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Delay-Adaptive Predictor Feedback for Systems
With Unknown Long Actuator Delay

Delphine Bresch-Pietri and Miroslav Krstic

Abstract— Stabilization of an unstable system with an un- A crucial element of our design and analysis is the back-
known actuator delay of substantial length is an important stepping transformation
problem that has never been attempted. We present a Lyapunev

based adaptive control design, prove its stability and regiation Wixt) = d(xt)— ﬁ(t)/xKeAD(t)(xfy) Ba(y,t)dy
properties for the plant and actuator states, and present a ’ ’ 0 ’
simulation example inspired by the problem of control of pitch _KeAD(t)xx(t) 9)
and flight path rates in the unstable X-29 aircraft. x i
axt) = Wxt)+D() / K e(A+BRIDO ) By, t)dy
Jo
I. INTRODUCTION +Ke(A+BK)[5(t)xX(t). (10)

Adaptive control in the presence of actuator delays is
challenging. Examples of existing results include [3], [9D].  contribution and Organization. In a companion conference

All the existing re_sults deal with unknown parameters b_‘Haper [6] we established a global adaptive result wieqt)
known delay. In this paper we address the more challengifimeasured. In this paper we establishoeal result when
problem where the delay itself is unknown and arbitraritydo u(xt) is replaced by the estimatgx:t). The local adaptive

Consider the system result, established in Section I, builds upon robustneks

X(t) = AX(t)+BU(t— D), (1) Predictor feedback with respect to small errordinwhich is
_ shown in Section Il. Simulations for an unstable scalar fplan

where X € R" and where the delay lengtB is unknown inspired by the X-29 aircraft are shown in Section IV.
(though constant) and arbitrarily large. We use an actuator

delay model given b_y aransport PDE, II. NONADAPTIVE ROBUSTNESS TODELAY ERROR

X(t) = AX(t) +Bu(0,t) (2)  we takeD(t) as constant establish the robustness of the
Du (X, t) = ux(X,t) (3) predictor feedback to a small errld — D| in an appropriate
u(L,t) =Ut) ) norm in which the adaptive problem will also be studied in

Section Il (this is a higher norm than the one in which
whereu(x,t) is the state of the actuator. Instead of a full-statee established delay-robustness in [4]). We deno(@) =
measurement of the actuator staéx,t) =U(t+D(x—1)), U(6),0 € [-max{D,D},0] and use-| for a vector 2-norm.

we employ the state estimate Theorem 1. Consider the system (2)—(4), (6)—(7), (8). There
. A exists 0* > 0 such that for anyD| < 6%, i.e., for anyD €
G(x,t) =U(t+D(t)(x~1)), ®) - &*,D+ &%), the zero solution of the syste(iX,u,0) is
whereD(t) is the estimate of the unknown delay, obtainin§*Ponentially stable, namely, there exisp >25U0h that for
the following transport equation representation: all initial conditions satisfying(Xo,Uo,lo) € R" x L2(0,1) x
R R H1(0,1), the following holds:
D(t)G(x,t) = Gx(x,t) + D(t)(x — 1) Gx(x, 6
a(Lt) = U (). @

[(t) = X))+ fo [ux,t)2+0(x,1)2+ 0x(x,1)2] dx. (12)
Note that we don't use the infinite-dimensional observer (6) Corollary 2: Consider system (1) with the controller
but only the static estimate (5), where oridyt) is updated. R .

Let (xt) 2 u(xt) - 0(x1), which yields X(t) = AX() +  U@t)=K <eADx<t>+ eA<t9>Bu<e)de> NEE
BG(O,t) + B(0,t). t-D

We employ an adaptive predictor feedback There existsd* > 0 such that, for any|D| = |D — D| <

5 X E YRV 0%, there existsR > 0 such that for allX; € R",w ¢
ut) =K (eAD(”X(tHD(t)/O Catls ”Bu(yat)dy> . ®)  L,[~max{D,B},0]nH[~D,0] the following holds

whereK is selected to make the matrix+ I?K Hurwitz, which n(t) <RM(0)e*t (14)

means, in particular, that, for an@ = Q' > 0 there exists M(t) = |X(t)]2+ ft U (0)2d6 + ft AU(G)ZdG (15)
_pT Tp_ Jt—maxi D,D Jt—D '

P=P" >0 such thaP(A+BK) +(A+BK) P =-Q We prove the theorem using the following lemmas.

This work was supported by NSF and Bosch. Lemma 3: The system (2)—(4), (6)-(7), (8) is equivalent to
The authors are with the Department of Mechanical and AemsEngi- the system in which th&-subsystem is represented as
neering, University of California, San Diego, La Jolla, CA0®3-0411, USA, .
krstic@icsd. edu X(t) = (A+BK)X(t) + BW(0,t) + B{(0,1), (16)
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Fig. 1. Interconnections between the different variables

the U-subsystem is represented as

Dl (x,t) = Oy(x,t)—Dr(xt) (17)
G(L,t) = 0 (18)

with
r(x,t) =KeATBKIDX(A 4 BK)X (t) + %’(’t) + KBW(x,t)
o X R
+D / K (A-+BK)eABP-Y) By t)dy,  (19)
0

and thewhix-subsystem is represented as

D (x,t) = W(xt)— DKeAP*Ba(0,t) (20)
W(Lt) = 0 (21)
D (x,t) = Wu(xt) — D?KEAPXABI(0,t)  (22)
(L) = DKeAD( t). (23)

The (X,0,W)-system is shown in Figure 1. Th®-
connections are ‘weak’ and disappear whBn= D. The
exponentlally stable cascade connectians> X and i —
W — X are ‘strong’ and present even whéh= D. The
potentially destabilizing feedback connections thromghan
be suppressed by making small. An additional difficulty is
that an ‘unbounded’ connection fromy fo U exists. We deal
with it by including anH; norm in the stability analysis.

Lemma 4: The following holds for (9) and (10):

Ok (X, t) =V (x,t) + DKBW(x, 1)
~ "X N ~
+D / K (A-+ BK)DelA+BRP-Y) By, t)dy
JO

+ K(A+ BK)DelATBKIDXY (1) (24)
~ ~ X ~ ~
Vit (%,t) =0 (x,t) + DKBG(x,t) + D / KADEY)Ba(y,t)dy
JO

+ KADEAD*X (t). (25)
Lemma 5: The following holds for (9), (10), (24), (25):
[a®)[1> < palW(t)[|>+ p2IX(t)? (26)
a7 < 4INk()][>+ psl[W(t)|[*+ palX()[* (27)
IW)]> < aqllaE))® + g X (1)[? (28)
IMx(t)[|? < 4]|ax(t)]|*+ aal|at) >+ dal X (D)2, (29)
where
p (D) = 3(1+I52|K|2e2‘A+BK“5|B|2) (30)
pz(f)) _ 3|K|2e2\A+BK\D (31)
ps(D) = 4DYK2BA(1+ DA+ BK|2ePABK)  (32)
pa(D) = 4|K|2D?|A+ BK|2DIABK] (33)
au(d) = 3(1+E>2|K|2e2\A\5|B|2) (34)

(D) = 3|K[2eAD (35)
(D) = 4DYKPBA(1+D?|A 2P0 (36)
u(D) = 4KPDAROA. (37)
Lemma 6: Consider the Lyapunov function
V(t) = XT©)PX(t) +blo/ (14 X)(x,t)2dx
+bD (/ (1 X)W(x,t) 2dx+/ (1 X)Wy (X, t)zdx) (38)

There exist positive constanksg, by, p, and d* such that for
any |D| < &* the following holds

V < —pV. (39)
Proof: Differentiating (38), along the solutions of (16),
(17), (20), (22), and using integration by parts, we obtain

V =—XT(t)QX(t) +2XT (t)PB(W(0,t) + 0(0,1))

+2b1D/ (1+X)T(x,t) G (x, )l

+2b2D(/O (L4 X0W(x, ) (1)

+/ (L4 X (3, Wi (3, )d >

_—xTQx+2xTPB(( t)+
Gt

G(o,t
—2b1< (2) (i / (14 )0 xt)dx)
~ 20, (v‘v(%t)z . Hw(2 )2

o .
+BK /0 (1+x)W(x,t)eADXG(O,t)dx>

Y 2 Y 2
oty (BOU 12 1L

+D%KA /0 1(1+ x)v“vx(x,t)eAf’XBG(O,t)dx) : (40)

Let us define the following constants; = K|[B||,c; =
DK[|A + BK||elABKID|B|,c; = cp/(D|B|]),ca
2DKelAID ¢ = ¢4/2,c5 = 2D2K||AB||€?/AIP, and choose
by > 8|PB|/Am.n(Q). Using the Cauchy-Schwartz and Young
inequalities, we have:

vy < - AmnlQ >|><( >|2+%<v”v<o,t>2+u<o,t>2>
~ 2 g

Bl o1~ 151112~ 18110

DGO I DX+ ISV )
(MO IO gy 2 IO
( X HWXS:)HZ _ C%G(O,t)z
()12
- con?). (@1)



Grouping the like terms, we obtain and

) . . 2 SN2 IR 112 IR 2
v < - (29 o, ) o V() Ana(P)IX <t>|2+2<||u<t 2+ IO+ 1))
. <Amax(P)[X(t)|*+4([Ju(t) [+ [[G]]*)
o (12l (4o c%,))| Ol + 2|80 P+ X (O
( L2 +2(4(|0x(t)1? + g () | + aal X (©)?) , (52)
bl - 2b2 ( + C4 5+ )) max
_ {1+3po-+ Pa,3p1+P3} _
b SO dl - min{)\mian),ng,ézlj}? and d2 -
‘( 2 'b1> Vs (£)2 - (—2—2b1|Dl> )2 MaX{Amax(P) + 20+ 204, 4+ 201 + 2qs}. -
D 2 We now complete the proof of Theorem 1. From Lemma 6
by o N it follows that V(t) < V(0)e Pt. From Lemma 7 we get
— 3 WO) — b2 (0.1)%, (42) rt) < dzl’(O)e*F’t SoR=d,/d;, which completes the proof

of Theorem 1. Next we prove Corollary 2.

and, with some further majorizations (fiip| < D), we get Lemma 8: Jds, dg > 0 such thadsl (t) < N(t) < dal (t).

: Amin(Q ~ Proof: By substitutingu(x,t) =U (t+D(x—1)) into (12),
V(t) < ( mlnz( ) —2|D|b1) |X(t)|2 we get ( ) ( ( ))
> 2 2 t t
—bl(1—2|D|(1+D(01T°%+C3))) G2 r - |X(t)|2+1/ U(e)2d9+i/ U(6)2de
|D| D Jt-p D Ji-b
At
(bl— 26, ( c§+cg+cg)) (0, 1) +6 [ U(0)6. (53)
2D o vz (D2 31) 1wt 112 =— 1 _d= D, &
~ (ba= o e )12 (5 2008 ) 2 Thus.c = o da = max{1.D.0.3 .
by . 5 o By combining Theorem 1 W|th Lemma 8, we complete the
= 5 W(0,1)” — baf(0)”. (43)  proof of Corollary 2 withR = d“R

Assuming thatD| < 5*, where
I1l. ADAPTIVE CONTROL WITH ESTIMATION OF THE

5 — min{ D Db, by /\min(Q)D} TRANSPORTPDE STATE
3+2(ci+c3+c3) 4o +by" 4by” Ay

Now we establisiocal stability for anadaptive controller.
(44) A global result is not obtainable because the solutipnt) =
U(t+ D(x—1)) is not linearly parametrizable iB.

andb, > /4+c2 cZ+ ?bz’ from (42) we obtain _ Assumption 1: A lower boundD > 0 and an upper bound
. . N D > D on the unknown delap are known.
Vo< —n(IX )P+ [[)[7+ G0, )% + Mk (t) ]| The update law foD is chosen as
() ][ +W(0, 1)+ Vis(O,1)?) 45) |
< —nro (46) D(t) = yProjpg{T(t)}, y>0 (54)
where To(t) = X0 + [A)]2 + W2 + [W(®)? and  T(t) = /0 (L4 X)W(x, t)KeAOUXdx(AX (t) + BA(0, (H5)

n =min{*m5@ _ 2/B5|by, by (1-20(% + + 3+ ). by

here the standard projection operator is given b
2b2(%1+0§+0§+cé),b2—2‘g‘b1, B2 _2by|B|, %2} is positive. W projection op IS given by

Having obtained (46), to complete the proof of (39), we first 0, D=Dandr<0
obtain the following inequalities from (38): Projp5{T} =14 O, D=Dandr>0 (56)
V) > Amin(P)IX(1)[ +buD] i) |2 T, else
+boD (W) 1%+ [k (t)]1?) (47) Theorem 9: Consider the closed loop consisting of the plant
> : ) A _ (2)—(4), (6), (7), the control law (8), and the update law raki
> min{Amin(P), b1, 02D} Fo(t) (48) by (54)—(9). Let Assumption 1 hold and let
From (46) and (48), we complete the proof of (39) wﬂh: , 1 , 1 ,
P BT VI = XOP+ [ ueoncr [ ae?x
Lemma 7: 3dy,d> > 0 such thatdiI"(t) <V (t) < dol(t). 1 5
Proof: From (26)—(29) we get +/ Ox(x,1)2dx 4 D(t)? (57)
0

F(t) <X+ 2016 [1>+ GO [1) + 1GO 12+ 15> genote the norm of the overall state of the closed-loop myste
(49)  There exist positive constangsand R such that if the initial

<IX(1)] 2+ 2/[Ti(t) |2 + 3(pal V() [|* + p2|X (1) [%) state (Xo, Uo, Uo, Do) is such thaty(0) < p, then
+ 4|V (1) [|* + psl[W(t)||*+ palX (1)[? (50) Y(t) <RY(0), (58)
<max{1+3pz+ p4,2,3p1+ P3, 4} Mo(t) (51) lim_eX(t)=0,  lim_oU(t)=0. (59)



Proof: Mimicking the (omitted) proof of Lemma 3, we
obtain the(X, 0, W)-system as

X(t) = (A+BK)X(t)+BW#O0,t)+Ba(0,t) (60)
Dl (xt) = Ox(x,t)—D(t)r(xt)
—DD(t)(x— 1)r(xt) (61)
aLt) = 0 (62)
Dt (xt) = Wig(xt)—D(t)D(t)sxt)
—D(t)KePV*B(0,1) (63)
W(L,t) = O, (64)
where
r(xt) = B((’;’)U +KBW(X )

X ~
+ / K (A+ BK)D(t)eA+BKDO-Y)Byy(y,t)dy
JO

+ K (A+ BK)gATBRIDXY (1) (65)

s(x,t) =(1—x) (%’i;) + KePPOXB(KX(t) +W(O,t)))
+/Wy, [ )(x—y))ePOyB
+B(0) [ K {1+ AB(L)(x— £)eO O
)b

» BK glA+BRBO(E - YBd.s} dy
+ (KAeAf)(t)X—i— / K(1 +AD(t)(x—y))

><eAD (x=y) BKe(A+BK ( ydy) ( )

Since our Lyapunov analysis will involve af; norm of w,
we also need the governing equations of wesystem:

Dt (%) = Waoe(Xt) — DD()sc(x,t)
—KAD2e”0MXBgj(0, 1)

(66)

(67)

di(L,t) —BOD() <[KAeA6<t> ; /1K(I A1)

« AD() (1Y) g @ A+BK)D( ydy] )

+/Wy,

+ / K(1 +AD(t)(1— £))e"P(-8)

(1+AB(t) (1 - y) Oty

» BK g(A+BRBO(E - ydf} de)
+D(t)KeAD BG(0,t), (68)

where

[(1— X)Wk (X, 1)

1) Vi (x.1)]

Sc(x,t) = Bt

+KePPOX (AD(t)(1— ) — 1) B(KX(t) +W(0,t))
+B(0) [ W) K (BK +A(2
+AD(1) (x—y))) 00V

+f)(t)'/y'x|< (BK + A(21 +AD(t) (x— £)))

x D)

+KBA(x,t) + [K(AZD(t)—FBK)eA (B

~&) BK g A+BK)D() (§ -y Bdf} dy

+B(0) [ K (BK+ A2+ AD(1) (X))
x Oy BReATEKIDNGy ] X (). (69)

We now start our Lyapunov analysis by introducing
V(t) =XT (t)PX(t) +b1D/ (14 X)0(x,t)2dx
+bD(t) /O (14 %) (WX E)2 + (%, 1)2) dx+ baB ()2

With (60)—(69), we get
V() = =XT(£)QX(t) +2XT (t)PB(W(0,t) + Ti(0,

+b1( G(0,t)? — [|di(t)[|* — 2D(t /11+x0
. 1
—2DI5(t)/O(

r(xt) dx>
+ b (—W(0,t)% — ||(t )H2
—2If)(t)|5(t)/Ol(l—i—x)v“v(x,t)s(x,t)dx

/0 ' BA(0,)W(x, t)dx)

2\ (1,1)% —

1)

dx

—2D(t) [ (1+x)KeOOB

(

— 2I5(t)|5(t)./0.1(1+x)v“vx(x,t)s<(x,t)dx

+ b2 Vit (0,)% — [ i (t) |2

—2D(t)? /0 1(1+ x)AKeAD“)XBG(O,t)wx(x7t)dx)
+D(t)by (/ (1+ X)W(x, t)%dx

+/:(1+x Wi(X, 1) dx> — 2bsB(t)D(t). (70)
Using (54), (65), (66), (68), (69), the properties of the

projection operator, and Agmon’s inequalitw(0t)? <
4|y (t)||? (with the fact thatw{1,t) = 0), we find constants

Mz1,My, ..., Mg (independent of initial conditions) such that
/ (L4 )T, (xt)dx| <
Ma (]| i(t)[|>+ IIWx(t)H2+ [[Vir(t )H2+|X( )17 (71)
‘/ X2 —1)( t)dx| <
Ma (J[Ti(t) |2+ [Vt )H2+ [[Vir(t )H2+|X( )17 (72)
‘25()/ (L4 X)W(x,t)s(xt)dx| <
14M2(HW( 17+ [IMa(t) 2+ X (1)) (73)
‘26 /O (1+x)Ke”POXBG(0,t)W(x,t)dx| <
M3a(o,t)2+—”wﬁ)”2 (74)
‘Zﬁ(t) /0 "1 k(s x| <




) AM([[W(t)][* + k(1] + [X (1) [?)
‘2[“)(@2 /O (1+ X)AK e"POXBG(0, t )\ (x, t)dX| <

Ve (£) ]2

. 4
ID(t)] < 4Me(|X (1) 2 + [[U(t) |2 + [V (1) [|?)

20%(1,6)2 < B()2Ma(X (1) 2+ [W()2) + Mai(0,1)2.

Then,

(75)

Ms(i(0,t) +

(76)

(77)
(78)

b2,\ 2
7 (7t)

~ (02— 2) ()2~ (b~ 22)]is)|?

)\min(Q)
2

V(t) < - X(1)[]* - — bpWy(0,1)?

byt~ (bl—b2<2+M3+M5+Ms>) 0.1

+ baMzD(0)2 (X (V)2 + [W(t)]|?) + 20 B(t) D)

+ baM1DIB()| (|12 + N )11 + [e) 2+ X (1))
o+ by B0 (180)12+ V()] + IW(E) 12+ X (1) 2)
+ 1D(0)] (Ao (L) |2+ () |2+ X (1))

o+ Ab2Ma[W(0)] |2+ [ix(0) 2+ X (1) )

o+ 250 2+ [ix(1) ) (79)

where we have chosenb, > 8|PB|/Anin(Q). By
choosing b; > b2(1/2 + M3 + Ms + Mg),

n = min b2/2 by —by(1/2+ M3+ Ms + Mg)
Vo(t) = [X(t )|2+ I1G(E) 12+ [I(t)]|> + () [|>, wheren > O,

Amll"l

V() < =n(XOFP+ A0+ ()] + [[ix(t)]1?
+0(0,1)2 +W(0,1)? +ix(0,1))
+16b2M7M§V0(t)3+4b1M1M65V0(t)2
+(8b3Ms + b1M1) [D(t)|Vo(t)
+4Mg(4baM; + 4byMy + 2b)Vo(t)? (80)

< —nVo(t) + (8bsMe + baMy) [D(t) Vo(t)
+4Mg(biM1D + 2b2(2Mz + 2Mg + 1)Vo(t)?
+160,M7M3Vy(t)3. (81)
To eliminate the parameter error term we employ the bound
~ e D(t)?
Bl < 5+
£ 1 ~
< 5t apeg (VO Amn(P)X () - D)
—b,D|W(t) | — baD| Wik (1)]|?)
£ 1 .
< > + TQ,S (V(t) — min{Amin(P),b1D, b2D, } Vo(1)) ,
which yields

. 1
Vit < - ('7 (8b3Mg + b1 My) (2 255 V(t)>)Vo(t)
B (8b3Mg + b1M1) min{Amin(P),b1D,boD}
_ 2b3€
—4Mg(b1M1D + 2bp(2M; + 2Mg + 1))

we obtainV/ (t) < —py (t)Vo(t) —

and defining

—16sz7M§vo<t))vo(t>2- (82)

If we choose the analysis parameteas

_n

8b3Me + b1 My’

(803Ms + b1My) min{Amin(P),b1D, oD} } (83)
8b3Mg(b1M1D + 2by(2My + 2M4 + 1))

and restrict the initial conditions so the{0) < p,

. n €
m|n{2b3e (m - 5) ;
mMin{Amin(P),b1D, boD}
16b,M7M2
( (8b3Mg + b1M1) min{Amin(P),b1D,bD}
2b3€

egmin{

(1>

P1

—4Mg(baM1D + 2by(2My + 2My + 1))) } . (84)

Uz(t)Vo(t)2, where

1
pi(t) = n—(8osMg+biM;) (2 o £V(t)) (85)
_ (8gMg + biMy) min {Amin(P), b1D,b,D}
po(t) =
_ 2b3£
—4Mp(b1M1D + 2by(2M3 + 2M4 + 1))
160,M7M2

V(1) (86)

~ min{Amin(P), b1D, boD}

and are nonnegative functions if the initial conditions arera4).

Hence,V(t) <V(0),vt > 0. From this result fol (t), we the
result forY{(t). Using Lemma 5 (which holds both whéhis
constant and with a time-varyirg(t)), we obtain
Y(E) =X (1) + [[ut) |2+ |G | + | Gx(t) 2+ Bi(t)?
<IX(t) 2+ 2(]jai(t) |+ [|a) 1)
+[1a0)I2+ [[6x(t) ]2+ B(t)2
<(L+3pz -+ pa) X ()2 + 2] (1) |2
+ (3ps+ pa) W(t) |2+ 4] (1) |2 + B ()2
<max{1+3p2+ ps,3p1+ p3,4}
X (IX ()2 + 116t |+ [t |12
+ [ (t)]|* + D(t)?)
max{1+3pz+ ps,3p1 + P}
- min{)\mm(P),blg,bZQ, b3}
=PV (1) < p2V(0). (87)

Hence, from (84) and (87) we obtajm = p1p». Similarly,
using Lemma 5, we show that

V(0) < max{Amax(P),2b1D,2b,D,bs}
X (IX()12+ 1) |+ [W(t) 1+ [Mx(2) %) (88)
max{)\maX(P),Zle,szD,bg}

xmax{1+0gz2+04,2,2+ g1+ 0z, 4} Y(0).

V(t)

IN

(89)

Then, using (87), (88), we complete the local stability froo

max{ 1+3pp+pa,3p1+pP3}
with R= min Ao (P 2) be ble bg} max{Amax(P),2b1D,2b,D, ?3}
rom

max{1+0x+0s,2+01+0qzl. To prove regulation,




V(t) < V(0) it follows that X(t),|d], [IW], [V, D(t) are
uniformly bounded. Then, from (10), using Cauchy-Schwartz
inequality, we obtain the uniform boundedness|6ft)|| and
consequently also dfl (t) for t > 0 from (8). Thusu(0,t) =
U(t—D) is uniformly bounded fot > D. Using (2), we get
thatd|X (t)|?/dt is uniformly bounded fot > D. From (82), it
follows that|X(t)| is square integrable. Finally, by Barbalat's
lemma, we get thaX(t) — 0. To also prove the regulation of
U (t), we start by deducing from (82) the square integrability of
[[W(t)||. Then, from Lemma 5, we have the square integrability
of ||d|| and, from (8), using Cauchy-Schwartz inequality, the
square integrability otJ (t). To establish the boundedness of
du (t)?/dt, we compute it as

d

Y (t)2 =2U (1)K (ef“@“)X(t) +D(1)Gy(t) + I5(t)G2(t))

Gy (t) =APPOX (1) + (x— 1) /O ELTGIERY B(y,t)dy
+ /(;1(I +AD(t)(1—y))ePOEYIBG(y, t)dy
Ga(t) = /O ' POOAY)B,(y,t)dy

The signalD(t) is uniformly bounded fort > D according
to (54). By using the boundedness )é(t),xgt),HO(t)H and
[0x(t)|| overt > D, we get boudedness dU (t)</dt fort > D.
Then, by Barbalat’s lemmd] (t) — 0 ast — co. |

V. SIMULATIONS

Consider the systerX(s)/U(s) = e PSB/(s— A), which is
a model of the dynamics of an X-29 aircraft in an unstable
regime [2], with the input being the control surface defleuti
and with the output being a linear combination of the pitch
rate (measured with a gyroscope) and the rate of change of
the flight path (measured with a gyroscope). We take the plant
parameters aé = 0.75, B= 1, and the nominal control gain
asK = —-A—1=-1.75 (which means tha® =1 for Q = 2).
Figure 2 shows a simulation example with=1, A=0.5,B=
1L,K=-15P=1Q=2, andy=>5.

V. RELATED RESULTS

In this paper the only parametric uncertainty considered is
the unknown delay. In a companion paper [1] we present an X

-0.05

-0.1r

u()

-0.151

-0.2
0

U(t-D) - U(t-Dhat)

t

ig. 2. The system response of the system (2)—(4), (6), 8/}(9) forD =1.

tenSio_n W_ith unknown Plant parameters F?md where th_e CONtEJtom: the estimation error of the actuator statg,t) = u(0,t) — G(0,t) =
objective is not regulation to zero but trajectory trackifibe ut-D)-Ut-D(t)).

design technique in this paper is inspired by the techniques
for parabolic PDEs in [7] and the non-adaptive techniques
for hyperbolic PDEs [8]. Nonlinear extensions of predictors
feedback are introduced in [5].
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