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Abstract— Stabilization of unstable systems with actuator
delay of substantial length and of completely unknown value
is an important problem that has never been attempted.
We present a Lyapunov-based adaptive control design that
achieves global stability, without a requirement that the delay
estimate be near the true delay value. We solve the problem
by employing a framework where the actuator delay is
represented as a transport PDE, by estimating the delay value
as the reciprocal of the convection speed in the transport PDE,
and by using full state predictor-based feedback.

I. I NTRODUCTION

Adaptive control in the presence of actuator delays is a
hard problem. To our knowledge, the only existing results
are the 1988 result by Ortega and Lozano [26] and the 2003
results by Niculescu and Annaswamy [24] and Evesque et
al [5]. These results deal with the problem where the plant
has unknown parameters but the delay value is known.

The remaining theoretical frontier, and a problem of great
practical relevance, is the case where the actuator delay
value is unknown and highly uncertain. This problem is
open in general even in the case where no parametric
uncertainty exists in the ODE plant. The importance of
problems with unknown delays was highlighted in [4],
where a simple scheme for delay estimation and controller
gain adjustment to preserve closed-loop stability was also
presented. An attempt at adaptive design for unknown delay
was also made in [14] by applying the Pade approximation,
however, while the design was (predictably) successful for
the approximate problem, it was not successful for a model
with an actual delay of significant length.

In this paper we present the first systematic adaptive
control design for a system with unknown actuator delay
by focusing on the case

Ẋ(t) = AX(t)+ BU(t−D) , (1)

where the full state—both the ODE plant stateX ∈ R
n and

the infinite-dimensional actuator stateU(η ),η ∈ [t−D,t]—
are available for measurement, and where the ODE plant
parameters are known, but where the delay lengthD is
unknown (though constant) and can have an arbitrarily large
value. This problem can be formulated around an actuator
delay model given by atransport equation (convective/first-

order hyperbolic PDE), namely,

Ẋ(t) = AX(t)+ Bu(0,t) (2)

Dut(x,t) = ux(x,t) (3)

u(1,t) = U(t) , (4)

whereu(x,t) is the state of the actuator, the domain length
is known (unity) but the propagation speed 1/D is unknown.
The actuator state is related to the input through the
following equation

u(x,t) = U(t + D(x−1)) , (5)

which, in particular, givesu(1,t) = U(t) and u(0,t) =
U(t −D). The control law around which we build a delay-
adaptation mechanism is a predictor-based feedback law,

U(t) = K

[

eADX(t)+ D
∫ 1

0
eAD(1−y)Bu(y,t)dy

]

, (6)

which achieves exponential stability atu ≡ 0,X = 0 by
performing perfect compensation of the actuator delay, and
which has been employed in many control design and
analysis studies for systems with actuator delays over the
last three decades [1], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [17], [18], [19], [20], [21], [22], [23], [24], [25], [27],
[30], [31], [32], [33], [34], [35], [36].

Within this framework we obtain a global adaptive stabi-
lization result, for an arbitrarily large and unknown actuator
delay value (Sections III and IV).

Without a question, an even more relevant and chal-
lenging problem is the one where the full state is not
available for measurement, more specifically, when the state
of the transport PDEu(x,t), i.e., the actuator state, is not
measured. A yet more challenging problem is when, in
addition, only an output of the ODE system

Y (t) = CX(t) (7)

is measured, rather than the full stateX(t), and, finally, the
most challenging in this string of problems is when the ODE
plant has parametric uncertainty, i.e.,A(θ),B(θ),C(θ),
whereθ is unknown. (For an exhaustive categorization of
adaptive control problems with actuator delay, please see
Section II). However, as restrictive as the requirement for
measurement ofu(x,t) may seem, we do not believe that
any delay-adaptive problem without the measurement of
u(x,t) is solvable globally because it cannot be formulated
as linearly parametrized in the unknown delayD. As a
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consequence, when the controller uses an estimate ofu(x,t),
not only do the initial values of the ODE state and the
actuator state have to be small, but the initial value of the
delay estimation error also has to be small (the delay value
is allowed to be large but the initial value of its estimate
has to be close to the true value of the delay). This local
result is actually proven in our companion paper [2].

In our global full-state feedback design we require only
one bit of a priori knowledge about the length of the delay:

Assumption 1: An upper bound̄D on the unknownD > 0
is known.

This upper bound is used in two ways. An adaptation
algorithm employing projection keeps the delay estimate
below the a priori bound. In addition, based on the upper
bound for the delay length, the adaptation gain is selected
to be sufficiently small, and a normalization parameter is
selected to be sufficiently large, to ensure that adaptation
is sufficiently slow to guarantee closed-loop stability. The
approach for update law design (Section III) and for the
corresponding stability analysis (Section IV) is based on
the ideas that we introduced in [16] for Lyapunov-based
adaptive control of parabolic PDEs. The adaptation and
normalization gain choices are conservative. The relevant
part of the design is the structure of the adaptation law, not
the exact gain values employed in the analysis.

In this paper the only parametric uncertainty considered is
the unknown delay. This is done for clarity of presentation,
as the presence of unknown parameters in the plant would
obscure presentation of new tools for handling the unknown
delay. In another companion paper [3] we present an exten-
sion with unknown plant parameters and where the control
objective is not regulation to zero but trajectory tracking.

We start this paper with Section II in which we categorize
all the combinations of delay-adaptive, ODE parameter-
adaptive, full-state, and output-feedback problems arising
in the area of adaptive control in the presence of delay.

II. CATEGORIZATION OF ADAPTIVE CONTROL

PROBLEMS WITH ACTUATOR DELAY

A finite-dimensional system with actuator delay may
come with

• unknown delay (D)
• unmeasured actuator state (u)
• unknown parameters in the finite-dimensional part of

the plant (A)
• unmeasured state of the finite-dimensional part of the

plant (X).

Each one of these situations introduces a design difficulty,
which needs to be dealt with by using an estimator (a
parameter estimator or a state estimator). We point out that
a state estimator of the actuator state is trivial when the
delay is known (one gets the full state by waiting one delay
period), however this estimation problem is far from trivial
when the delay is also unknown.

The symbolsD,u,A,X will be helpful as we try to cate-
gorize all the problems in which one, two, three, or all four
of these design difficulties may arise. For example,(D,u,X)

denotes the case where only the ODE plant parameters are
known, whereas the delay is unknown and the state of the
actuator and the ODE are unmeasurable.

There are a total of fourteen combinations arising from
the four basic problems, (D), (u), (A), and (X). We focus
exclusively on problems where the delay is present and is
of significant length to require the use of predictor feedback
(rather than being treated as a small perturbation through
some form of small gain argument). The following list
categorizes the fourteen control problems and gives the
status of each them:

1) (X), (u), (u,X)—non-adaptive problems solvable us-
ing observer-based predictor feedback [17];

2) (A,X), (A)—solved in [26], [24], [5] but with relative
degree limitations;

3) (u,A), (u,A,X)—tractable using the techniques
from [26], [24], [5];

4) (D)—the main result of the present paper (Sections III
and IV);

5) (D,X)—tractable as in Point 4 (by adding a standard
ODE observer) but not highly relevant;

6) (D,A)—the subject of our companion paper [3];
7) (D,A,X)—tractable using the techniques in Point 6

combined with adaptive backstepping and Kreissle-
meier observers;

8) (D,u), (D,u,A), (D,u,A,X)—not tractable globally
because of lack of linear parametrization in any situ-
ation involving (D) and (u) simultaneously; the case
(D,u) is studied in our other companion paper [2].

If this combinatorial complexity hasn’t already over-
whelmed the reader, we should point out that in each
of the cases involving unknown parameters, namely (D)
and (A), multiple choices exist in terms of design
methodology (Lyapunov-based, estimation/swapping-based,
passivity/observer-based, direct, indirect, pole placement,
etc.). In addition, in output-feedback adaptive problems,
namely problems involving (A) and (X), the relative degree
plays a major role in determining the difficulty of a problem.
Finally, trajectory tracking requires additional tools, as
compared to problems of regulation to zero.

So, the present paper addresses only a subset among
important problems in adaptive control with actuator delay,
but in our opinion the most relevant among the tractable
problems.

III. D ELAY-ADAPTIVE PREDICTOR FEEDBACK WITH

FULL -STATE MEASUREMENT

We consider the system (2)–(4) where the pair(A,B) is
completely controllable. Before we proceed, for a reader
familiar with our prior work we point out that the rep-
resentation (3), (4) is different than the representation
ŭt(x̆,t) = ŭx(x̆,t), ŭ(D,t) =U(t), ŭ(0,t) =U(t−D), ŭ(x̆,t) =
U(t +x−D), which we used in [17], [13], and which would
be less convenient for adaptive control as it is not linearly
parametrized inD.

When D is unknown, we replace (6) by the adaptive
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controller

U(t) = K

[

eAD̂(t)X(t)+ D̂(t)
∫ 1

0
eAD̂(t)(1−y)Bu(y,t)dy

]

(8)

with an estimateD̂ governed by the update law

˙̂D(t) = γProj[0,D̄]{τ (t)} (9)

where

τ (t) = −

∫ 1
0 (1+ x)w(x,t)KeAD̂(t)xdx(AX(t)+ Bu(0,t))

1+ X(t)T PX(t)+ b
∫ 1
0 (1+ x)w(x,t)2dx

,

(10)
the standard projector operator is given by

Proj[0,D̄]{τ} = τ







0, D̂ = 0 andτ < 0
0, D̂ = D̄ and τ > 0
1, else

(11)

the matrixP is the positive definite and symmetric solution
of the Lyapunov equation

P(A + BK)+ (A + BK)TP = −Q (12)

for any positive definite and symmetric matrixQ, the
constantb is chosen to satisfy the inequality

b ≥
4|PB|2D̄
λmin(Q)

, (13)

the transformed state of the actuator is given by

w(x,t) = u(x,t)− D̂(t)
∫ x

0
KeAD̂(t)(x−y)Bu(y,t)dy

−KeAD̂(t)xX(t) , (14)

and the positive adaptation gainγ is chosen “sufficiently
large.”

For this adaptive controller, the following result holds.
Theorem 1: Consider the closed-loop system consisting

of the plant (2)–(4), the control law (8), and the parameter
update law defined through (9)–(14). Let Assumption 1
hold. There existsγ∗ > 0 such that for anyγ ∈ (0,γ∗),
the zero solution of the system(X ,u,D̂ − D) is stable
in the sense that there exist positive constantsR and ρ
(independent of the initial conditions) such that for all initial
conditions satisfying(X0,u0,D̂0) ∈ R

n × L2(0,1)× [0,D̄],
the following holds:

ϒ(t) ≤ R
(

eρϒ(0)−1
)

, ∀t ≥ 0, (15)

where

ϒ(t) = |X(t)|2 +

∫ 1

0
u(x,t)2dx + D̃(t)2 . (16)

Furthermore,

lim
t→∞

X(t) = 0, lim
t→∞

U(t) = 0. (17)

IV. PROOF OFSTABILITY FOR FULL -STATE FEEDBACK

In this section we prove Theorem 1. We start by consid-
ering the transformation (14), along with its inverse

u(x,t) = w(x,t)+ D̂(t)
∫ x

0
Ke(A+BK)D̂(t)(x−y)Bw(y,t)dy

+Ke(A+BK)D̂(t)xX(t) . (18)

After a careful calculation, the transformed system can be
written as

Ẋ(t) = (A + BK)X(t)+ Bw(0,t) (19)

Dwt(x,t) = wx(x,t)− D̃(t)p(x,t)−D ˙̂D(t)q(x,t) (20)

w(1,t) = 0, (21)

where D̃(t) = D− D̂(t) is the parameter estimation error,
and

p(x,t) = KeAD̂(t)x (AX(t)+ Bu(0,t))

= KeAD̂(t)x ((A + BK)X(t)+ Bw(0,t)) (22)

q(x,t) =

∫ x

0
K
(

I + AD̂(t)(x− y
)

eAD̂(t)(x−y)Bu(y,t)dy

+KAxeAD̂(t)xX(t)

=

∫ x

0
w(y,t)

[

K
(

I + AD̂(t)(x− y)
)

eAD̂(t)(x−y)B

+D̂(t)
∫ x

y
K
(

I + AD̂(t)(x− ξ )
)

eAD̂(t)(x−ξ )BK

×e(A+BK)D̂(t)(ξ−y)Bdξ
]

dy

+

[

KAxeAD̂(t)x +

∫ x

0
K
(

I + AD̂(t)(x− y)
)

×eAD̂(t)(x−y)BKe(A+BK)D̂(t)ydy
]

X(t) . (23)

Now we consider a Lyapunov-Krasovskii type (non-
quadratic) functional

V (t) =D logN(t)+
b
γ

D̃(t)2 , (24)

where

N(t) = 1+ X(t)TPX(t)+ b
∫ 1

0
(1+ x)w(x,t)2dx . (25)

Taking a time derivative ofV (t), we obtain

V̇ (t) =−
2b
γ

D̃(t)
(

˙̂D(t)−γτ(t)
)

+
D

N(t)

(

−X(t)T QX(t)+2X(t)TPBw(0,t)

−
b
D

w(0,t)2−
b
D
‖w(t)‖2

−2b ˙̂D(t)
∫ 1

0
(1+ x)w(x,t)q(x,t)dx

)

, (26)

where we have used integration by parts and‖w(t)‖2 de-
notes

∫ 1
0 w(x,t)2dx. Using the assumption that̂D(0)∈ [0,D̄]

and the update law (9)–(11) with the help of [15, Lemma
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E.1] or [17, Lemma 3], we get

V̇ (t) ≤
D

N(t)

(

−X(t)T QX(t)+2X(t)TPBw(0,t)

−
b
D

w(0,t)2−
b
D
‖w(t)‖2

−2b ˙̂D(t)
∫ 1

0
(1+ x)w(x,t)q(x,t)dx

)

, (27)

as well as thatD̂(t) ∈ [0,D̄],∀t ≥ 0, and ˙̂D2 ≤ γ2τ 2. Then,
applying Young’s inequality and employing (13), we obtain

V̇ (t) ≤−
D

2N(t)

(

λmin(Q)|X(t)|2 +
b
D

w(0,t)2 +2
b
D
‖w(t)‖2

+4b ˙̂D(t)
∫ 1

0
(1+ x)w(x,t)q(x,t)dx

)

, (28)

and, finally, substituting (9), we arrive at

V̇ (t) ≤−
D

2N(t)

(

λmin(Q)|X(t)|2 +
b
D

w(0,t)2 +2
b
D
‖w(t)‖2

)

+2Dbγ
∫ 1

0 (1+ x)|w(x,t)||p(x,t)|dx
N(t)

×

∫ 1
0 (1+ x)|w(x,t)||q(x,t)|dx

N(t)
. (29)

Then, a lengthy but straightforward calculation, employing
the Cauchy-Schwartz and Young inequalities, along with
(22) and (23), yields

∫ 1

0
(1+ x)|w(x,t)||p(x,t)|dx

≤ MemD̂(t) (|X(t)|2 +‖w(t)‖2+ w(0,t)2) (30)

and
∫ 1

0
(1+ x)|w(x,t)||q(x,t)|dx

≤ MemD̂(t) (|X(t)|2 +‖w(t)‖2) , (31)

whereM,m are sufficiently large positive constants given
by

M = max
{

2|K|2|A + BK|2,2|K|2|B|2,

1+2|K|(1+ |A|D̄)|B|(1+ D̄|BK|),

|K|2(|A|+ |(1+ |A|D̄)|BK|)2} (32)

m = |A|+ |A + BK| . (33)

Introducing these two bounds into (29), we get

V̇ (t) ≤−
D

2N(t)

(

λmin(Q)|X(t)2 +
b
D

w(0,t)2 +2
b
D
‖w(t)‖2

−γ
4bM2e2mD̄

min{λmin(P),b}

(

|X(t)|2 +‖w(t)‖2+ w(0,t)2)
)

,

(34)

and, finally,

V̇ (t) ≤−
D
2

(

min

{

λmin(Q),
b
D̄

}

−γ
4bM2e2mD̄

min{λmin(P),b}

)

×
|X(t)|2 +‖w(t)‖2+ w(0,t)2

N(t)
. (35)

By choosing

γ∗ =
min

{

λmin(Q), b
D̄

}

min{λmin(P),b}

4bM2e2mD̄
(36)

andγ∈ (0,γ∗) we makeV̇ negative semidefinite, and hence

V (t) ≤V (0) , ∀t ≥ 0. (37)

From this result we now derive a stability estimate.
From (14) and (18) we show that

‖u(t)‖2 ≤ r1‖w(t)‖2 + r2|X(t)|2 (38)

‖w(t)‖2 ≤ s1‖u(t)‖2+ s2|X(t)|2 , (39)

where r1,r2,s1,s2 are sufficiently large positive constants
given by

r1 = 3
(

1+ D̄2|K|2e2|A+BK|D̄|B|2
)

(40)

r2 = 3|K|2e2|A+BK|D̄ (41)

s1 = 3
(

1+ D̄2|K|2e2|A|D̄|B|2
)

(42)

s2 = 3|K|2e2|A|D̄ . (43)

From (24), (25) the following two inequalities readily
follow:

D̃2 ≤
γ
b

V (44)

|X |2 ≤
1

λmin(P)

(

eV/D −1
)

. (45)

Furthermore, from (24), (25) and (38) it follows that

‖u‖2 ≤
r1

b

(

eV/D −1
)

+ r2|X |2 . (46)

Combining (44)–(46) we get

ϒ(t) ≤

(

1+ r2

λmin(P)
+

r1

b
+

γ
Db

)

(

eV (t)/D −1
)

. (47)

So, we have boundedϒ(t) in terms ofV (t), and thus, using
(37), in terms ofV (0). Now we have to boundV (0) in
terms ofϒ(0). First, from (24), (25) it follows that

V ≤ D
(

λmax(P)|X |2 +2b‖w‖2)+
b
γ

D̃2 . (48)

Using (39) we get

V ≤(Dλmax(P)+2bDs2) |X |2

+2bDs1‖u‖2+
b
γ

D̃2 . (49)

and hence

V (0) ≤

(

Dλmax(P)+2bDs2+2bDs1+
b
γ

)

ϒ(0) . (50)

Denoting

R =
1+ r2

λmin(P)
+

r1

b
+

γD
b

(51)

ρ =λmax(P)+2bs2+2bs1+
b

γD
, (52)

we complete the proof of the stability estimate (15).
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Finally, to prove the regulation result we will use (35) and
Barbalat’s lemma. However, we first discuss the bounded-
ness of the relevant signals. By integrating (37) fromt = 0
to t = ∞, and by noting thatN(t) is uniformly bounded, it
follows thatX(t), ‖w(t)‖, andD̂(t) are uniformly bounded
in time. Using (38) we also get the uniform boundedness of
‖u(t)‖ in time. With the Cauchy-Schwartz inequality, from
(8) we get uniform boundedness ofU(t) for t ≥ 0. From
(5) we get the uniform boundedness ofu(0,t) for t ≥ D.
Using (2) we get uniform boundedness ofd|X(t)|2/dt for
t ≥ D. From (35) it follows thatX(t) is square integrable in
time. From this fact, along with the uniform boundedness
of d|X(t)|2/dt for t ≥ D, by Barbalat’s lemma we get that
X(t) → 0 ast → ∞.

What remains is to prove the regulation ofU(t). From
(35) it follows that ‖w(t)‖ is square integrable in time.
Using (38) we get that‖u(t)‖ is also square integrable in
time. With the Cauchy-Schwartz inequality, from (8) we get
that U(t) is also square integrable. To complete the proof
of regulation ofU(t) by Barbalat’s lemma, all that remains
to show is thatdU(t)2/dt is uniformly bounded. Towards
this end, we calculate

d
dt

U(t)2 =2U(t)K

[

eAD̂(t)Ẋ(t)+ ˙̂D(t)G1(t)+
D̂(t)

D
G2(t)

]

,

(53)

where

G1(t) =AeAD̂(t)X(t)

+
∫ 1

0

(

I + AD̂(t)(1− y)
)

g(y,t)dy (54)

G2(t) =BU(t)−BeAD̂(t)u(0,t)

+

∫ 1

0
AD̂(t)g(y,t)dy (55)

and
g(y,t) = eAD̂(t)(1−y)Bu(y,t) . (56)

The signal ˙̂D(t) is uniformly bounded overt ≥ 0 according
to (9)–(11). By using also the uniform boundedness of
X(t), Ẋ(t),‖u(t)‖,U(t) overt ≥ 0, and ofu(0,t) overt ≥D,
we get uniform boundedness ofdU(t)2/dt overt ≥D. Then,
by Barbalat’s lemma, it follows thatU(t) → 0 ast → ∞.

V. SIMULATIONS

We present the simulation results for the state-feedback
scheme in Section III, namely, for the closed-loop system
consisting of the plant (2)–(4), the control law (8), and the
parameter update law defined through (9)–(14).

We focus on highlighting the most important aspect
of our scheme—the ability to handle long delays, in the
presence of a large uncertainty on the delay. For this reason
we focus on the case of a scalar but unstable ODE (2),
with A = 0.75 and B = 1. We take the delay asD = 1,
which is larger thanA. So, the system’s transfer function
is X(s)/U(s) = e−s/(s−0.75). We assume that the known
upper bound on the delay is̄D = 2. We take the nominal
control gain asK = −A− 1 = −1.75 (which means that
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Fig. 1. The system response of they system (2)–(4), (8)–(14)for D = 1
and for two dramatically different values of initial estimate, D̂(0) = 0 and
D̂(0) = D̄ = 2D = 2.
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P = 1,Q = 2). We take the adaptation gain asγ = 23 and

the normalization coefficient asb = 4|PB|2D̄
λmin(Q) = 2D̄ = 4. We

take the actuator initial condition asu0(x) ≡ 0, i.e., as
U(θ) ≡ 0,∀θ ∈ [−D,0], and the plant initial condition as
X(0) = 0.5.

Hence, the closed-loop system responds toX(0) and to
D̂(0). We perform our tests for two distinctly different
values ofD̂(0)—at one extreme we takêD(0) = 0 and at
the other extreme we takêD(0) = D̄.

The responses are shown in Figure 1. First, they show
that, for both initial estimates, the adaptive controller
achieves regulation of the state and input to zero. Second,
they show that in both cases the estimateD̂(t) converges
towards the trueD and settles in its vicinity. The perfect
convergence is not achieved in either of the two cases,
since the regulation problem does not provide persistency
of excitation for parameter convergence. Third, the dashed
plot for D̂(t) shows that the projection operator is active
during the first 0.7 seconds. Fourth, we can observe that
by about 3 sec, the evolution of the estimateD̂(t) has been
completed.

Fifth, the plots forX(t) andU(t) are very informative in
showing four distinct intervals of behavior of the controller
and of the closed-loop system. During the first 1 sec, the
delay precludes any influence of the control on the plant,
so X(t) shows an exponential open-loop growth. At 1 sec,
the plant starts responding to the control and its evolution
changes qualitatively, resulting also in a qualitative change
of the control signal. When the estimation ofD̂(t) ends
at about 3 seconds, the controller structure becomes linear.
However, due to the delay, the plant stateX(t) continues to
evolve based on the inputs from 1 second earlier, so, a non-
monotonic transient continues until about 4 seconds. From
about 4 seconds onwards, the(X ,U) system is linear and the
delay is sufficiently well compensated, so the response of
X(t) andU(t) shows a monotonically decaying exponential
trend of a first order system.

We want to stress that the plots presented here do not
show the best performance achievable with the scheme.
Quite on the contrary, the plots have been selected to illus-
trate the less than perfect behaviors, with non-monotonic
evolution of all the states in the closed-loop system, that
one would obtain whenγ andb are not highly tuned.

VI. CONCLUSIONS

As we have explained in Section II, the problem of full
state stabilization with known ODE plant parameters but
with unknown delay is the central problem in adaptive
control of systems with actuator delays. The other problems
in the lengthy catalog of problems are extensions of the this
central problem. Some of them are solvable globally and
some of them only locally.

We present a globally stabilizing adaptive controller
which employs the measurement of actuator state and then
prove that, when the actuator state is replaced by its adaptive
estimate, local stability and regulation are achieved. A
stepping stone towards the latter result is a nonadaptive

linear robustness result with respect to the delay value
employed in the predictor feedback. We have presented the
linear result in more detail, to help the reader’s intuition
regarding the proof of the local adaptive result, which is
considerably more complex and presented with a limited
amount of detail due to space limitations.

The simulations show the effectiveness of the Lyapunov-
based adaptive controller. Whether the initial estimate ofthe
delay is zero or 100% above the true value, the estimator
drives the estimate towards the true value, which in turn
results in the stabilization of the closed-loop system by the
predictor-based adaptive controller.

When the actuator state is not measured but it is esti-
mated, local stability is achieved, as proved in our compan-
ion paper [2]. The extension to the problem with unknown
ODE plant parameters and to trajectory tracking is presented
in our other companion paper [3].
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