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We demonstrate an efficient dynamical amplification of phase conjugation in the gain 

medium of a diode-pumped Nd3+:YVO4 solid state laser via excitation of its relaxation 

oscillations. Consequently, enhancement in the modulated amplitude of the phase 

conjugate wave is observed with up to +30 dB compared to classical homodyne approach. 
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Many theoretical and experimental works have already demonstrated that the dynamical 

behavior of laser can be significantly affected by coherent optical feedback [1][2]. For instance, 

optical feedback is becoming an efficient optical sensing technique for different applications like 

telemetry [3], velocimetry [4], vibrational analysis [5] or imaging [6]. This technique is 

intrinsically very efficient with single frequency class B lasers as they present strong relaxation 

oscillations after a time dependant perturbation. When submitted to a frequency shifted optical 

feedback, a beat note between the intracavity oscillating wave and the optical feedback leads to 

an intensity modulation. When the beating frequency is adjusted close to the relaxation 

oscillations frequency of the laser, the response to the optical feedback is strongly enhanced. In 

this scheme, also known as Laser Feedback Interferometry (LFI), the laser cavity plays 

simultaneously three roles: (i) a coherent light source, (ii) an interferometer and (iii) an optical 

amplifier. The enhancement factor of the detected interferometric signal is of the order of 106 

when the optical beating frequency is resonant with the relaxation oscillations frequency of a 

solid-state laser. The main advantage of such a technique is therefore to be very sensitive to a 

very small amount of re-injected light.  

Phase conjugation by four-wave mixing (FWM) in saturable solid state amplifying 

medium has been mainly demonstrated in class B solid-state lasers [7]-[11]. In continuous-wave 

operation or in pulsed regime, all experiments of FWM have been realized without taking into 

account the specific dynamical properties of solid state lasers. However, FWM experiments 

inside a laser cavity can be directly compared to optical feedback experiments. In intracavity 

FWM experiments, a part of the laser output is used as a signal beam and is re-injected back into 

the amplifying medium. These experiments look therefore very similar to LFI experiments 
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except that: (1) pump and signal beams are not collinear and (2) no dynamical modulation is 

applied to the signal wave.  

In this Letter, we show that traditional FWM in solid-state laser can be strongly enhanced 

taking into account the specific dynamical properties of the laser oscillator.  For the first time to 

our knowledge, we show that an amplification effect can be obtained during FWM in a solid 

state laser via an excitation of its relaxation oscillations. The basic principle consists in a 

classical FWM experiment except that the intensity of the re-injected signal beam is now 

amplitude modulated with a sinusoidal signal at a modulation frequency close to the relaxation 

oscillations frequency of the laser. 

 The experimental setup is illustrated in figure 1 and is quite similar to the one described 

in [9]. The diode-pumped Nd3+:YVO4 is a simple hemispherical cavity with a cavity length close 

to 70 mm. The 1% doped Nd:YVO4 crystal is longitudinally pumped at 808 nm using a 4 W 

fiber-pigtailed laser diode with a spot size around 100 µm. One side of the crystal is 

antireflection coated at 808 nm and highly reflective at 1064nm and corresponds to the back 

mirror. The external output coupler has a radius of curvature ROC=80mm with 30% 

transmission at 1064 nm. In order to keep a TEM00 mode, the pump power is limited to 3W 

giving an output power typically equal to 600mW.  The output beam is collimated using a lens 

L1 with 100mm focal length. In order to avoid any direct optical feedback, an optical isolator 

(OI) is added just after L1. Compared to the setup described by Brignon et al. [9], an acousto-

optic modulator (AOM) is aligned on the optical path of the signal beam for amplitude 

modulation (AM). The external AM frequency f  is adjusted close to the relaxation oscillation 

frequency of the laser (typically 1 rof f  MHz) with a modulation depth adjustable from 1% 

up to 70%. Most of the laser output is therefore used as the signal beam which can be injected 
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back into the Nd:YVO4 medium. As shown in figure 1, a second lens L2 (f=100mm) is used to 

focus the signal beam into the Nd:YVO4 crystal.  Taking into account the losses into the optical 

isolator and the Bragg cell efficiency, the signal power available for FWM inside the gain 

medium is close to 250mW whereas the interacting laser beams (Ap1(2), As) inside the crystal 

have a diameter around 100-150 µm. The angle between the signal beam and the optical axis of 

the cavity is lower than 5° in order to properly overlap the two counter-propagating pump beams 

and the signal beam in the gain volume. A beam splitter (BS) is added to monitor on one side the 

injected signal beam and on the other side the phase conjugate beam. The experimental setup 

was first aligned without amplitude modulation in order to check evidence of phase conjugation. 

The conversion efficiency is estimated to 0.07 % quite similar to [9] considering the output 

coupler. For all the results presented below, only the modulated amplitude of the phase conjugate 

beam is measured. 

It is well known that FWM in a laser cavity results from the interference pattern created 

inside the amplifying medium by the two counter propagating pump beams (Ap1 and Ap2 in 

figure 1) interfering with the signal beam As. The phase conjugate beam Ac results 

simultaneously from the gain gratings acting in reflection for Ap2 or transmission for Ap1 with 

similar efficiency. We can therefore approximate the phase conjugate intensity as being 

proportional to:  
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cR  is calculated thanks to equation (9) of ref. [13] and depends on Ap1(2) and  the normalized 

pumping (808 nm) rate. In order to take into account the effect of AM applied on the signal As, 

the amplification factor   f  defined in [12] is used in which 1 (4000 s-1) is the decay rate of 

the population inversion, c (4.109 s-1) is the laser cavity decay rate, rof  is the relaxation 

oscillations frequency of the laser and f  the AM frequency.  

The factor   f  shows a strong resonance near the laser relaxation oscillations 

frequency. In order to check if such enhancement could also be obtained in FWM, the influence 

of the AM frequency f  applied to the signal beam is investigated. When the AM frequency is 

far away from the relaxation oscillations frequency of the laser, the conjugate beam presents a 

very small intensity modulation depth. On the other hand, the phase conjugate wave exhibits a 

strong resonance when the AM frequency is adjusted close to the relaxation oscillations 

frequency. When the incident modulation depth is higher than 30%, a periodic pulsed regime 

with a repetition rate equal to the AM frequency and a pulse duration of 250ns was observed. At 

smaller incident modulation depth (1%), the temporal evolution of the phase conjugate 

intensity becomes a purely sinusoidal waveform but still presenting a strong resonance when 

 rof f . When the signal beam intensity is modulated, it creates in the gain medium an inversion 

population grating which is also amplitude modulated at the same frequency. The resulting 

modulation in the amplifying medium allows exciting the relaxation oscillations. In this case, the 

time dependant perturbation is strongly amplified inside the laser cavity. For a better 

characterization of the phase conjugate wave, figure 2 shows the evolution of the phase 

conjugate wave intensity (
2

cA )  versus f superimposed with the random intensity noise (RIN) 

spectrum of the unperturbed  laser. This experiment has been realized for a low modulation depth 
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(0.5%). It clearly shows that an amplification factor up to +30 dB appears when  rof f . The 

evolution shown in figure 2 is directly proportional to the   f  function defined in equation (2) 

and illustrates the exaltation effect provided by the specific dynamical properties of a class B 

solid state laser. The evolution of FWM in a class B laser submitted to a modulated optical 

feedback which is slightly titled seems to be quite similar to the one already observed in self-

aligned optical feedback experiments. 

 Finally, the phase conjugate wave intensity is investigated versus the optical power of the 

signal beam. In a first experiment, only the signal beam power is attenuated using a continuously 

adjustable neutral density filter located just before the AOM. The intensities 
2 2

1 2,p pA A  and 

  f  are kept constant.  The different curves reported in figure 3(a) are obtained for three 

different values of the AM frequency f . As expected from equation (1), 
2

cA  is linearly 

proportional to the signal power 
2

sA . An amplification effect – which corresponds to an 

increase in the slope efficiency of the curves reported in figure 3 – is effectively observed when 

the modulation frequency is very close to the relaxation oscillations frequency of the laser. 

Similar measurements were performed when the power from the diode at =808 nm was 

adjusted meaning that the pumping rate  was adjusted from 1.3 to 3.5. In this case, the pump 

and signal powers (
2 2 2

1 2, , )p p sA A A  and   f  are simultaneously affected. Solid lines in 

figure 3b take into account these simultaneous variations. Figures 3(a) and 3(b) are in good 

agreement with equations (1) and (2). 

 To conclude, we have experimentally demonstrated an amplification effect of intracavity 

FWM in a diode pumped Nd:YVO4 laser using a selected excitation of the relaxation oscillations 
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of the laser. A +30 dB amplification factor has been measured on the modulated amplitude of the 

phase conjugate beam when the AM frequency is resonant with the relaxation oscillations 

frequency of the laser. Moreover, we plan to demonstrate full-field imaging capabilities of such a 

device.  
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Figures captions 

Figure 1 : Experimental setup of a modulated FWM experiment in a diode–pumped 

Nd:YVO4 laser; M, high-reflectivity plane mirrors; C, Nd:YVO4 crystal; Mo, laser output 

coupler; AOM, acousto-optic modulator; OI, optical isolator; D1,2, InGaAs photodiodes; L1,2, 

lens; BS, beam-splitter. 

 

Figure 2 : Evolution of the amplitude modulated part of the conjugate wave intensity versus 

the AM frequency compared to the noise spectrum of the free-running laser driven by white 

noise; 

  

Figure 3 : Evolution of the amplitude modulated part of the conjugate wave intensity versus 

the signal beam power; (a) only the signal beam power 
2

sA  is modified; (b)
2

1 pA  

2 2

2, ,p sA A  are modified in the same way.  
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Figure 3 
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