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s considered to study the buckling and the behavior of an inflatable orthotropic

compression loads under different boundary conditions. In order to assess the

tures, it is necessary to evaluate the critical load of the inflatable components in

ations. First, a 3D inflatable orthotropic beam model based on the Timoshenko’s

roduced: the nonlinearities (finite rotation, follower forces) were included in this

ilibrium equations were derived from the total Lagrangian form of the virtual

ized equations were then obtained. By solving these linearized equations, an

e critical buckling load was obtained. This critical buckling load was investigated

s with several boundary conditions. The discrepancy due to the orthotropic

sent model and the isotropic models found in the literature was evaluated, as

e inflation pressure and the fabric mechanical properties on the value of critical

shapes were also determined. To check the limit of validity of the results, the

resented in every case.
1. Introduction

The homogeneous orthotropic woven fabrics (HOWF) were
formerly developed as substrates for flexible coated textiles. They
play an important role in many industrial applications due to their
outstanding mechanical properties. At the beginning of the 1990s,
the HOWF entered the field of the rigid structural composites and
have produced a variety of space and terrestrial structures. This is a
consequence of their outstanding physical, thermal, and mechanical
properties (particularly lightweight), high stiffness and strength.
Such applications require a good knowledge of the material to
design, and to optimize the structures.

A large number of analytical analyses related to the inflatable
beams and arches have been already published. These studies
concerned both theoretical and experimental analysis. One impor-
tant aspect is the need to build the best adapted analytical model for
these structures. In order to derive the analytical solutions and to
develop the formulations for inflatable beams made from woven
fabrics, two beam kinematics assumptions have been used: the
Euler Bernoulli kinematics and the Timoshenko kinematics.
9622 Lyon, France.
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Most earlier researches have been based on the Euler Bernoulli
kinematics. Thus, Comer and Levy [1] have derived a load deflection
theory in the case of an isotropic material where the beam material
has been supposed to be tension-only linear elastic. Afterward, Main
et al. [2] have developed a method for analyzing the inflated fabric
beams with a model analogous to the shear-moment method; their
work was based on Comer and Levy’s theory that had been modified
to reflect the wrinkling behavior of the fabric. In a second paper [3],
they improved their theory with an orthotropic membrane model.

Meanwhile, Fichter [4] developed a theory for a homogeneous
isotropic fabric inflated beam based on the Timoshenko kine-
matics. His study has shown that the Timoshenko kinematics is
more suitable for this kind of structure. His linearized equations
have pointed out that the internal pressure increases the shear
stiffness of the beam-column. In order to improve Fichter’s theory,
Le van and Wielgosz [5] proposed a new formulation for the
inflatable beams with the Timoshenko kinematics by considering
the finite rotations. Davids and Zhang [6] focused on the develop-
ment of a Timoshenko beam finite element for the nonlinear load–
deflection analysis of pressurized fabric beams. They addressed
numerically the pressure effect on the beam behavior.

Nevertheless, the previous studies have only been investigated
on 2D linearized inflatable beams. Also, the fabric was often
supposed to be hyperelastic isotropic and the Saint Venant-Kirchhoff
hypothesis was always used as for the traditional beams. More
recently, Apedo et al. [7] performed a theoretical analysis of



inflatable beams in which a homogeneous orthotropic fabric was
considered. A 3D Timoshenko beam model has been developed,
and, by using the total Lagrangian form of the virtual work principle,
the nonlinear equations have been obtained: as an example, the
bending problem has been investigated [7,8].

Buckling and wrinkling, the important design considerations for
inflatable beam-columns or arches, have not been very much
investigated. Fichter [4] used the minimization of the global potential
energy to calculate the buckling load of an inflated column. Fichter’s
equations for the buckling load have shown that the internal
pressure increases the resistance to the transverse shear deformation
and have shown that the buckling loads are lower than those
predicted using Euler’s buckling theory. Further works conducted
by Le van and Wielgosz [5,9] have provided a good approximation
for the critical load for a cantilever beam. Their results have shown
that the buckling load is not only a function of the mechanical
properties but also of the inflation pressure. The increase of one of
these parameters leads to an increase of the buckling load.

In this paper, an analytical approach for the buckling problem
is performed using the linearized equations derived in Apedo
et al. [7]. The analytical solution of the critical buckling load is
investigated for various boundary conditions. A parametric study
is carried out in order to assess the influence of the inflation
pressure and the fabric mechanical properties on the critical load.
Finally, the limit of validity of the results is addressed.
2. Theoretical background

In this section the governing equations of a 3D Timoshenko
beam with a HOWF are briefly presented. The Green–Lagrange
strain measure is used due to the geometrical nonlinearities.

Fig. 1 shows an inflatable cylindrical beam made of an HOWF.
lo, Ro, to, Ao and Io represent respectively the length, the fabric
thickness, the external radius, the cross-section and the moment
of inertia around the principal axes of inertia Y and Z of the beam
in the reference configuration which is the inflated configuration.
Ao and Io are given by

A0 ¼ 2pR0t0 ð1Þ

I0 ¼
A0R2

0

2
ð2Þ

where the reference dimensions lo, Ro and to depend on the
inflation pressure and the mechanical properties of the fabric [7]:

l0 ¼ lfþ
pRflf
2Ettf

ð1�2nltÞ ð3aÞ

R0 ¼ Rfþ
pR2

f

2Ettf
ð2�nltÞ ð3bÞ

t0 ¼ tf�
3pRf

2Et
nlt ð3cÞ
Fig. 1. HOWF infl
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in which lf, Rf, and tf are respectively the length, the fabric
thickness, and the external radius of the beam in the natural state.

The internal pressure p is assumed to remain constant, which
simplifies the analysis and is consistent with the experimental
observations and the prior studies on inflated fabric beams and
arches [1–6,9–13]. The initial pressurization takes place prior to
the application of concentrated and distributed external loads,
and is not included in the structural analysis per se.

The slenderness ratio is l¼ L=r where L¼ ml0 is the beam length
and r¼

ffiffiffiffiffiffiffiffiffiffiffiffi
I0=A0

p
is the beam radius of gyration. The coefficient m

takes different values according to the boundary conditions of
the beam.

M is a point on the current cross-section and Go the centroid of
the current cross-section lies on the X-axis. The beam is under-
going axial loading. Two Fichter’s simplifying assumptions are
applied in the following:
�

atab
the cross-section of the inflated beam under consideration is
assumed to be circular and maintains its shape after deforma-
tion, so that there are no distortion and local buckling;

�
 the rotations around the principal inertia axes of the beam are

small and the rotation around the beam axis is negligible.

Due to the first assumption, the model considers that no wrink-
ling occurs so that the ovalization problem is not addressed in this
paper as done in many previous papers [4,5].
2.1. Kinematics

The material is assumed orthotropic and the warp direction of
the fabric is assumed to coincide with the beam axis; thus the
weft yarn is circumferential. The model can be adapted to the case
where the axes are in other directions. In this case, an additional
rotation may be operated to relate the orthotropic directions and
the beam axes. This general case is not addressed here because,
for an industrial purpose, the orthotropic principal directions
coincide with the longitudinal and circumferential directions of
the cylinder [14].

The displacement components of an arbitrary point MðX,Y ,ZÞ
on the beam are [15,16]

uðMÞ ¼

u
X

u
Y

u
Z

8><
>:

9>=
>;¼

uðXÞ

0

0

8><
>:

9>=
>;þ

ZyY ðXÞ

0

wðXÞ

8><
>:

9>=
>;þ

�YyZðXÞ

vðXÞ

0

8><
>:

9>=
>; ð4Þ

where u
X

, u
Y

and u
Z

are the components of the displacement at
the arbitrary point M, whilst u(X), v(X) and w(X) correspond to the
displacements of the centroid Go of the current cross-section
at abscissa X, related to the base ðX,Y ,ZÞ; yY ðXÞ and yZðXÞ are
the rotations of the current section at abscissa X around both
principal axes of inertia of the beam, respectively. Let du denote
an arbitrary virtual displacement from the current position of the
le beam.



material point M:

du ¼

duðXÞ

0

0

8><
>:

9>=
>;þ

ZdyY ðXÞ

0

dwðXÞ

8><
>:

9>=
>;þ

�YdyZðXÞ

dvðXÞ

0

8><
>:

9>=
>; ð5Þ

The definition of the strain at an arbitrary point as a function of
the displacements is

E ¼ E
l
þE

nl
ð6Þ

where El and Enl are the Green–Lagrange linear and nonlinear
strains, respectively. The nonlinear term Enl takes into account the
geometrical nonlinearities. The strain fields depend on the displace-
ment fields as follows:

E
l
¼

@uX

@X
@uY

@Y
@uZ
@Z

@uX

@Y þ
@uY

@X
@uX
@Z þ

@uZ
@X

@uY
@Z þ

@uZ
@Y

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

, E
nl
¼

1
2 uT

,X
u

,X

1
2 uT

,Y
u

,Y

1
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,Z
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,Z

1
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,X
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,Y
þ 1

2 uT
,Y
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,X

1
2 uT
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,Z
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,Z
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2 uT

,Y
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,Z
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2 uT
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8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð7Þ

The higher-order nonlinear terms are the product of the vectors
that are defined as

u
,X
¼

uX,X

uY ,X

uZ,X

8><
>:

9>=
>;, u

,Y
¼

uX,Y

uY ,Y

uZ,Y

8><
>:

9>=
>;, u

,Z
¼

uX,Z

uY ,Z

uZ,Z

8><
>:

9>=
>; ð8Þ

2.2. Constitutive equations

In the present work, the Saint Venant–Kirchhoff orthotropic
material is used. The energy function FE ¼FðE Þ in this case is also
known as the Helmholtz free-energy function. The components of
the second Piola–Kirchhoff tensor S are given by the nonlinear
Hookean stress-strain relationships

S ¼ S 0
þ
@F
@E
¼ S 0
þC � E ð9Þ

where
�
 S 0 is the inflation pressure prestressing tensor.

�
 the second Piola–Kirchhoff tensor is written in the beam

coordinate system as

S ¼

SXX SXY SXZ

SYY SYZ

symmetrical SZZ

2
64

3
75 ð10Þ
�
 C is the elasticity tensor expressed in the beam axes.

In general, the inflation pressure prestressing tensor is assumed
spheric and isotropic [5]. So,

S 0
¼ S0I ð11Þ

where I is the identity second order tensor and S0
¼N0=A0 is the

prestressing scalar. The elasticity tensor in the beam axes was
transformed from the orthotropic l,t basis (see [7])

C ¼

C11 c2C12 s2C12 csC12 0 0

c4C22 c2s2C22 c3sC22 0 0

s4C22 cs3C22 0 0

c2s2C22 0 0

s2C66 csC66

symmetrical c2C66

2
6666666664

3
7777777775
ð12Þ
3

where c¼ cos j and s¼ sin j with j¼ ðeZ ,nÞ the angle between
the Z-axis of the beam and the normal of the membrane at the
current point. The tensor components are described as a function
of the mechanical properties of the HOW fabric:

C11 ¼ El=ð1�nltntlÞ, C12 ¼ Elntl=ð1�nltntlÞ

C22 ¼ Et=ð1�nltntlÞ, C66 ¼ Glt and El=nlt ¼ Et=ntl

2.3. Virtual work principle

The balance equations of an inflatable beam come from the
virtual work principle (VWP). The VWP applied to the beam in its
pressurized state is

dWint ¼ dWd
extþdWp

ext , 8du ð13Þ

3

Z
V0

S : dE dV0 ¼

Z
V0

f � du dV0þfR � dugþ

Z
@V0

t � du dA, 8du ð14Þ

where f and t are the body forces per unit volume and the traction
forces per unit area, respectively; R represents the reactions. The
internal virtual work dWint on the left-hand-side of (13) is
formulated from the second Piola–Kirchhoff tensor S and the
virtual Green strain dE .

The virtual Green strain tensor is written in the beam coordi-
nate system as

dE ¼ dE
l
þdE

nl
ð15Þ

where

dE
l
¼ ½dEl

XX dEl
YY dEl

ZZ dEl
YZ dEl

ZX dEl
XY �

T ð16aÞ

dE
nl
¼ ½dEnl

XX dEnl
YY dEnl

ZZ dEnl
YZ dEnl

ZX dEnl
XY �

T ð16bÞ

with

dEl
XX ¼ du,XþZdyY ,X�YdyZ,X

dEl
YY ¼ 0

dEl
ZZ ¼ 0

dEl
YZ ¼ 0

dEl
XZ ¼ dw,XþdyY ,X

dEl
XY ¼ dv,X�dyZ ð17Þ

and

dEnl
XX ¼ ðu,XþZyY ,X�YyZ,XÞdu,Xþv,Xdv,X

þw,Xdw,XþZðu,XþZyY ,X�YyZ,XÞdyY ,X

�Yðu,XþZyY ,X�YyZ,XÞdyZ,X

dEnl
YY ¼ yZdyZ

dEnl
ZZ ¼ yYdyY

dEnl
YZ ¼ ðyZdyYþyYdyZÞ

dEnl
XZ ¼ yYdu,Xþðu,XþZyY ,X�YyZ,XÞdyYþZyYdyY ,X�YyYdyZ,X

dEnl
XY ¼�yZdu,X�ZyZdyY ,X�sðu,XþZyY ,X�YyZ,XÞdyZþYyZdyZ,X ð18Þ

The generalized resultant forces and moments, and the quantities
Qi ði¼ 1, . . . ,10Þ acting over the reference cross-section A0 can be



Fig. 2. Uniform pressure on the cylindrical surface.

Fig. 3. Definition of the curvilinear coordinate system.
related to the stresses in the beam by

N

Ty

Tz

My

Mz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

Z
A0

SXX

SXY

SXZ

ZSXX

�YSXX

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

dA0 ð19Þ

Qi ¼

Z
A0

�YZSXX

Z2SXX

�ZSXY

ZSXZ

Y2SXX

YSXY

�YSXZ

SYY

SZZ

�SYZ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

dA0, i¼ 1, . . . ,10 ð20Þ

where N corresponds to the axial force, Ty and Tz to the shear force
in Y and Z directions respectively, My and Mz to the bending
moments about the Y- and Z-axes. Quantities Qi depend on the
initial geometry of the cross-section and are given in the Appen-
dix. Then the internal virtual work may be written as

�dWint ¼

Z l0

0

A1ðXÞ

B1ðXÞ

C1ðXÞ

D1ðXÞ

E1ðXÞ

F1ðXÞ

H1ðXÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

T

�

du,X

dv,X

dw,X

dyY

dyY ,X

dyZ

dyZ,X

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

dX ð21Þ

With the terms A1ðXÞ, B1ðXÞ, C1ðXÞ, D1ðXÞ, E1ðXÞ, F1ðXÞ and H1ðXÞ

are given in the Appendix.
The external virtual work dWext is due to the dead loads and to

the pressure load. The dead loads, which may include concen-
trated loads and moments as well as distributed loads, act like the
body forces. The inflation pressure plays a role of a traction force
acting on the cylindrical surface and on both ends. The first term
on the right side of (14) can be rewritten as

dWd
ext ¼

Z l0

0

f x

f y

f z

8><
>:

9>=
>;

T

�

du

dv

dw

8><
>:

9>=
>;dX

þ
Xn

i ¼ 1

FXðXiÞ

FY ðXiÞ

FZðXiÞ

MY ðXiÞ

MZðXiÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

T

�

duðXiÞ

dvðXiÞ

dwðXiÞ

dyY ðXiÞ

dyZðXiÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð22Þ

In which f x, f y and f z are respectively the distributed loads
along the X-, Y-, and Z-axes, while FaðbÞ, and MaðbÞ (with a¼ X,
Y ,Z; b¼ X1, . . . ,Xn) are the external support reactions and the
external loads and moments.

The second term on the right side of (14) is the external virtual
work due to the inflation pressure. This virtual work includes the
pressure virtual work on the cylindrical surface dWp

cyl and on both
ends dWp

end. Fig. 2 shows a reference cylindrical inflated beam
with an applied uniform pressure p acting on the cylindrical
surface A which has a pointwise normal n in the current config-
uration. The traction force vector t in (14) is therefore pn and the
4

virtual work due to the inflation pressure dWp
ext is then given by

dWp
ext ¼ dWp

cylþdWp
end ¼

Z
A

pn � du dA ð23Þ

To determine the pressure virtual work dWp
cyl, the curvilinear

coordinates ðx,ZÞ are used (Fig. 3):

x¼ R0a
Z¼ X

(
ð24Þ

where a is the polar angle between the normal n at a current
position x and the e

Y
. The coordinates of a material point Mo are

given by

OM
0
¼ X ¼

X

R0 cos a
R0 sin a

������� ð25Þ

The position vector at the current configuration is then given by

OM ¼ x ¼ XþU ¼

XþuðXÞ�R0yZ cos aþR0yY sin a
vðXÞþR0 cos a
wðXÞþR0 sin a

������� ð26Þ

By using an arbitrary parameterization of the surface as shown in
Fig. 2, the normal and area elements can be obtained in terms of
the tangent vectors @x=@x and @x=@Z as

n ¼

@x

@x
�
@x

@Z
@x

@x
�
@x

@Z

����
����
¼

@x

R0@a
�
@x

@X
@x

R0@a
�
@x

@X

����
����

ð27Þ

and

dA¼
@x

@x
�
@x

@Z

����
����dx dZ¼ @x

R0@a
�
@x

@X

����
����R0 da dX: ð28Þ

Then dWp
cyl is

dWp
cyl ¼

Z
A

p � du
@x

@x
�
@x

@Z

� �
dx dZ ð29Þ

dWp
cyl ¼ Fp

Z l0

0
½�yZ,X yY ,X �w,X v,X � �

dv

dw

dyY

dyZ

8>>>><
>>>>:

9>>>>=
>>>>;

dX ð30Þ



Fig. 4. Definition of the curvilinear basis at the beam ends.
The pressure virtual work at the ends of the beam can be
determined in the same way: the reference circular end surfaces
(X¼0 and X ¼ l0Þ can be represented by the curvilinear coordi-
nates ðx,ZÞ ¼ ðr,raÞ (Fig. 4). Then,

dWp
end ¼

Z
A

pn � duðl0Þ dA�

Z
A

pn � duð0Þ dA ð31Þ

dWp
end ¼ ½1 yZðX0Þ �yY ðX0Þ� �

duðX0Þ

dvðX0Þ

dwðX0Þ

8><
>:

9>=
>;

2
64

3
75

l0

0

ð32Þ

Finally, from (29) and (31) dWp
ext is given by

dWp
ext ¼ Fp

Z l0

0
½�yZ,X yY ,X �w,X v,X � �

dv

dw

dyY

dyZ

8>>>><
>>>>:

9>>>>=
>>>>;

dX

þ ½1 yZðX0Þ �yY ðX0Þ� �

duðX0Þ

dvðX0Þ

dwðX0Þ

8><
>:

9>=
>;

2
64

3
75

l0

0

ð33Þ

where Fp ¼ pPR2
0 is the pressure force due to the inflation

pressure.
One can note that, according to (33), the follower force effect

of the external load due to the inflation pressure depends on the
displacements and the rotations.
2.4. Theoretical buckling loads

To obtain an analytical solution for the buckling loads of an
inflatable orthotropic fabric beam, a linearization of the equilibrium
equations derived from the VWP (13) is performed around the
prestressed reference configuration of the beam assuming that the
service load does not cause a large variation of the displacements
obtained after the inflation [4,5]. Previous works have applied the
approach to inflatable beams made from an isotropic fabric and
under in-plane loading. These studies have proven that the linear-
ized equations are well adapted to the highly inflated isotropic
beams. The usual assumptions on the displacement and the rotation
magnitudes let to consider that u=l0,v=l0,w=l0,yY ,yZ are small with
respect to 1 [17]. In the case of buckling, the problem has only an
axial concentrated load: f x ¼ f y ¼ f z ¼ 0. The linearization of the
equilibrium equations (13) leads to the following equations [7]:

ðN0
þC11A0Þu

ð2ÞðXÞ ¼ 0 ð34aÞ

ðN0
þ1

2 kyA0C66Þv
ð2ÞðXÞ�ðFpþ

1
2kyA0C66Þy

ð1Þ
Z ðXÞ ¼ 0 ð34bÞ

ðN0
þ1

2 kzA0C66Þw
ð2Þ þðFpþ

1
2kzA0C66Þy

ð1Þ
Y ðXÞ ¼ 0 ð34cÞ
5

C11þ
N0

A0

!
I0y
ð2Þ
Y ðXÞ� Fpþ

1

2
kzA0C66

� �
wð1ÞðXÞ

� N0
þ

1

2
kzA0C66

� �
yY ðXÞ ¼ 0 ð34dÞ

C11þ
N0

A0

!
I0y
ð2Þ
Z ðXÞþ Fpþ

1

2
kyA0C66

� �
vð1ÞðXÞ

� N0
þ

1

2
kyA0C66

� �
yZðXÞ ¼ 0 ð34eÞ

At X¼0 and X ¼ l0, the linearized boundary conditions can be
expressed as

N0
þðN0

þC11A0Þu
ð1ÞðXÞþFXðXÞ�Fp ¼ 0 ð35aÞ

ðN0
þ1

2 kyA0C66Þv
ð1ÞðXÞ�ðFpþ

1
2kyA0C66ÞyZðXÞþFY ðXÞ ¼ 0 ð35bÞ

ðN0
þ1

2 kzA0C66Þw
ð1ÞðXÞþðFpþ

1
2kzA0C66ÞyY ðXÞþFZðXÞ ¼ 0 ð35cÞ

C11þ
N0

A0

!
I0y
ð1Þ
Y ðXÞþMY ðXÞ ¼ 0 ð35dÞ

C11þ
N0

A0

!
I0y
ð1Þ
Z ðXÞþMZðXÞ ¼ 0 ð35eÞ

in which, the so-called correction shear coefficients ky and kz are
determined from the shape of the cross-section. The value usually
found in the literature [18] for circular thin tubes is ky ¼ kz ¼ 0:5.
The equilibrium equations are uncoupled by the linearization
process. Hence, one makes the resolution only in the in-plane
loading case. By differentiating two times Eq. (34b) and one time
Eq. (34e), and by substituting yð3ÞZ ðXÞ and yð1ÞZ ðXÞ, one obtains the
differential equation in v(X):

vð4ÞðXÞþ
ðFpþN0

þC0
s ÞðFp�N0

Þ

C11þ
N0

A0

 !
I0ðN

0
þC0

s Þ

vð2ÞðXÞ ¼ 0 ð36Þ

where C0
s ¼

1
2 kyA0C66, and ðFpþC0

s Þ is the shear stiffness of the
inflatable beam in the case of an orthotropic fabric.

By doing the same operations on Eqs. (34b) and (34e) and now
by substituting vð4ÞðXÞ and vð2ÞðXÞ, one obtains the differential
equation in yZðXÞ:

yð3ÞZ ðXÞþ
ðFpþN0

þ2C0
s ÞðFp�N0

Þ

C11þ
N0

A0

 !
I0ðN

0
þC0

s Þ

yð1ÞZ ðXÞ ¼ 0 ð37Þ

From the equilibrium (34a) together with the boundary con-
ditions (35a), the initial force N0

ðXÞ ¼ Fp�F is derived. Relations
(36) and (37) in this case become

vð4ÞðXÞþ
ð2Fp�Fþ2C0

s ÞF

C11þ
Fp�F

A0

� �
I0ðFp�FþC0

s Þ

vð2ÞðXÞ ¼ 0 ð38aÞ

yð3ÞZ ðXÞþ
ð2Fp�Fþ2C0

s ÞF

C11þ
Fp�F

A0

� �
I0ðFp�FþC0

s Þ

yð1ÞZ ðXÞ ¼ 0 ð38bÞ

These equations can be rewritten as

vð4ÞðXÞþO2vð2ÞðXÞ ¼ 0

yð3ÞZ ðXÞþO
2yð1ÞZ ðXÞ ¼ 0

(
ð39Þ



where

O2
¼

ð2Fp�Fþ2C0
s ÞF

C11þ
Fp�F

A0

� �
I0ðFp�FþC0

s Þ

ð40Þ

O is a coefficient dependent on the fabric properties and the
applied force.

The coefficient O is related to the buckling configurations and
can be obtained from the general solution of the differential
equations together with the boundary conditions. The general
solution of (39) is [19]

vðXÞ ¼ B1 sinðOXÞþB2 cosðOXÞþB3
X

l0

� �
þB4

yZðXÞ ¼ C1 sinðOXÞþC2 cosðOXÞþC3

8><
>: ð41Þ

Note that the arbitrary constants of integration B1, B2, B3, B4, C1, C2

and C3 are connected through relations (34a) and (34e). The
general solution (41) then becomes

vðXÞ ¼ B1 sinðOXÞþB2 cosðOXÞþB3
X

l0
þB4

yZðXÞ ¼�B2OG sinðOXÞþB1OG cosðOXÞþ
B3

l0G

8>>><
>>>:

ð42Þ

The application of the method is illustrated in Section 3 with
different boundary conditions.

From (40), one obtains the equation, from which the critical
loads and their corresponding shapes can be evaluated. This
equation is quadratic in terms of F as

1þ
I0O

2

A0

!
F2
� C11þ

Fp

A0

� �
I0O

2
þ 2þ

I0O
2

A0

!
FpþC0

s

� �" #
F

þ C11þ
Fp

A0

� �
I0O

2 FpþC0
s

� �
¼ 0 ð43Þ

The critical load Fc is determined as the smallest root of (43).
The coefficients of this quadratic equation are denoted A, B, C:

A¼ 1þ
I0O

2

A0

B¼� C11þ
Fp

A0

� �
I0O

2
þ 2þ

I0O
2

A0

!
FpþC0

s

� �" #

C ¼ C11þ
Fp

A0

� �
I0O

2
ðFpþC0

s Þ ð44Þ

Eq. (43) has two positive solutions Fc1 and Fc2. The critical load is then

Fcr ¼minðFc1,Fc2Þ ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
�4AC

p
2A

ð45Þ

This relation is the main result of this paper.

2.5. Previous works on the critical load

Fichter [4] obtained the expression for the critical load of the
inflated circular membranes with Timoshenko’s kinematics and
by using the Saint Venant–Kirchhoff hypothesis:

FFichter
cr ¼

EnInO2
ðFpþCf

sÞ

EnInO2
þFpþCf

s

ð46Þ

where, En
¼ Et0, Gn

¼ Gt0, An
¼ A0=t0, In ¼ I0=t0, are respectively the

membrane elastic modulus, the membrane shear modulus, the ratio
of the cross-section area, and the ratio of the moment of inertia of
the beam by its reference thickness to. The bending stiffness and
the shear stiffness coefficient are EnInO2 and Cf

s ¼ GnpRt0, respec-
tively. The shear stiffness of the inflated beam ðFpþCf

sÞ included the
shear stiffness provided by the internal pressure.
6

Le van and Wielgosz [5] (isotropic beam and Timoshenko’s
kinematics) obtained the following critical load:

FWielgosz
cr ¼

Eþ
Fp

A0

� �
I0O

2

1þO2 I0

A0
þO2

Eþ
Fp

A0
I0

� �
FpþCw

s

ð47Þ

where E is the Young modulus of the isotropic fabric and the shear
stiffness coefficient Cw

s ¼ kGA0 (with k¼0.5, a correction of the
shear coefficient determined from the shape of the cross-section
[18]). To entail formula (47), Le van and Wielgosz neglected the
quadratic term in their equation of the critical load due to the
very small radius of gyration of the beams used in their work.

Together with the boundary condition (35b) and (35e), the
value of the critical load and the buckling modes in three cases
are studied in the next section.
3. Examples: in-plane buckling for linearized problems

In this section, the buckling of an inflatable beam with various
boundary conditions is treated. The analytical expression (45) of the
critical load and the related buckling mode shape are then compared
with the existing models presented in the previous section (see
Eqs. (46) and (47)). The beams of these previous studies are made
from isotropic fabric. A present isotropic model is derived from the
present orthotropic model be assess the discrepancies between the
present model and the other ones besides the orthotropy: it is
assumed to be made of the geometric mean isotropic (GMI) material
associated with the given orthotropic material, which is proposed by
Paschero and Hyer [20]. Instead of the five engineering properties El,
Et, nlt , ntl and Glt, the equivalent GMI material will be described
through the three material parameters Eeq, neq and Geq as follows:

Eeq ¼
ffiffiffiffiffiffiffiffi
ElEt

p
, neq ¼

ffiffiffiffiffiffiffiffiffiffi
nltntl
p

Geq ¼
Eeq

2ð1þneqÞ
ð48Þ

with

Eeq40, n2
eqo1 and Geq40 ð49Þ

Two nondimensional parameters will be introduced:

elt ¼
El

Et
, glt ¼

Glt

Geq
ð50Þ

The parameter elt measures the level of orthotropy between the two
principal directions of the fabric, whereas the parameter glt mea-
sures how much the actual shear modulus Glt differs from the shear
modulus G of the GMI material. It should be noted that when both elt

and glt are equal to unity, the orthotropic material becomes isotropic
and coincident with the equivalent GMI material.

The beam is subjected to an internal pressure p first. An
external load F is applied at the end in the axial direction of the
beam. The mechanical properties given in Table 1 are used [21].
Two ranges of inflation pressure are considered in the analyses.
For each pressure the critical loads are calculated to examine the
effect of the pressure on the beam behavior. The objective is to
validate the present model in case of isotropic material and to
point out the discrepancy when adopting an orthotropic behavior
and Timoshenko’s kinematic in the constitutive equations.

3.1. Simply supported inflatable beam under compressive

concentrated load

The first example deals with a simply supported inflatable
beam subjected to a compressive concentrated load as shown in



Table 1
Data set for inflatable beam.

Natural thickness, tf(m) 125�10�6

Correction shear coefficient, ky 0.5

Natural radius, Rf (m) 0.14

Natural length, lf (m) 3

Isotropic fabric’s mechanical properties:

Young modulus, E (MPa) 393.13

Poisson ratio, n 0.08

Orthotropic fabric’s mechanical properties:

Material 1 Material 2

Young modulus in warp direction, El (MPa) 393.13 3940

Young modulus in weft direction, Et (MPa) 451.59 2920

In-plane shear modulus, Glt (MPa) 103 1118

Poisson ratio, nlt 0.07 0.23

Poisson ratio, ntl 0.08 0.17

Internal pressures, p (kPa):

Low 25 50

High 100 200

Fig. 5. Cantilever inflatable beam.

Fig. 6. Simply supported inflatable beam.

Fig. 7. Clamped–clamped inflatable beam under a compressive axial load.
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Fig. 6. The boundary conditions corresponding to this case give

vð0Þ ¼ vðl0Þ ¼ 0

yð1ÞZ ð0Þ ¼ yð1ÞZ ðl0Þ ¼ 0

(
ð51Þ

The boundary conditions and Eq. (42) lead to

yZðXÞ ¼ C2 cosðOXÞ

vðXÞ ¼
FpþC0

s

Fp�FþC0
s

C2

O
sinðOXÞ

8><
>: ð52Þ

The expression of vðXÞ corresponds to the buckling mode shapes.
These buckling modes are functions of the geometry and the
material properties of the membrane.

Using the boundary conditions (51) and the rotation expres-
sion given by (52), the quantity O can be written as

On ¼
np
l0

ð53Þ

where n is a positive integer which determines the buckling modes.
The fundamental buckling mode is obtained for n equal to 1.

This case was studied by Fichter [4] for the inflated circular
membranes with an isotropic material. In his expression, Fichter
showed the relationship between the bending stiffness and the shear
stiffness which includes a shear stiffness component provided by the
internal pressure which increases the shear stiffness of an isotropic
inflated beam.

In the case of an orthotropic fabric, the results are similar to the
ones with an isotropic material except the difference in the critical
loads expression due to the level of orthotropy of the material. Fig. 8
shows the critical loads of four inflated beam models at several
levels of inflation pressure. In comparison to Fichter’s model (rela-
tion (46)), the differences are large with 25.13% and 19.01% for the
present equivalent isotropic and orthotropic model, respectively, at
25 kPa. These differences are up to 31.26% and 24.66% at 200 kPa. In
comparison to Le van’s model, the results are in a good agreement
with less than 5% for the present equivalent isotropic model and up
to �6.21% for the present orthotropic model. These results clearly
show that the internal pressure and the fabric characteristics play a
key role in the critical loads. The fabric characteristics include the
mechanical properties and the level of orthotropy elt of the fabric, in
which the first one governs the value of the critical load while the
second one causes the discrepancy between the orthotropic and
isotropic models. The inflation pressure only plays a dominant role
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when the fabric mechanical properties are poor. As shown in Fig. 8,
for material 1, the critical loads of the models are rather equivalent
at low pressures, but for higher pressures, the variations become
significant between the models. In this case of material, the
parameter elt is less than 1 (elt ¼ 0:87). Thus, the discrepancies
between the orthotropic and isotropic models are small. And the
critical loads obtained for the present orthotropic model are always
below the ones obtained for the equivalent GMI model.

For material 2 (higher moduli and level of orthotropy), the
discrepancy between the equivalent GMI and Le van’s models is
quite small (less than 3%). Except for Fichter’s model, there is a
large discrepancy between the orthotropic model and two
remaining isotropic model. In comparison to Le van’s model, the
differences are 18.69% and 19.82% at 25 kPa and 200 kPa, respec-
tively. The level of orthotropy in this case of material is high and
greater than 1 (elt ¼ 1:35). Consequently, the critical loads of the
present orthotropic model are totally over those of the equivalent
GMI model. One also note that the inflation pressure does not
greatly influence the critical force in that case.

Note that the differences between Fichter’s model in compar-
ison to the remaining models in both cases of material, low and
high moduli, are always poor. This is because the rotations around
the principal axes of inertia of the beam are small and can be
neglected. So the shear stiffness does not include the correction
shear coefficient in Fichter’s expression.

The influence of the fabric mechanical properties and the
inflation pressure are also expressed on the fundamental buckling
modes (FBM) obtained for the models (Figs. 9 and 10).
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Fig. 9. Fundamental buckling modes on a simply supported inflatable be
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One can note also that there is a noticeable discrepancy in the
FBM between the present and the reference models at low internal
pressure. The present and the reference models become equivalent
at the high pressure of 200 kPa (Fig. 9). In the case of material 2, the
variations between the present orthotropic model and the isotropic
models are almost constant with the increase of the internal pressure
except for Fichter’s model (Fig. 10). The influence of the orthotropic
character is not obvious with a high mechanical properties fabric.

3.2. Cantilever inflatable beam under compressive axial load at the

free end

Consider the cantilever beam, shown in Fig. 5, subjected to an
internal pressure p and acted upon by a compressive force F at its
free-end (Fig. 11).

Together with the displacement boundary condition, boundary
conditions (35b) and (35e) give the following relations:

vð0Þ ¼ yZð0Þ ¼ 0

vð1Þðl0Þ ¼
FpþC0

s

Fp�FþC0
s

yZðl0Þ

yð1ÞZ ðl0Þ ¼ 0

8>>>><
>>>>:

ð54Þ

From (54), one obtains the following expressions for the
rotation and the deflection:

yZðXÞ ¼ C1 sinðOXÞ

vðXÞ ¼
FpþC0

s

Fp�FþC0
s

C1
O ½1�cosðOXÞ�

8><
>: ð55Þ
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Fig. 10. Fundamental buckling modes on a simply supported inflatable beam under a compressive concentrated load in the case of material 2.
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Fig. 11. First three buckling modes on a simply supported HOWF inflatable beam under compressive concentrated load.
Moreover, thanks to the boundary conditions (54), the quan-
tity O can be written as

O¼ ð2nþ1Þ
p

2l0
ð56Þ
9

This case has been analyzed by Le van and Wielgosz [5] in the case
of isotropic fabric and by the use of the Timoshenko kinematics. Since
the beam reference dimensions depend on the fabric properties and
the inflation pressure, the values of the critical load and the buckling
mode shapes obtained for the four models can be quite different as



shown in Figs. 12–15. Table 1 is still used for the beam properties and
the beam dimensions. The differences between the critical load values
in the case of clamped-free ends are shown in Table 2.
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Fig. 13. Fundamental buckling modes on a cantilever inflatable beam
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In the case of material 1, the results are rather similar at low
pressure. But for higher pressure over 100 kPa, the results evolve
with a small difference in the shear stiffness due to the orthotropic
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Fig. 14. Fundamental buckling modes on a cantilever inflatable beam under a compressive concentrated load in the case of material 2.
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Fig. 15. First three buckling modes on a cantilever inflatable beam under a compressive concentrated load.
character. The effect of the level of orthotropy shows clearly in the
case of material 2.

It should be noted that, there is no noticeable difference
between the present equivalent isotropic model and Le van’s
11
model in this load case. In both cases of material, the diff-
erences between these two models are about 0.8%. A notice-
able discrepancy between the present models and Fichter’s
models in both cases of material is also shown. The results



Table 2
Critical loads of inflatable beam models with various boundary conditions.

Load case Material Pressure (kPa) Critical load�102 (N) Difference (%)

Present Fichter

(Isotropic)

Le Van

(Isotropic)

(1) and (3) (1) and (4) (2) and (4)

(Orthotropic) (Isotropic)

(1) (2) (3) (4)

Simply supported 1 25 5.255 5.684 4.256 5.524 19.01 �5.12 2.83

50 6.125 6.630 5.432 6.435 11.32 �5.07 2.95

100 8.159 8.598 7.155 8.598 12.31 �5.39 3.05

200 13.757 15.078 10.365 14.612 24.66 �6.21 3.09

2 25 47.329 39.619 11.339 38.481 76.04 18.69 2.87

50 48.352 40.396 17.965 39.221 62.85 18.88 2.91

100 50.432 41.982 25.754 40.733 48.93 19.23 2.98

200 54.736 45.279 33.913 43.887 38.04 19.82 3.08

Clamped–free 1 25 1.348 1.448 1.302 1.438 3.41 �6.61 0.75

50 1.564 1.687 1.515 1.673 3.13 �6.97 0.78

100 2.075 2.252 1.893 2.233 8.75 �7.64 0.80

200 3.489 3.822 2.665 3.791 23.63 �8.65 0.81

2 25 12.228 10.134 6.175 10.056 49.50 17.76 0.77

50 12.481 10.329 7.792 10.248 37.57 17.89 0.79

100 12.996 10.726 9.137 10.641 29.69 18.13 0.80

200 14.067 11.553 10.388 11.459 26.15 18.54 0.82
given by Fichter’s model are always poor with high-stiffness
material.

For the FBM results, there is no large difference between the
models in the case of material 1. The divergence appears in the
case of material 2 with Fichter’s model. As shown in Figs. 13 and
14, the difference increases along with the beam length and it
decreases as the internal pressure increases.

3.3. Clamped–clamped inflatable beam under compressive axial load

The clamped beam is shown in Fig. 7. The boundary conditions
to be satisfied are

vð0Þ ¼ vðl0Þ ¼ 0

yZð0Þ ¼ yZðl0Þ ¼ 0

(
ð57Þ

The solution to governing differential (39) is given by (42) and
must satisfy the boundary conditions (57). These requirements
lead to the linear homogeneous algebraic equations in terms of
constants of integration as follows:

0 1 0 1

sinðOl0Þ cosðOl0Þ 1 1

OG2l0 0 1 0

OG2l0 cosðOl0Þ �OG2l0 sinðOl0Þ 1 0

2
66664

3
77775

B1

B2

B3

B4

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

ð58Þ

For non-trivial solution, the determinant of the systems must
vanish. This leads to the following characteristic equation:

2½cosðOl0Þ�1�þOG2l0 sinðOl0Þ ¼ 0 ð59Þ

Note that O and G are linked together and depend on the axial
load. In that case no analytical solution may be derived.
4. Influence of the slenderness ratio on the critical load of an
inflatable beam

The following is a discussion of the influence of the beam
slenderness ratio on the critical load through the inflation
pressure and the material properties. In this section, the buckling
of a cantilever inflatable beam is examined in order to address the
12
evolution of the critical loads as a function of the slenderness
ratio.

The slenderness ratio l has been defined in Section 2: it
depends on coefficient m which is equal to 2 for a cantilever
beam. The beam length varies in the range of 0.5–3 m while
keeping constant its radius to vary the slenderness ratio. Both
materials described in Table 1 are considered; the radius of the
beam is given in Table 1. In each case of the material, the internal
pressures of 25 kPa and 200 kPa, which correspond to a low and
high pressure, are considered in the analyses. The analytical
critical load an inflatable beam based on the equations derived
by Fichter [4] and Le van and Wielgosz [5] are also included.

As shown in Figs. 16 and 17, the present models agree very
well with the models in the literature for large values of l. As
expected, for lower slenderness ratio, Fichter’s model overpre-
dicts the critical load: that is most pronounced at the lower
inflation pressure.

One also notes that there is a substantial difference between Le
van’s isotropic model and the present equivalent isotropic model
at lower value of l. This comes from the difference in the way of
the establishment of the constitutive equations and the mechan-
ical properties between the models: E¼ El for the isotropic model
and Eeq (see (48)) for the present equivalent isotropic model.

The results highlight the importance of including the shear
deformations and the pressure effects. Obviously, an inflatable beam
with higher inflation pressures is clearly more stable whatever the
boundary conditions.
5. Wrinkling load for an inflatable beam under a compressive
concentrated load

When a membrane is subjected to a compression load in one
principal direction and to a tension load in the other direction, it
buckles and many narrow wrinkles appear. It is difficult to account
for the wrinkling phenomena which cannot be predicted by the
standard membrane theories. A membrane wrinkling theory should
not allow any negative stress to appear. When a negative (compres-
sive) stress is about to appear the membrane will wrinkle and the
negative stress should vanish. Concerning the inflatable cylindrical
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Fig. 17. Critical load versus the slenderness ratio of a cantilever inflatable beam under compressive concentrated load in the case of material 2.
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Fig. 16. Critical load versus the slenderness ratio of a cantilever inflatable beam under compressive concentrated load in the case of material 1.
beams, many studies have dealt with the wrinkling phenomenon
[1–3,5,7,9,13,22,23]. The theoretical model developed in this paper
supposes that no wrinkle occurs. However the fabric used for the
inflatable beams is a membrane. So, there exists a load (the wrinkling
load) from which the first wrinkles appear and the proposed model
is no longer valid if it happens before the buckling. This load depends
on the inflation pressure, the geometrical parameters and the
material properties. To determine the wrinkling load of thin-walled
structures, two possible criteria can be used: the non-negative
principal stresses or the non-negative principal strains. In this work,
the stress criterion was adopted. From (9) the principal stress is
obtained:

S1� sxx ¼
N0

A0
ð60Þ

In general, for inflatable structures, the inflation stiffness is a
major factor responsible for buckling and wrinkling. Once the
stress in the axial fibers becomes zero, wrinkling occurs resulting
in a significant loss of inflation stiffness. The wrinkling criterion
13
used is finally given by

S140 ð61Þ

The expression for the principal stress in this case is then given by
(60), and as mentioned in Section 2.4, the initial force is
N0
ðXÞ ¼ Fp�F. From (61), the validity condition of the solution

can be written as

N0
¼ Fp�F40 ð62Þ

At the limit point, the axial load F becomes the wrinkling load Fw

which is then obtained:

Fw ¼ Fp ¼ ppR2
0 ð63Þ

The wrinkling load in this case is a function of the internal
pressure, the geometry of the beam, and the mechanical proper-
ties of the fabric through R0 (see Eq. (3)). Since the axial load due
to the inflation represents the stiffness of the inflatable beam, the
wrinkling load is herein defined as the upper bound of the axial
load. Beyond this bound, the inflated beam will collapse whatever



the fabric stiffness. Following (43), the critical load is proportional
to the inflation pressure and the mechanical properties of the
fabric: the beams made in a high mechanical property fabric will
have a high critical load that may exceed the wrinkling load
which weakly depends on the mechanical properties of the beam.
In this case, the critical load is the wrinkling load.
6. Conclusion

An analytical approach to approximate the critical load for
an HOWF 3D Timoshenko beam was proposed in this paper.
Regarding the buckling behavior, the proposed inflatable beam
model showed a good agreement with the previous models in the
literature.

The total Lagrangian form of the virtual work principle and
Timoshenko kinematics were used to derive the beam’s governing
equations. By solving these linearized equations, an analytical
expression of the critical buckling load was obtained.

A parametric study was performed to show the discrepancy on
the critical load due to the orthotropic character between the
present model and the isotropic models in the literature. One can
see that both the inflation pressure and the fabric characteristics
govern the critical load. The fabric characteristics include the
mechanical properties and the level of orthotropy of the fabric, in
which the first one governs the value of the critical load while the
second one causes the discrepancy between the orthotropic and
isotropic models. The results showed that the analytical solution
obtained from Fichter’s equations overpredict the critical load
as well.

By taking into account the orthotropic character in the present
model, the study pointed out that only the mechanical properties
El and Glt intervene explicitly in the solution of critical load
through C11 and C66 while Et intervenes implicitly through the
reference dimensions of the beam. Only the level of orthotropy of
the fabric causes noticeable discrepancies in the buckling beha-
vior of the inflatable beam. This comes from the inequality of the
mechanical properties in the yarn directions. The differences
between the models studied also come from the way of the
establishment of the constitutive equations. In Le van’s model,
the material is assumed to be hyperelastic isotropic and obeying
the Saint Venant-Kirchhoff law in which only SXX and SYY are
taken into account. The Young modulus E is also used directly in
the Hookean stress–strain relationship. In the present model, we
take into account all components of the second Piola–Kirchhoff
tensor. The elasticity tensor with the tensor components described
the mechanical properties of the orthotropic material is used instead
of the Young modulus E.

The inflation pressure has a significant influence on the buckling
behavior of the present model. It was also noted that for a sufficient
internal pressure (the critical solution to be meaningful), the pre-
diction of the stability of inflatable structures is more accurate and
can be simplified with a high-stiffness fabric.

Regarding the limit of the validity of the theory, the wrinkling
load is taken as a reference upper bound for the axial load of an
inflatable cantilever beam. So, the critical loads found in Section 3
must not be exceeded the wrinkling load for the buckling solution
to be meaningful.

This work provided an analytical expression for the critical
load of an HOWF inflatable beam. Then, by using this expression,
it is possible to get round the buckling analysis using a finite
element method. A linear eigenbuckling and a nonlinear buckling
analysis will be attempted on the HOWF beam in a further
research. The computation of the critical loads and the use of an
incremental iterative strategy for approaching the limit points
and the bifurcation points will be performed.
14
Acknowledgments

This work was supported by Laboratory Design of Structures
(Laboratory DDS of GMP, IUT Lyon 1, University of Claude
Bernard) and the consultant Mr. Robert Dartois.
Appendix A

The expressions of the axial force, the shear forces and the
quantities Qi ði¼ 1, . . . ,10Þ depending on the initial geometry of
the cross-section, are given here. These quantities are presented
in (19) and (20):
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