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Delay-Adaptive Full-State Predictor Feedback for
Systems With Unknown Long Actuator Delay

MIROSLAV KRSTIC AND DELPHINE BRESCHPIETRI
Department of Mechanical and Aerospace Engineering,
University of California, San Diego, La Jolla, CA 92093-041USA

Abstract— Stabilization of unstable systems with actuator order hyperbolic PDE), namely,
delay of substantial length and of completely unknown value

is an important problem that has never been attempted. X(t) = AX(t) 4+ Bu(0,t) 2
We present a Lyapunov-based adaptive control design that _

achieves global stability, without a requirement that the clay Dut(x,1) = te(x,1) )
estimate be near the true delay value. We solve the problem u(1,t) =U(t), 4)

by employing a framework where the actuator delay is . .
represented as a transport PDE, by estimating the delay vali  Whereu(x;t) is the state of the actuator, the domain length
as the reciprocal of the convection speed in the transport PB,  is known (unity) but the propagation speetDlis unknown.

and by using full state predictor-based feedback. The actuator state is related to the input through the
following equation
u(x,t) =U(t+D(x—1)), (5)

I. INTRODUCTION
which, in particular, givesu(1,t) = U(t) and u(0,t) =

. : . U(t—D). The control law around which we build a delay-
Adaptive control in the presence of actuator delays is a ¢ o ;

- adaptation mechanism is a predictor-based feedback law,
hard problem. To our knowledge, the only existing results
are the 1988 result by Ortega and Lozano [26] and the 2003
results by Niculescu and Annaswamy [24] and Evesque et
al [5]. These results deal with the problem where the plant

h K ters but the del lue is K which achieves exponential stability at= 0,X = 0 by
as unknown parameters but the defay value 1S known. performing perfect compensation of the actuator delay, and

Thg remaining theqretical frontier, and a problem of greafhich has been employed in many control design and
practical relevance, is the case where the actuator delgyaiysis studies for systems with actuator delays over the
value is unknown and hlghly uncertain. This problem iSast three decades [1], [5], [6], [7], [8], [9], [10], [11]12],
open in general even in the case where no parametri:g]’ [17], [18], [19], [20], [21], [22], [23], [24], [25], R7],
uncertainty exists in the ODE plant. The importance of30], [31], [32], [33], [34], [35], [36].
problems with unknown delays was highlighted in [4]," \thin this framework we obtain a global adaptive stabi-

where a simple scheme for delay estimation and controllgt a4io result, for an arbitrarily large and unknown adtra
gain adjustment to preserve closed-loop stability was a'%ﬂelay value (Sections Ill and V).

presented. An attempt at adaptive design for unknown delaypjithout a question, an even more relevant and chal-
was also made in [14] by applying the Pade approximatiofsnging problem is the one where the full state is not
however, while the design was (predictably) successful fot 5jjaple for measurement, more specifically, when the stat
the approximate problem, it was not successful for a modgf he transport PDEi(x,t), i.e., the actuator state, is not

with an actual delay of significant length. measured. A yet more challenging problem is when, in

In this paper we present the first systematic adaptivgddition, only an output of the ODE system
control design for a system with unknown actuator delay

U(t):K[eADX(t)JrD /O 1e‘\'3<1*y>Bu(y,t)dy . (6)

by focusing on the case Y(t) =CX(t) @)
) is measured, rather than the full st&é), and, finally, the
X(t) = AX(t)+BU(t—D), (1) most challenging in this string of problems is when the ODE

plant has parametric uncertainty, i.eA(6),B(6),C(8),
where the full state—both the ODE plant statec R" and where 8 is unknown. (For an exhaustive categorization of
the infinite-dimensional actuator statén),n € t —D,t}— adaptive control problems with actuator delay, please see
are available for measurement, and where the ODE plaSection Il). However, as restrictive as the requirement for
parameters are known, but where the delay ler@tlis measurement ofi(x,t) may seem, we do not believe that
unknown (though constant) and can have an arbitrarily largeny delay-adaptive problem without the measurement of
value. This problem can be formulated around an actuatatx,t) is solvable globally because it cannot be formulated
delay model given by &ransport equation (convective/first- as linearly parametrized in the unknown delBy As a



consequence, when the controller uses an estimatéxdf), denotes the case where only the ODE plant parameters are
not only do the initial values of the ODE state and th&nown, whereas the delay is unknown and the state of the
actuator state have to be small, but the initial value of thactuator and the ODE are unmeasurable.
delay estimation error also has to be small (the delay value There are a total of fourteen combinations arising from
is allowed to be large but the initial value of its estimatehe four basic problemsD), (u), (&), and ). We focus
has to be close to the true value of the delay). This loca&xclusively on problems where the delay is present and is
result is actually proven in our companion paper [2]. of significant length to require the use of predictor feedtbac
In our global full-state feedback design we require onlyrather than being treated as a small perturbation through
one bit of a priori knowledge about the length of the delaysome form of small gain argument). The following list
Assumption 1: An upper bound on the unknowrD >0 categorizes the fourteen control problems and gives the
is known. status of each them:
This upper bound is used in two ways. An adaptation 1) (X), (u), (u,X)—non-adaptive problems solvable us-
algorithm employing projection keeps the delay estimate ing observer-based predictor feedback [17];

below the a priori bound. In addition, based on the upper 2) (A,X), (A)—solved in [26], [24], [5] but with relative
bound for the delay length, the adaptation gain is selected degree limitations:

to be sufficiently small, and a normalization parameter is 5 uA), (u,AX)—tractable using the techniques
selected to be sufficiently large, to ensure that adaptation = oy ,[26] ’[2’4] [5];

is sufficiently slow to guarantee closed-loop stability.eTh (D)—the main result of the present paper (Sections IIl
approach for update law design (Section Ill) and for the and IV);

corresponding stability analysis (Section 1V) is based on 5) (D,X)—tractable as in Point 4 (by adding a standard
the ideas that we introduced in [16] for Lyapunov-based ODE observer) but not highly relevant;

adaptive control of parabolic PDEs. The adaptation and g (D, A)—the subject of our companion paper [3];
normalization gain choices are conservative. The relevant, (D’A X)—tractable using the techniques in P(;int 6

part of the design is the structure of the adaptation law, not * .o mpined with adaptive backstepping and Kreissle-

the exact gain values employed in the analysis. meier observers:
In this paper the only parametric uncertainty considered is 8) (D,u), (D,u,A), (D,u,A X)—not tractable globally
the unknown delay. This is done for clarity of presentation, because of lack of linear parametrization in any situ-

as the presence of unknown parameters in the plant would 540 involving ©) and (i) simultaneously; the case
obscure presentation of new tools for handling the unknown (D,u) is studied in our other companion paper [2].

delay. In another companion paper [3] we present an exten-hc hi bi ial lexity hasn't alread
sion with unknown plant parameters and where the control this ‘combinatorial complexity hasn't ajready over-

objective is not regulation to zero but trajectory tracking wfherl]med the .rea<|je_r, we kShOU|d point out that in each
We start this paper with Section Il in which we categoriz the cases involving unknown parameters, namey (

all the combinations of delay-adaptive, ODE parameteF!nd @), multiple choices exist in terms of design

adaptive, full-state, and output-feedback problems ragisi Methodology (Lyapunov-based, estimation/swappingdase

in the area of adaptive control in the presence of delay. passivity/obs_e_rver-based, direct, indirect, pqle plametn
etc.). In addition, in output-feedback adaptive problems,

namely problems involvingX) and X), the relative degree
plays a major role in determining the difficulty of a problem.
Finally, trajectory tracking requires additional toolss a
A finite-dimensional system with actuator delay maycompared to problems of regulation to zero.

Il. CATEGORIZATION OF ADAPTIVE CONTROL
PROBLEMS WITH ACTUATOR DELAY

come with So, the present paper addresses only a subset among
« unknown delay D) important problems in adaptive control with actuator delay
» unmeasured actuator stat ( but in our opinion the most relevant among the tractable
« unknown parameters in the finite-dimensional part oproblems.
the plant A)
« unmeasured state of the finite-dimensional part of the
plant (X). I11. DELAY-ADAPTIVE PREDICTORFEEDBACK WITH

. . . . e FULL -STATE MEASUREMENT
Each one of these situations introduces a design difficulty,

which needs to be dealt with by using an estimator (a We consider the system (2)—(4) where the g&yB) is
parameter estimator or a state estimator). We point out theempletely controllable. Before we proceed, for a reader
a state estimator of the actuator state is trivial when thiamiliar with our prior work we point out that the rep-
delay is known (one gets the full state by waiting one delagesentation (3), (4) is different than the representation
period), however this estimation problem is far from trivia t (X,t) = Ux(X,t),U(D,t) =U (t),0(0,t) =U (t — D), U(X,t) =
when the delay is also unknown. U (t+x—D), which we used in [17], [13], and which would
The symbolD,u, A, X will be helpful as we try to cate- be less convenient for adaptive control as it is not linearly
gorize all the problems in which one, two, three, or all fouparametrized irD.
of these design difficulties may arise. For examfilg,u, X) When D is unknown, we replace (6) by the adaptive



controller IV. PROOF OFSTABILITY FOR FULL-STATE FEEDBACK

In this section we prove Theorem 1. We start by consid-
D(t B(t)(1-y)
v = [eA / P Bu(y,t)dy| (8) ering the transformation (14), along with its inverse
with an estimateD governed by the update law uxt) = woot)+D(t /~x Ke(A+BK)If)(t)(x7y)Bw(y’t)dy
B(t) = yProjo s {T(t)} (©) +KATBRBIXK 1), (18)
where After a careful calculation, the transformed system can be
. . written as
T(t) =— Jo (L+)w(x,t)KeAPW*dx (AX (t) + Bu(0,t)) .
O LHXO)TPX() + b F 1+ xw(x t)2dx X(t) = (A+BK)X(t) +Bw(0,t) (19)
(10) Dwt (x,t) = wy(x,t) — D(t)p(x,t) — DD(t)g(x,t) (20
the standard projector operator is given by () x(%0) (O (hacet)  (20)
w(1,t) =0, (21)
0, D= 0 andr <0 ~ A N
Projos {1} =14 O, D=Dandt>0 (11) whereD(t) = D — D(t) is the parameter estimation error,
1, else and
b)
the matrixP is the positive definite and symmetric solution PO¢t) = KePUX(AX(t) + BU(OJ))
of the Lyapunov equation = KePO*((A+ BK) (t)+ ( t)) (22)
"X
P(A+BK)+ (A+BK)TP=-Q (12) aAxb) = /0 K (1 +AD(t) (x—y) 2V Bu(y,t)dy
D(t)x
for any positive definite and symmetric matriQ, the +|foeA X(t)
constantb is chosen to satisfy the inequality = / w(y,t) [K (I + AD(t)(x y))eA Hix-y)g
0
2N~ ~ X ~ ~
b> HPBITD (13) +D(t)/ K (1 +AD(t) (x— &)) 000K
Amin(Q) y

(A+BK)D(t)(& -y
the transformed state of the actuator is given by x€ Bdf}
LY + KAxeAf)(t)X—i-/ K (1 +AD(t)(x—
wixt) = u(xt)—D(t) / KPP By(y, t)dy [ ( OC=y)
0

_KePOtRy 1), 14 XY BReATEK DYy X(1).  (23)

Now we consider a Lyapunov-Krasovskii type (non-

and the positive adaptation gajnis chosen “sufficientl . ;
P P gan y guadratic) functional

large.”
For this adaptive controller, the following result holds.
Theorem 1. Consider the closed-loop system consisting V(Y
of the plant (2)-(4), the control law (8), and the parameter
update law defined through (9)—(14). Let Assumption here
hold. There existsy* > 0 such that for anyy € (0,y*), 1
the zero solution of the systerfX,u,D — D) is stable N(t):1+X(t)TPX(t)+b/ (L+x)w(x,t)*dx.  (25)
in the sense that there exist positive constaRtand p 70
(independent of the initial conditions) such that for aitiai ~ Taking a time derivative oY/ (t), we obtain
conditions satisfying(Xo, Up, Do) € R" x L»(0,1) x [0,D],

=DlogN(t) + gﬁ(t)z, (24)

the following holds: V(t) =— @D( )( (t) —yt(t ))
y
Yit) <R(M0 1), w0, (15) + % (=X TQX(t) +2X(t)TPBW(0,1)
h b b
where . ~ —BV-V(OJ).Zl— 5||W(t)||2
Y(t) = |X(t)|2+'/0 u(x,t)%dx+ D(t)?. (16) —2b|5(t)'/0 (1+x)w(x,t)q(x,t)dx> , (26)

Furthermore, where we have used integration by parts gmdt) )||? de-

2
lim Xt =0. limU() =0. 17 notes [g w(x,t)2dx. Using the assumption th&(0) € [0, D]
aU ®) g ®) 7 and the update law (9)—(11) with the help of [15, Lemma



E.1] or [17, Lemma 3], we get

V(t) gi (=X(t)TQX(t) +2X(t)TPBw(0,t)

—w(0.07 - 2 w(t)|
_20D(t) / 1(1+x)w(x,t)q(x,t)dx) L@

0

as well as thaD(t) € [0,D], ¥t > 0, andD? < y212. Then,

By choosing

~ min{Amin(Q), & } min {Amin(P), b}
N 4bM2e2mD

y (36)

andy € (0,y*) we makeV negative semidefinite, and hence

V(t) <V(0), Vt>0. (37)

From this result we now derive a stability estimate.
From (14) and (18) we show that

applying Young'’s inequality and employing (13), we obtain

, , b , b , lu®[? < rafwt)l®+rafX () (38)
V(t>§—m(Amm(Q)IX(t>l + W01+ 25 [lw(t)]] W) |2 < suflul®)||?+s2|X(t)]?, (39)
R 1 .. ..
+4bD(t)/ (1+x)w(x,t)q(x,t)dx> ’ 28) vv_hererl,rz,si,sz are sufficiently large positive constants
0 given by
and, finally, substituting (9), we arrive at o= 3(1+52|K|2e2\A+BK\6|B|2) (40)
: D b b =
VO <-mm <Amm<Q>|><<t>|2+5w<o,t>2+25||w<t>||2> rp = 3[K[2e2ABKID (42)
. _ 321 122/AD |12
+ 20y o EXIWO ) [ p0x 1 dx 5 = 3(1+DKPEAOBf) (42)
N(t) s = 3|K[2?AP, (43)
1
X jo(1+x)|w(x,t)||q(x,t)|dx' (29) From (24), (25) the following two inequalities readily
N(t) follow:
Then, a lengthy but straightforward calculation, emplgyin <> Y.
the Cauchy-Schwartz and Young inequalities, along with b® < BV (44)
(22) and (23), yields 2 1 v
X2 < e’/P—_1). 45
X" < Amin(P) ( ) (45)

-1
/o (14x)w(x.t)[| p(x.t)]dx

< Me™ (X (1) P+ [w(t)[*+w(0.t)?)  (30)
and
/01<1+x>|w<x,t>||q<x,t>ldx
<M (XOP+wol?), (@)

Furthermore, from (24), (25) and (38) it follows that

2T (v _ 2
Jull? < 2 (€//°—1) +ralx[2. (46)
Combining (44)—(46) we get
1+rp 11,y V(t)/D
< N T~ - .
Y(t) < (Amin(P) +5+ Db) (e 1) (47)

whereM,m are sufficiently large positive constants givenS0, we have bounded(t) in terms ofV (t), and thus, using

by

M = max{2|K[|A+BK|?2/K|?BJ%
1+2|K|(1+|A|D)|B|(1+ D|BK|),
KP(JAl+ (1 +|AID)[BK )%} (32)

m = |A+|A+BK|. (33)

Introducing these two bounds into (29), we get

D

V0 < gy (A @IX(O2+ Sw0.02+ 25 o)

2g2mD
Vi ey (YO IO+ w0.07) ).
(34)

and, finally,
. D/ b 4pM2g2™D
Vi) -3 (mln{Amin(Q)v 5} - Vm)
X(t)[2+ [[w(t) |2+ w(O,1)?
N(t) '

(35)

(37), in terms ofV(0). Now we have to boun& (0) in
terms ofY{(0). First, from (24), (25) it follows that

V < D (Amax(P)|X|? + 2b||w]|?) + ;b/f)Z. (48)
Using (39) we get
V < (DAmax(P) + 2bDsp) X2
+2stl|U|2+$|52. (49)

and hence

V(0) < (DAmax(P) + 2bDs; + 2bDs; + g) Y(0). (50)

Denoting
1+rp, ry VD
R= =4 51
Amin(P) ~ b~ b &0
b
P =Amax(P) + 2bs; + 2bs; + Vo (52)

we complete the proof of the stability estimate (15).



Finally, to prove the regulation result we will use (35) and
Barbalat's lemma. However, we first discuss the bounded-
ness of the relevant signals. By integrating (37) from0
to t = o0, and by noting thaN(t) is uniformly bounded, it
follows thatX(t), ||w(t)||, andD(t) are uniformly bounded
in time. Using (38) we also get the uniform boundedness ¢
[[u(t)]| in time. With the Cauchy-Schwartz inequality, from
(8) we get uniform boundedness 0f(t) for t > 0. From
(5) we get the uniform boundedness w,t) for t > D.
Using (2) we get uniform boundednessaji(t)|2/dt for
t > D. From (35) it follows tha¥X(t) is square integrable in
time. From this fact, along with the uniform boundednes
of d|X(t)|?/dt for t > D, by Barbalat’s lemma we get that
X(t) — 0 ast — co.

What remains is to prove the regulation dft). From
(35) it follows that ||w(t)|| is square integrable in time.
Using (38) we get thafju(t)|| is also square integrable in
time. With the Cauchy-Schwartz inequality, from (8) we ge
thatU(t) is also square integrable. To complete the proc
of regulation ofU (t) by Barbalat's lemma, all that remains
to show is thatdU (t)?/dt is uniformly bounded. Towards
this end, we calculate

%u ()2 =2U (1)K [eAWUX(t) FD()Gy(t) + ﬁiez(t) ,
(53)
where
Gi(t) =APOX(t)
1 R
+ [1+adm@a-y) gty (54
Go(t) =BU (t) — Be*PWu(0, )
1
+ [ ABg(y.t)ay (55)
JO
and ik
g(y:t) = PUEYIBu(y ). (56)

The signalD(t) is uniformly bounded over > 0 according
to (9)—(11). By using also the uniform boundedness c
X(t),X(t),]Ju(t)||,U(t) overt >0, and ofu(0,t) overt > D,
we get uniform boundednessdif (t)?/dt overt > D. Then,
by Barbalat's lemma, it follows thatl (t) — 0 ast — co.

V. SIMULATIONS

We present the simulation results for the state-feedbau
scheme in Section Ill, namely, for the closed-loop syster
consisting of the plant (2)—(4), the control law (8), and the
parameter update law defined through (9)—(14).

We focus on highlighting the most important aspec
of our scheme—the ability to handle long delays, in the

2 - - -Dhat(0) = 2
W ——Dhat(0) = 0
Yoy
' 1
1.5¢ voay
s A
\~-_-~
a —————————————
5 Y
0.5F
O Il Il Il Il
0 2 4 6 8 10
t
1.4 :
- - -Dhat(0) = 2
——Dhat(0) =0
120 (0)

X(®

-2.5

presence of a large uncertainty on the delay. For this reason
we focus on the case of a scalar but unstable ODE (Zig. 1. The system response of they system (2)—(4), (8)-t4p = 1

with A=0.75 andB = 1. We take the delay ab = 1,

which is larger tharA. So, the system’s transfer function
is X(s)/U(s) = e %/(s—0.75). We assume that the known
upper bound on the delay B = 2. We take the nominal
control gain asKk = —A— 1= —1.75 (which means that

10

- - -Dhat(0) = 2
——Dhat(0) = 0

10

and for two dramatically different values of initial estiteaD(0) =0 and
D(0O)=D=2D=2.



P=1,Q=2). We take the adaptation gain gs= 23 and linear robustness result with respect to the delay value
the normalization coefficient as— f\\?B\ZD —2D=4. We employed in the predictor feedback. We have presented the
take the actuator initial condition mé;;,o()x) =0, i.e., as linear result in more detail, to help the reader’s intuition
U(8) =0,v6 € [-D,0], and the plant initial condition as regarding the proof of the local adaptive result, which is

X(0) =0.5. considerably more complex and presented with a limited

Hence, the closed-loop system respondi(6) and to amount of detail due to space limitations.
D(0). We perform our tests for two distinctly different The simulations show the effectiveness of the Lyapunov-
values ofD(0)—at one extreme we takB(0) = 0 and at based adaptive controller. Whether the initial estimatthef

the other extreme we tak&(0) = D. delay is zero or 100% above the true value, the estimator
The responses are shown in Figure 1. First, they shoflfives the estimate towards the true value, which in turn
that, for both initial estimates, the adaptive controllef€SUlts in the stabilization of the closed-loop system kg th
achieves regulation of the state and input to zero. Secorifedictor-based adaptive controller.
they show that in both cases the estimBg) converges When the actuator state is not measureq but it is esti-
towards the trueD and settles in its vicinity. The perfect Mated, local stability is achieved, as proved in our compan-
convergence is not achieved in either of the two case@n Paper [2]. The extension to the problem with unknown
since the regulation problem does not provide persisten&PE plant parameters and to trajectory tracking is presente

of excitation for parameter convergence. Third, the dashdd Our other companion paper [3].

plot for Iﬁ(t) shows that the projection operator is active
during the first 0.7 seconds. Fourth, we can observe that
by about 3 sec, the evolution of the estim&@) has been [y
completed.

Fifth, the plots forX(t) andU (t) are very informative in ~ [?
showing four distinct intervals of behavior of the conteoll
and of the closed-loop system. During the first 1 sec, thd3]
delay precludes any influence of the control on the plant,
so X(t) shows an exponential open-loop growth. At 1 sec, 4
the plant starts responding to the control and its evolution
changes qualitatively, resulting also in a qualitativergiea 5]
of the control signal. When the estimation Dft) ends
at about 3 seconds, the controller structure becomes linear
However, due to the delay, the plant stxt@) continues to 6]
evolve based on the inputs from 1 second earlier, so, a no%—
monotonic transient continues until about 4 seconds. From
about 4 seconds onwards, ¢ U) system is linear and the 7]
delay is sufficiently well compensated, so the response of
X(t) andU (t) shows a monotonically decaying exponential [8]
trend of a first order system.

9]

We want to stress that the plots presented here do n(gt
show the best performance achievable with the scheme.
Quite on the contrary, the plots have been selected to illuB!
trate the less than perfect behaviors, with non-monotonjgy;
evolution of all the states in the closed-loop system, that
one would obtain whery andb are not highly tuned. [12]

VI. CONCLUSIONS [13]

As we have explained in Section Il, the problem of full
state stabilization with known ODE plant parameters bLE' 4l
with unknown delay is the central problem in adaptive
control of systems with actuator delays. The other problem?%°]
in the lengthy catalog of problems are extensions of the thjg;
central problem. Some of them are solvable globally and
some of them only locally.

I . 17]

We present a globally stabilizing adaptive controlle|[
which employs the measurement of actuator state and then
prove that, when the actuator state is replaced by its adapti
estimate, local stability and regulation are achieved. ,1\18]
stepping stone towards the latter result is a nonadaptive
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