplitude of the Fourier coefficients decreases exponentially while their
phase evolves quadratically with n.

3.1 Interpretation

A remarkable consequence arising from the previous expression is the decoupling
between the intrinsic properties of the seeding field given by its Fourier transform
ξ̃(ω), from the specific properties of the passive cavity which are represented by
the universal class of functions FR,φ. The latter only depends from the physical

parameters of the cavity R, ∆ and τr. At first sight the term ξ̃(ω)FR,∆τr(ωτr−
∆t) can be interpreted as the time-dependent Fourier transform of the FSF
laser field. In a time-frequency representation, the function FR,∆τr(ωτr − ∆t)
is periodic with both t and ω, with the periods 2π/∆ and 2π/τr respectively
in the time and angular frequency domains. It can be seen that this function
is shifting with time in the time-frequency plane at a rate equal to δω

δt = ∆
τr

which illustrates intuitively the intrinsic chirped nature of the FSF laser field.
It is worth noting that due to the quadratic phase of its Fourier components the
FR,φ function differs in the general case from a comb of lines, which invalidates
intuitively the picture of the moving comb (fig. 3).

An interesting parallel can be made with the diffraction phenomenon: this
expression is the restriction to negative frequencies of the field diffracted by
a grating of equidistant narrow lines, leading to the Talbot effect, i.e. the
repetition of the diffracting pattern at periodic distances from the grating [22].
Fig. 4 gives a plot of |FR,φ(θ)|2 as a function of θ and φ and shows a close
analogy with the so-called Talbot carpet. Interestingly the expression of F2π is
also close to the Gauss sum used for factorizing numbers, which could lead to
further applications of FSF lasers [21].

Finally the functions FR,φ(θ) have a physical reality when instead of a spon-
taneous emission, the FSF cavity is seeded by a monochromatic laser field de-
fined by its spectrum ξ̃(ω) = E0 δ(ω − ω0). The FSF laser field simply writes
E(t) = E0 FR,∆τr (ω0τr−∆t)eiω0t and the intensity: I(t) = |E0|2|FR,∆τr(ω0τr−
∆t)|2. I(t) directly reproduces the square modulus of FR,φ(θ). We therefore
simply recover from the analogy with the Talbot effect, why FSF lasers seeded
by a monochromatic field emit in pulsed modes when ∆/2π is commensurable
with 1/τr [1, 18].

3.2 Instantaneous spectrum of FSF lasers

A rigorous calculation of the instantaneous spectrum of the passive FSF cavity
requires a short time Fourier transform (STFT). We consider for instance w(t) a
real Gaussian window function centered at t = 0, defined by Tw, the full-width
at half maximum (FWHM) and the normalization condition:

∫

w(t) dt = 1. (12)

We define w̃ as its Fourier transform:
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Figure 3: Plot of |FR,φ(θ)|2 for R = 0.9. φ increases from 2π × 5 10−4 to
2π × 0.512.
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w̃(ω) =
1

2π

∫

w(t) e−iωt dt. (13)

In the angular frequency space the FWHM of w̃ is equal to
√
8ln2
Tω

≃ 2.35
Tω

.
The STFT at time τ of the FSF light field is:

Ẽ(τ, ω) =

∫

dtw(t− τ)E(t) eiωt

=

∞
∑

n=0

Rn e−iΦn (14)

×
∫

dt

∫

dω′ w(t − τ) ξ̃(ω′) eiω
′(t−nτr)+i(ω+n∆)t.

Taking Ω = ω + ω′ leads to:

Ẽ(τ, ω) =

∞
∑

n=0

Rn e−iΦn (15)

×
∫

dΩ ξ̃(Ω− ω) ei(ω−Ω)nτr

∫

dtw(t− τ) ei(Ω+n∆)t.

We choose the width Tw of the window function so that n0 ∆Tw ≪ 2π, for
instance Tw = 2π/(100n0∆). In that case Ẽ(τ, ω) is equal to:

Ẽ(τ, ω) =

∞
∑

n=0

Rn e−iΦn (16)

×
∫

dΩ ξ̃(Ω− ω) ei(ω−Ω)nτr+in∆τ

∫

dtw(t− τ) eiΩt

which rewrites as:

Ẽ(τ, ω) =

∫

dΩ ξ̃(Ω− ω)FR,∆τr
(

(Ω− ω)τr −∆τ
)

×
∫

dtw(t− τ) eiΩt (17)

and finally:

Ẽ(τ, ω) = (18)
∫

dΩ ξ̃(Ω− ω)FR,∆τr
(

(Ω− ω)τr −∆τ
)

w̃(Ω) eiΩτ .

We obtain the convolution product of ξ̃(ω)FR,∆τr(ωτr − ∆τ) by the func-
tion w̃(ω) eiωτ : the instantaneous spectrum at time τ is equal to the product
ξ̃(ω)FR,∆τr(ωτr −∆τ) convoluted in the Fourier space by a Gaussian function
of width 2.35

Tω

= 37n0∆.
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3.3 Limit of small frequency shift

We now turn to the situation where the frequency shift is much smaller than
the cavity free spectral range. This case was investigated experimentally and
led to the model of the moving comb model [15].

We suppose that ∆ is small enough so that the cumulated phase over n0

roundtrips ∆τr
2 n0(n0 − 1) is much smaller than 2π. We consider for instance

∆τr
2 n0(n0 − 1) = 2π/100. In that case:

E(t) ≈
∫

ξ̃(ω)
eiωt

1−Re−i(ωτr−∆t)
dω. (19)

The Airy function can be described as a comb of equidistant Lorentzian lines
[25]:

ΛR(θ) =
1

1−Re−iθ
=

1

(1−R)2
(20)

×
k=+∞
∑

k=−∞

1

1 + 2R
(1−R)2 (θ − kπ)2

[1−R cos θ − iR sin θ].

The FWHM of the individual Lorentzian lines is equal to
√
21−R√

R
. The in-

stantaneous spectrum of the FSF light field is therefore the convolution product
of ξ̃(ω) ΛR(ωτr − ∆τ) by a gaussian function of width 37n0∆. Taking into
account ∆τr

2 n0(n0 − 1) = 2π/100 and the definition of n0, it is easy to show

that 37n0∆ ≈ 1−R
τr

, that is to say comparable or smaller than the width of
the individual Lorentzian components in the angular frequency representation.
Therefore the instantaneous spectrum of the FSF laser in the limit of a small
frequency shift consists effectively in a moving comb with the periods 2π/∆ and
2π/τr, in the time and angular frequency domains respectively. Time-frequency
representations of the FSF field are plotted on fig. 5 for different values of the
product ∆τr/2π. Note that the contrast of the moving comb vanishes when
∆τr/2π > 10−2 and the instantaneous spectrum appears then as a continuum.

4 Noise properties of FSF lasers

We now turn to the calculation of the noise (or RF) properties of FSF lasers
seeded by spontaneous emission. It has been observed than although the optical
spectrum is broadband and continuous the noise spectrum is discrete [20]. This
property is specific to the class of functions FR,φ and actually relies on the
quadratic phase of its Fourier components.

We calculate the product E(t)E∗(t+ τ):

E(t)E∗(t+ τ) (21)
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=

∫ ∫

dω dω, ξ̃(ω) ξ̃∗(ω,) ei(ω−ω
,)t e−iω

,τ

×FR,∆τr(ωτr −∆t)F ∗
R,∆τr (ω

,τr −∆t−∆τ).

We have:

FR,∆τr(ωτr −∆t)F ∗
R,∆τr (ω

,τr −∆t−∆τ) (22)

=

∞
∑

n=0

∞
∑

p=0

Rn+pe−i(nω−pω
,)τrei(n−p)∆te−ip∆τe−i(Φn−Φp).

Recall that:

∞
∑

n=0

∞
∑

p=0

an,p =

∞
∑

p=0

∞
∑

q=0

ap+q,p +

∞
∑

n=0

∞
∑

q=0

an,n+q −
∞
∑

q=0

aq,q (23)

which gives three contributions. Taking n = p + q the first contribution to
the product E(t)E∗(t+ τ) writes:

∫ ∫

dω dω, ξ̃(ω) ξ̃∗(ω,) ei(ω−ω
,)t e−iω

,τ (24)

×
∞
∑

q=0

Rqe−iq(ωτr−∆t)e−i
q(q−1)

2 ∆τr

∞
∑

p=0

R2pe−ip[(ω−ω
,+q∆)τr+∆τ ].

Taking Ω = ω − ω, + q∆ this expression is rewritten as:

∫
[ ∞
∑

q=0

Rqe−iΦqe−iq∆τ

×
∫

dω ξ̃(ω) ξ̃∗(ω + q∆− Ω) e−iω(qτr+τ)
]

× eiΩ(t+τ)ΛR2(Ωτr +∆τ)dΩ. (25)

The appearance of the comb-like function ΛR2 in this expression is a con-
sequence of the quadratic phase of the Fourier components of FR,θ. It can be
checked that this property is also specific to the quadratic phase [26]. When
the three contributions are added one obtains the expression of the product
E(t)E∗(t+ τ):

E(t)E∗(t+ τ) =

∫

G(Ω) eiΩ(t+τ)ΛR2(Ωτr +∆τ)dΩ (26)

where:
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G(Ω) =
∞
∑

q=−∞
R|q|ηq (27)

×
∫

ξ̃(ω) ξ̃∗(ω + q∆− Ω) e−iω(qτr+τ)dω

and where η = e−i∆τ when q ≥ 0 and η = e−iΩτr when q < 0.
The product E(t)E∗(t + τ) is therefore defined by its Fourier transform.

When τ = 0, this quantity reduces to the intensity of the FSF laser. Then the
noise spectrum of the laser consists in a comb of equidistant Lorentzian lines
separated by the cavity free spectral range 1/τr [20], multiplied by the G(Ω)
term. We retrieve here from the passive cavity model, why the noise spectrum of
a FSF laser seeded by spontaneous emission shows equidistant peaks separated
by the cavity free spectral range, despite the fact that the optical spectrum is
broadband and continuous. When τ 6= 0, the product E(t)E∗(t + τ) appears
in the expression of the intensity at the output of the interferometer with the
time delay τ . We recover here the additional beats in the noise spectrum at
frequencies shifted by ∆τ/τr from the multiples of the free spectral range of the
FSF laser cavity [20].

5 Conclusion

In this letter we have thrown a new light on the unique properties of frequency
shifted feedback lasers and discussed the question of the existence of the moving
comb in these lasers and its compatibility with the passive cavity model. Start-
ing from a time-frequency representation of the FSF laser field in the passive
cavity model, we have shown that the latter can be written in a form that de-
couples the intrinsic parameters of the cavity from the properties of the seeding
field. In this paper we focused more particularly on the passive cavity seeded by
spontaneous emission from the gain medium but this approach can be extended
to single mode or phase-modulated seeding. We have shown that the FSF laser
field involves a class of functions FR,φ characterized by the parameters of the
cavity and defined by its Fourier series. The phase of the nth Fourier com-
ponent evolves quadratically with n. We have shown that the instantaneous
spectrum of the FSF laser consists in a moving comb only in the limit of the
small frequency shift. As soon as the frequency shift exceeds a few percents of
the cavity free spectral range, the frequency comb is washed out and the instan-
taneous spectrum appears continuous for two reasons: the uncertainty principle
in the time-frequency plane, and the fact that FR,∆τr differs from a comb when
∆τr > 0 (with notable exceptions when ∆τr is commensurable with π, where
FR,∆τr recovers then a discrete shape). Therefore the practical hypothesis of
the moving comb in FSF lasers is most of the time abusive. Finally we showed
that the quadratic phase of the Fourier components of FR,φ is responsible for the
fact that the noise spectrum of FSF lasers is discrete contrary to its broadband
and continuous instantaneous optical spectrum.
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