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Abstract This paper presents a novel method for open-loop watermarking of

H.264/AVC bitstreams. Existing watermarking algorithms designed for previ-

ous encoders, such as MPEG-2 cannot be directly applied to H.264/AVC, as

H.264/AVC implements numerous new features that were not considered in

previous coders. In contrast to previous watermarking techniques for H.264/AVC

bitstreams, which embed the information after the reconstruction loop and

perform drift-compensation, we propose a new completely intra-drift- free

watermarking algorithm. The major design goals of this novel H.264/AVC

watermarking algorithm are: runtime-e�ciency, high perceptual quality, (al-

most) no bit-rate increase and robustness to re-compression. The watermark

is extremely runtime-e�ciently embedded in the compressed domain after the

reconstruction loop, i.e., all prediction results are reused. Nevertheless intra-
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drift is avoided, as the watermark is embedded in such a way that the pixels

used for the prediction are kept unchanged. Thus there is no drift as the pixels

being used in the intra prediction process of H.264/AVC are not modified. For

watermark detection, we use a two stages cross-correlation. Our simulation

results confirm that the proposed technique is robust against re-encoding and

shows a negligible impact on both the bit-rate and the visual quality.

Keywords Video watermarking · H.264 · perceptual weighting · bit-rate
preservation

1 Introduction

H.264/AVC is a state-of-the-art video compression standard and has become

the most widely deployed video codec in almost all applications: video distri-

bution in the Internet as well as on Blu-ray discs, even mobile devices employ

H.264/AVC to compress captured video data. The ubiquity of digital con-

tent and its ease of duplication and modification calls for technical solutions

for copyright protection and authentication; digital watermarking is an in-

tegral part of such solutions. As digital video content is mostly coded with

H.264/AVC, watermarking solutions that are tailored to the specifics of this

standard can greatly improve the performance of digital watermarking sys-

tems, e.g., with respect to runtime performance.

In H.264/AVC, the watermark could be embedded at the various stages

in the compression pipeline, i.e., pre-compression or spatial domain, trans-

form coding stage, QTCs (quantized transform coe�cients) stage and entropy

coding stage. So, basically, the work on video watermarking can be divided

into two main approaches: 1) closed-loop watermarking, i.e., watermark em-
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bedding requires to consider the coder reconstruction loop (any modification

due to watermark embedding might likely a↵ect further encoding of infor-

mation). 2) open-loop watermarking, i.e., the watermark embedding modifies

only a well defined set of information without a↵ecting the encoding process

of any other information. The closed-loop watermarking almost needs com-

plete re-compression while open-loop watermarking embeds a watermark in

compressed domain (syntax elements before entropy encoding) or bitstream

domain (bit substitutions of the final bitstream). Thus open-loop watermark-

ing either requires only the entropy encoding stage or no stages from the

compression. Therefore open-loop watermarking is extremely runtime-e�cient

compared to closed-loop watermarking. In Section 2.1, we present the recent re-

search on closed-loop watermarking, while open-loop watermarking approaches

are discussed in Section 2.2. Embedding within the reconstruction loop avoids

drift, shows a small impact on rate distortion (RD) performance and o↵ers a

high watermark payload. It also has the significant disadvantage that it re-

quires re-computation of all prediction decisions for the embedding of each

single watermarking message [25]. Thus it requires the computationally most

complex parts of video compression and therefore cannot be used for appli-

cations with runtime constraints or in applications which require numerous

watermark messages to be embedded. Active fingerprinting is an example

which usually requires numerous watermarks, as each buyer’s fingerprinting

code is embedded in the visual content to detect the traitor in case of illegal

distribution of the content.

On the other hand, if the watermark embedding occurs after the recon-

struction loop (open-loop), the most complex parts of the compression pipeline

are omitted. Watermark embedding modifies only prediction residuals on the
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syntax level. In open-loop watermarking, prediction is performed from wa-

termarked content on the decoder side and from the original content on the

encoder side. Thus there is a mismatch between encoder and decoder side

predictors, which accumulates over time. This accumulating mismatch is re-

ferred as drift and makes open-loop watermarking very challenging, as visual

quality constraints are hard to meet. As video data are usually stored and

distributed in a compressed format (very often H.264), it is often impractical

to first decode the video sequence, embed the watermark and then re-compress

it. A low-complexity video watermarking solution requires that the embedding

be conducted in an open-loop fashion. Furthermore common design goals of

watermarking algorithms should also be met, such as robustness and imper-

ceptibility. In this paper, we present an algorithm for open-loop watermark

embedding in H.264/AVC bitstreams, which is robust against re-compression.

At the same time, the embedding is imperceptible and avoids intra-drift, by

keeping the predictor pixels unchanged.

In previous work we presented the basic idea for intra-drift-free H.264/AVC

bitstream watermarking in [4], but could only report very preliminary results,

which employed ad-hoc solutions of the system of linear equations and used

a constant embedding strength without any human visual system model. In

this paper, we present a significantly improved version of our basic idea; we

now select the most suitable patterns from the complete set of solutions, and

use the DCTune perceptual model [26] to modulate the watermark embed-

ding strength. The use of DCTune improves the basic approach in two ways:

First, visible artifacts are avoided in the watermarked video. Second, as the

watermark embedding strength is increased to the DCTune imperceptibility
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Fig. 1: Two main categories of watermarking in video codec: 1) During the
encoding process or spatial domain, 2) In the bitstream domain.

limit, the improved technique o↵ers higher robustness. Furthermore, a com-

prehensive analysis and a comprehensive evaluation of our proposed technique

is performed in this paper.

The remainder of the paper is organized as follows: Recent work on H.264/AVC

watermarking is presented in Section 2. The proposed technique including the

derivation of the linear system, watermarking embedding and detection are

presented in Section 3. Experimental results are presented in Section 4. In

Section 5 we discuss the performance and possible improvements of the pre-

sented algorithm. Final conclusion are drawn in Section 6.

2 Recent work

For video content, watermarking is often strongly tied to the compression. As

previously explained, two distinct approaches can be used for video water-

marking, closed-loop watermarking, where the information is embedded either

before or during compression, or open-loop watermarking, where the water-

mark is embedded during the entropy coding or directly within the bitstream.

Figure 2 summarizes the di↵erent embedding stages that we can encounter in
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Transform / 
prediction Quantization Entropy 

coding Bitstream

1 2 3 4Embedding stage:

Fig. 2: Classification of watermarking schemes on the basis of working domain:
(1) Pre-compression, (2) Transform domain, (3) Quantized transform domain,
(4) Open-loop.

the literature, these stages are numbered within the circles. In the following

subsections we will describe state-of-the-art methods for these two approaches.

2.1 Closed-loop watermarking

Embedding before or during compression can be subdivided into three main

classes namely, embedding before compression, embedding in transform coef-

ficients, and embedding in QTCs (quantized transform coe�cients):

In the pre-compression stage, denoted stage 1 in Figure 2, watermarking

can be performed in the pixel domain [5,3] or more commonly in a trans-

form domain like DFT [11,6] or DWT [27]. Pre-compression watermarking

approaches can also be performed on multiple frames [3,6]. In [23], Pröfrock et

al. have presented a watermarking technique in the spatial domain, robust to

H.264/AVC compression attacks with more than 40:1 compression ratio. The

watermark is only contained in intra frames similar to the approach presented

in [30]. The watermark can also be embedded in the transformed coe�cients

before quantization as proposed by Golikeri et al. [7] (see stage 2 in Figure 2).

Visual models developed by Watson [26] were employed.
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Some algorithms [8,21,30,25] embed the watermark in QTCs of H.264/AVC

(see stage 3 in Figure 2). Noorkami and Merserau have presented a technique

to embed a watermark message in both intra and inter frames in all non-zero

QTCs [21]. They claimed that visual quality of inter frames is not compro-

mised even if the message is embedded only in non-zero QTCs. In [8], Gong

and Lu embedded watermarks in H.264/AVC video by modifying the quan-

tized DC coe�cients in luma residual blocks. To increase the robustness while

maintaining the perceptual quality of the video, a texture-masking-based per-

ceptual model was used to adaptively choose the watermark strength for each

block. To eliminate the e↵ects of drift, a drift compensation algorithm was

proposed which adds a drift compensation signal before embedding the water-

mark.

In [25], Shahid et al. embedded watermarks in H.264/AVC video by mod-

ifying the quantized AC coe�cients in luma and chroma residual blocks. This

method embeds a watermark message inside the reconstruction loop to avoid

drift, and hence needs re-compression for each watermark message. This algo-

rithm has a negligible compromise on RD performance and is useful for high

payload metadata hiding. While only modifying the AC QTCs above a certain

threshold, the scheme o↵ers 195 kbps payload with 4.6% increase in bit-rate

and 1.38 dB decrease in PSNR at QP value of 18.

2.2 Open-loop watermarking

To avoid decoding followed by the extremely computationally demanding re-

compression combined with watermarking, some methods have suggested em-

bedding watermark messages in an open-loop fashion, e.g., [12,13,18,19,28]
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to achieve low-complexity video watermarking (see stage 4 in Figure 2). In

[1], perceptual models are adopted to mitigate the visual artifacts. In [14],

a compressed domain watermarking technique called di↵erential energy wa-

termark (DEW) is proposed. In [15], the authors proposed a watermarking

algorithm named di↵erent number watermarking (DNW) algorithm, embed-

ding the mark in the texture and edges. For all of the above techniques, the

main problems are visible artifacts and bit-rate increase.

In previous work the addition of a drift compensation signal to control /

eliminate the drift, i.e., visible artifacts, has been proposed [10,9]. In [10], Huo

et al. have proposed to process only a subset of the transformed coe�cients

as opposed to process all the coe�cients as suggested in the other compen-

sation methods. Kapotas et al. [12] have presented a data hiding method in

H.264/AVC streams for fragile watermarking. It takes advantage of the di↵er-

ent block sizes used by the H.264 encoder during the inter prediction stage in

order to hide the desirable data. The message can be extracted directly from

the encoded stream without the need of the original host video. This approach

can be mainly used for content-based authentication. In [20], the authors pro-

pose a self-collusion resistant watermarking embedding algorithm using a key

dependent embedding strategy. Their algorithm is reported to cause only one

percent increment of the bit-rate; however, it is not robust to recompression.

In [19], the same authors present a new algorithm that is more robust, but

the increment of bit-rate is up to 4-5%. In [24], Qiu et al. propose a hybrid

watermarking scheme that embeds a robust watermark in the DCT domain

and a fragile watermark in the motion vectors in the compressed domain. This

approach is not robust against common watermarking attacks.
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Watermark embedding may be conducted directly on the bitstream as well,

i.e., by substitution of certain bits. In [18], authentication of H.264/AVC is per-

formed by direct watermarking of CAVLC codes. In [13], Kim et al. present a

new algorithm embedding the watermark in the sign bit of the trailing ones

in CAVLC of H.264/AVC with no change in bit-rate with PSNR higher than

43 dB. But, this technique is not robust against attacks such as re-compression

with di↵erent encoding parameters and common signal processing attacks. Zou

and Bloom [28] have proposed to perform direct replacement of CAVLC for

watermarking purpose. For CABAC [29], they have proposed a robust water-

marking method using Spread Spectrum modulation while still preserving the

bit-rate. This technique is robust against slight shift, moderate downscaling

and re-compression. To keep the watermark artifacts invisible and to ensure

the robustness, fidelity and robustness filters were used. In [16], the authors

present an algorithm for watermarking intra frames without any drift. They

propose to exploit several paired-coe�cients of a 4⇥ 4 DCT block to accumu-

late the embedding induced distortion. The directions of intra-frame prediction

are used to avert the distortion drift. The proposed algorithm has high em-

bedding capacity and low visual distortions. Since this technique is based on

intra prediction direction, it is not robust against re-encoding attack, which is

the most common non-intentional attack.

Open-loop video watermarking algorithms face major challenges / limita-

tions: First, the payload of such algorithms is significantly reduced, i.e., up to

a few bytes per second as explained in [9]. Second, if drift compensation is not

applied there is a continuous drift, which significantly distorts the visual qual-

ity. Third, if drift compensation is applied, the algorithms face considerable

bit-rate increases. Fourth, the robustness is often very limited.
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In [9] and [32], the authors emphasize the importance of bit-rate preserving

watermarking algorithms.

The goal of this paper is to present a robust open-loop watermarking al-

gorithm for H.264/AVC with a minimal increment of the bit-rate and robust-

ness against recompression. To achieve these goals, drift is avoided instead

of compensated which allows to almost preserve the original bit-rate as no

compensation signals need to be coded.

3 Drift-free open-loop H.264 watermarking

The main challenge in the design of an H.264/AVC open-loop watermarking

algorithm is drift, which is a result of intra and inter prediction [20,19]. If the

watermark embedding algorithm modifies the pixels which are used in these

processes, the result is a drift error which accumulates, i.e., multiple drift errors

add up to induce clearly visible distortions. In the proposed watermarking

technique, a watermark message is embedded in the transformed domain, while

making sure that only those pixels are modified which are not used for the

intra prediction of future blocks. Capital letters refer to matrices, e.g., C, Y ,

W and lower case letters with indices refer to the elements of a matrix, e.g.,

x

ij

represents jth element in ith row of matrix X.

The embedding of the watermark modifies the original pixel value x

ij

by

adding the watermark signal w
ij

, which results in the watermarked signal xw

ij

.

x

w

ij

= x

ij

+ w

ij

(1)

The values y
ij

are the pixels in the next block, which is predicted from x

ij

.

A pixel value y

ij

can be decomposed into its predictor p
ij

and residual r
ij

:
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y

ij

= p

ij

+ r

ij

(2)

At the encoder side, p
ij

is derived from x

ij

, but after the watermark em-

bedding, x
ij

changes into x

w

ij

, so p

ij

changes to p

w

ij

, y
ij

will thus become y

0

ij

;

y

0

ij

= p

w

ij

+ r

ij

(3)

Thus the drift error e is:

e = y

0

ij

� y

ij

(4)

In this work, we completely avoid this drift error, as the reference pixel

values for the intra prediction remain unchanged.

p

w

ij

= p

ij

, y

0

ij

= y

ij

, ) e = 0. (5)

In Section 3.1, we present the solutions of a system of linear equations,

which allow to embed a watermark message in the DCT coe�cients without

modifying boundary pixels which are used for prediction of future blocks.

The watermark embedding step is explained in Section 3.2, while watermark

detection is presented in Section 3.3.

3.1 Intra-drift-free DCT-watermarking: solutions of a system of linear

equations

In the spatial prediction of H.264, the pixels of a macroblock (MB) are pre-

dicted by using only information of already transmitted blocks in the same
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(a) I4⇥4 mode (b) I16⇥16 mode

Fig. 3: H.264/AVC intra prediction in spatial domain: (a) Prediction is per-
formed from pixels at left and top of every 4⇥4 block for I

4⇥4

mode. Moreover,
4⇥ 4 blocks are transmitted in a dyadic manner inside a MB, (b) Prediction
is performed at MB level for I

16⇥16

mode. The order of transmission of 4⇥ 4
blocks inside a MB is in a raster scan fashion. In this mode, DC coe�cients
are further transformed using Hadamard transform and are sent before AC
coe�cients.

video frame. In H.264/AVC, two types of spatial predictions are available:

I

4⇥4

and I

16⇥16

. The I

4⇥4

mode is based on predicting each 4⇥ 4 luma block

separately. Pixels which are used for prediction in this mode are shown in Fig-

ure 3(a). Nine prediction modes are available and it is well suited for coding

the detailed areas of the frame. The I
16⇥16

mode, on the other hand, performs

prediction of the whole 16⇥ 16 luma block. Figure 3(b) shows the pixels that

are used for prediction in this mode. In this mode, DC coe�cients are further

transformed using Hadamard transform and are sent before AC coe�cients.

It is more suited for coding the smooth areas of the frame and has four pre-

diction modes. In this paper, we are presenting the algorithm for a watermark

embedding in the 4 ⇥ 4 luma blocks of intra frames. Figure 4 shows the nine

di↵erent predictions modes for a 4⇥ 4 block size.

Figure 4(j), shows the labeling of prediction sample. The prediction is based

on pixels labeled A to M for the current block. Thus, the d, h, l, p,m, n, o pix-

els will be used for future prediction. Since it is only the residual r
ij

which
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Fig. 4: Nine intra prediction modes (sub figures a to i) and labeling of the
pixels (j).

is coded in the bitstream and is watermarked in bitstream domain water-

marking techniques, if the residual r
ij

for pixels at positions d, h, l, p,m, n, o

in Figure 4(j) are unchanged, then the original pixels will remain unchanged.

Since these pixels are used in the prediction, the error brought by the water-

mark embedding process will not propagate in the intra frame. Moreover, if

the prediction mode is unchanged, the bit-rate increment will only come from

the entropy coding of a few modified coe�cients and thus remain low. Since

we aim to embed the watermark in the residual in the compressed domain, we

need to explore the relationship between the spatial domain pixel values and

the compressed domain coe�cients.

The 4⇥4 residual matrix X is derived by the 4⇥4 de-quantized transform

coe�cient matrix Y as follows:

X = C

T

Y C (6)
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The matrix C is defined in the H.264 standard.

C =

0

BBBBBBBB@

1 1 1 1

1 0.5 �0.5 �1

1 �1 �1 1

0.5 �1 1 �0.5

1

CCCCCCCCA

(7)

Transform matrix Y will be modified to Y

0, such that the border pixels of

X

0 = C

T

Y

0
C are the same as those in X, i.e.:

C

T

Y

0
C � C

T

Y C = X

0 �X = D =

0

BBBBBBBB@

d

00

d

01

d

02

0

d

10

d

11

d

12

0

d

20

d

21

d

22

0

0 0 0 0

1

CCCCCCCCA

(8)

Y

0 can be written as Y +N , with N =

0

BBBBBBBB@

n

00

n

01

n

02

n

03

n

10

n

11

n

12

n

13

n

20

n

21

n

22

n

23

n

30

n

31

n

32

n

33

1

CCCCCCCCA

, and thus:

X

0 �X = C

T

Y

0
C � C

T

Y C = C

T (Y +N)C � C

T

Y C = C

T

NC = D (9)

Each d

i,j

= 0 in Equation 8 corresponds to a linear equation, we thus get

seven linear equations in �!
n = (n

00

, . . . , n

33

)T .

P

�!
n =

�!
0 (10)
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The solutions of this system of linear equations are spanned by a 9 element

basis. Any linear combination of these basis vectors can be added to the de-

quantized coe�cient matrix without changing the border pixels.

The nine possible basis that would preserve the last row and column for

the blocks are given below in equation 11. As explained above, any summation

of these basis matrices could be computed and be used as solution patterns

that will preserve the “prediction pixels”.

8
>>>>>>>><

>>>>>>>>:

0

BBBBBBBB@

1

4

0 0 1

2

0 0 0 0

0 0 0 0

1

2

0 0 1

1

CCCCCCCCA

,

0

BBBBBBBB@

� 1

2

0 1

2

0

0 0 0 0

0 0 0 0

�1 0 1 0

1

CCCCCCCCA

,

0

BBBBBBBB@

1

2

1

2

0 0

0 0 0 0

0 0 0 0

1 1 0 0

1

CCCCCCCCA

,

0

BBBBBBBB@

� 1

2

0 0 �1

0 0 0 0

1

2

0 0 1

0 0 0 0

1

CCCCCCCCA

,

0

BBBBBBBB@

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

1

CCCCCCCCA

,

0

BBBBBBBB@

�1 �1 0 0

0 0 0 0

1 1 0 0

0 0 0 0

1

CCCCCCCCA

,

0

BBBBBBBB@

1

2

0 0 1

1

2

0 0 1

0 0 0 0

0 0 0 0

1

CCCCCCCCA

,

0

BBBBBBBB@

�1 0 1 0

�1 0 1 0

0 0 0 0

0 0 0 0

1

CCCCCCCCA

,

0

BBBBBBBB@

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

1

CCCCCCCCA

9
>>>>>>>>=

>>>>>>>>;

(11)

Our watermark embedding requires two solution patterns of the linear

system in order to embed a single symbol of the watermarking sequence. The

solutions should modify important coe�cients (close to the DC coe�cient, but

not the DC coe�cient itself), but modify as few coe�cients as possible, which

are also most likely to be non-zero. Hence, we have selected patterns with the

minimum amount of non-zero entries that contain non-zero entries close to the

DC-coe�cient. The following two solution patterns have been employed, each

containing 4 non-zero coe�cients:
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sol

1

=

2

666666664

0 1 1 0

0 1 1 0

0 0 0 0

0 0 0 0

3

777777775

(12)

sol

2

=

2

666666664

0 0 0 0

1 1 0 0

1 1 0 0

0 0 0 0

3

777777775

(13)

We can notice that sol
1

actually corresponds to the matrix summation of

the 8th and 9th elements of the basis matrices, whereas sol

2

corresponds to

the matrix summation of the 6th and 9th elements of the basis matrices (see

the nine basis matrices in equation 11).

We can thus use either solution sol

1

or sol

2

in order to embed a 1 or a 0

within the block:

8
><

>:

y

1(i,j)

= y

i,j

+ ↵.sol

1(i,j)

! Embed watermark bit ’0’

y

2(i,j)

= y

i,j

+ ↵.sol

2(i,j)

! Embed watermark bit ’1’
(14)

↵ is a weighting parameter, for any ↵ value, the coe�cient used for the pre-

diction will be unchanged in y

1(i,j)

and y

2(i,j)

. In the following, we will explain

how to use a JND model to optimize the embedding strength.

3.2 Watermark embedding

For a better imperceptibility, we have adapted DCTune [26] to H.264/AVC.

DCTune performs in the DCT transform domain. Since DCT transform has
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been replaced by integer transform (IT) in H.264/AVC, we have computed the

DCTune visibility threshold using the IT. The adaptation of DCTune in our

method is performed the same way as in [20]. Interested readers should refer

to section II in [20] for in depth details on the DCTune adaptation. In a video

frame, every area has di↵erent characteristics in terms of luminance, contrast

and texture. Hence the sensitivity to human vision also varies from one area

to another inside a video frame. DCTune computes a visibility threshold for

every transformed coe�cient in the DCT domain. DCTune considers both

luminance masking and contrast masking. Luminance masking occurs in the

bright portions of an image, where basically, our visual system is less sensitive

to luminance variation. E↵ectively, the same luminance variation leads to a

lower contrast in brighter areas (than in darker areas). Hence, information loss

is less noticeable in bright portions of the image. Concerning contrast masking,

the human visual system exhibits a reduced sensitivity when two components

having similar frequencies and orientations are mixed together.

Watermark can be embedded in two ways as shown in Fig. 5. If we have

raw video input, the watermark embedding and video compression steps can

be simultaneously performed as shown in Fig. 5a. A 4x4 block is selected for

embedding based on solution of linear equations and DCTune threshold. Since

the watermark is embedded in encoded video and not in the original video,

DCTune is employed on reconstructed video content as shown in Fig. 5a.

If the input video is in compressed form, we need to perform entropy de-

coding for watermark embedding as shown in Fig. 5b. In this case, video will

be completely decoded for HVS mask creation by DCTune. It is pertinent to

mention that complete video decoding is required only once. For example, if
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we want to embed 1000 di↵erent watermarks in a video bitstream, it would

require entropy re-encoding 1000 times but a complete decoding only once.

For both approaches, the solutions of the system of linear equations are

employed for watermarking the Quantized Transform Coe�cients. One can

note that the HVS masking operates on the decoded/reconstructed pixels,

which already takes into account the quantization e↵ect.

(a)

(b)

Fig. 5: Block diagram of drift-free robust watermarking system for H.264/AVC,
(a) raw video input, and (b) H.264 bitstream input.

As previously explained, for each 4⇥4 block, a system of 7 linear equations

is derived. Evidently, several solutions may exist to this system of equations.

In this work, for every “watermarkable” block, we need at least two solutions

to exist. Basically, using either of these two solutions, allows us to embed the
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watermark information into the host media. In this work, once two solutions

to the system are selected, they are used throughout all the blocks of every

intra frame.

Thus, two solution patterns of the system of linear equations are used to

embed a single symbol of a bipolar watermark sequence W 2 {�1,+1} (with

zero mean and unit variance). Consequently, using the two solution patterns,

we either encode -1, or +1 within the considered block. During the detection,

the cross-correlation of the two solutions with the possibly watermarked block

is determined. Thus, the goal is to achieve a maximum di↵erence between

these two correlations (cross-correlation gap ✓), while keeping the embedding

strength within the DCTune visibility threshold. The DCTune JND mask pro-

vides a maximum allowable strength for every coe�cient within the 4⇥4 block,

thus, the transformed coe�cients within the selected embedding patterns (see

Equations 12 and 13) are successively increased until their value reaches the

DCTune threshold. For every considered 4⇥4 block, DCTune provides a 4⇥4

JND matrix. During the perceptual optimization, we use the minimum JND

coe�cient being non-zero in either sol
1

or sol
2

(see Equations 12 and 13). This

minimum perceptual weighting coe�cient is then used as ↵ in Equation 14. It

is important to note that only the coe�cients located within the patterns sol
1

or sol
2

are modified, all other coe�cients are kept unchanged. It is important

to note that the DCTune mask coe�cients are not needed during the detection

stage.

In order to determine the required processing power for the proposed al-

gorithm, we performed a simulation on 50 frames of the tempete sequence in

CIF format with a QP value of 24. For this simulation, three scenarios are con-

sidered: 1) Encoding only was performed on the sequence, 2) both encoding
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and watermark embedding was performed, and 3) the sequence was encoded

and the watermark was weighted using DCTune before the embedding. For

this experiment, a 2.1 GHz Intel Core 2 Duo T8100 machine with 3072 MB

RAM was used. We have done this simulation both on intra only sequence

and on intra & inter sequences. For intra only sequences, where a watermark

is embedded within every frame, the encoding itself took 47.9 seconds for the

whole sequence of 50 frames. When encoding the sequence and embedding the

watermark, it took 48.9 seconds, and finally, when encoding and watermarking

were performed using DCTune to weight the watermark strength, 49.3 seconds

were needed.

Since intra only sequence is used very rarely and intra, followed by inter

frames (IPP sequence) is used most of the time, the simulation was also con-

ducted on intra & inter sequence with intra period of 10. On IP sequences, the

encoding itself took 4078 seconds. When encoding the sequence and embedding

the watermark, it took 4083 seconds, and finally, when encoding and water-

marking were performed using DCTune to weight the watermark strength,

4084 seconds were needed.

The table 1 shows the processing time for all three scenarios. The processing

times are given both in terms of average time per frame, and for the whole

processing time needed for the 50 frames. We can observe that when I frames

only are considered, the processing time is increased by less than 3% compared

to the “encoding-only” scenario. When P frames are included in the sequence

(intra period=10), the use of DCTune when embedding the watermark only

increases the processing time by 0.15 %.

The proposed embedding process is thus slightly faster than the works in

[16] where the authors mentioned: “The data hiding procedure for an I frame of
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Table 1: Processing time when 1) encoding only is applied, 2) encoding and wa-
termarking are applied, and 3) encoding and DCTune adapted watermarking
are performed.

Average processing Global processing

time (sec / frame) time (sec)

I frames

Coding 0.95944 47.972

Coding&watermark 0.97902 48.951

Coding & DCTune watermark 0.98668 49.334

I&P frames

Coding 81.56776 4078.388

Coding&watermark 81.67932 4083.966

Coding & DCTune watermark 81.69414 4084.707

the sequence Coastguard and Bridge-far cost 188 ms and 125 ms on average,

respectively.”. It should be noted that in [16], QCIF sequences were used,

whereas in Table 1 we used CIF format sequences.

Moreover, in order to ensure a proper quality on Intra + Inter coded se-

quences, the PSNR was computed on an sequence containing both intra and

inter coded frames. The figure 6 shows for every frame of the tempete sequence

(50 frames) the PSNR when 1) only coding is applied (QP = 24) and 2) both

coding and watermarking are applied. In this experiment, the intra period is

10, only the I frames are watermarked (frames 1, 11, 21, 31, 41). On average

(across the 50 video frames), when encoding only was performed, the PSNR

reaches 39.35 dB, and when both coding and watermarking are applied, the

PSNR equals 38.89 dB. We can thus witness only a 0.46 dB decrease when

the watermarking method is applied.

The following constraints are employed during the watermark embedding:

– Bit-rate constraint: we do not modify zero transform coe�cients, i.e., these

blocks are not used for embedding.
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Fig. 6: PSNR computed on every frame of I+P coded sequence for either
coding only, or watermarked sequence.

– Imperceptibility constraint: DCTune visibility threshold is calculated for

each transformed coe�cient. Embedding is performed with the maximum

embedding strength allowed by the DCTune visibility threshold.

– Robustness constraint: To guarantee the robustness of this scheme, the

cross-correlation gap between the two added solution patterns should be

greater than a pre-determined threshold ✓.

Embedding can be interpreted as a constrained optimization problem, in

which we want to maximize the embedding strength under the constraints of

bit rate, imperceptibility and robustness.

When modifying the residuals, several constraints need to be respected:

– A block is considered as watermarkable if at least two solution exist for

the system of equations.

– For every watermarkable 4⇥4 block, the border pixels (x
03

, x
13

, x
23

, x
30

,

x

31

, x
32

, x
33

) must be kept unchanged (see Equation 8).

– Modify the 4⇥ 4 blocks having non-zero coe�cients at the positions deter-

mined in the selected solution patterns (see Eqs. 12 and 13).



Robust drift-free bitrate preserving H.264 watermarking 23

– The watermark strength must remain below the visibility threshold as de-

fined by DCTune.

– The cross-correlation gap between the two solution patterns should be

above a threshold ✓.

3.3 Watermark detection

The detection of the watermark is performed in the compressed domain as

well. Its procedure is shown in Figure 7 (within the dotted rectangle). Dur-

ing the watermark detection process, the data required during the retrieval

procedure is: 1) the chosen solution patterns of the system of linear equations

used for watermarking (sol
1

, sol

2

) and 2) the watermarked block positions.

The proposed detection algorithm is thus semi-blind as some side information

needs to be transmitted to the detector. More precisely, 32 bits are needed to

encode the solution patterns, and 21 bits are needed for every embedded wa-

termark symbol to specify its particular location within the frame, and within

the embedding block.

The detection actually proceeds in two separate steps, in a first step, a

watermark is extracted from the potentially watermarked video sequence, and

then, during the second step, a global detection is performed where a corre-

lation is computed between the original watermark and its extracted counter-

part. These two steps are detailed thereafter.

Watermarked transform coe�cients are extracted from the watermarked

block. Let Z be the extracted 4⇥4 block, which can be extracted directly from

the bitstream by partially decoding it as shown in Figure 7. We will extract

one bit of watermark from the block Z using a normalized cross-correlation
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Fig. 7: Watermark detection procedure

with each of (sol
1

, sol

2

) to find which solution pattern has been embedded as

explained in Algorithm 1.

Algorithm 1 Extraction of one bit of watermark message from extracted block Z.

1: if xcorr(Z, sol
1

) > xcorr(Z, sol
2

) then
2: sol

1

detected ! Extract watermark bit ’0’
3: else
4: if xcorr(Z, sol

2

) > xcorr(Z, sol
1

) then
5: sol

2

detected ! Extract watermark bit ’1’
6: end if
7: end if
8: end
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Once the extraction of all the watermark symbols is performed, the so

obtained watermark sequence WM

ext

is compared to the original watermark

sequence using a normalized cross-correlation. A detection threshold has to be

determined, in order to ensure a proper detection [17,22,2]. False alarm and

missed detection rates were computed in order to select the optimal detection

threshold as explained in detail in Section 4. The second cross-correlation dif-

fers from the first one in the sense that it is employed to detect the watermark

sequence, while the first correlation is employed to extract a symbol of the

watermarking sequence, i.e., is employed to determine which solution pattern

has been embedded in the block.

4 Simulation Results

This section presents evaluations of the proposed watermarking algorithm 1.

We have used a custom implementation based on the H.264/AVC reference

software JM 12.2 2. Several benchmark video sequences containing di↵erent

combinations of motion, texture and objects have been used. In the follow-

ing, unless otherwise specified, the benchmark sequences were in CIF format

(352⇥ 288 pixels). In Section 4.1, the choice of a proper detection threshold is

presented. The payload and invisibility of our algorithm are assessed as well.

Finally, the robustness of the technique is tested against recompression.

1 A demo is available for download at the following URL: http://www.irccyn.ec-
nantes.fr/�autrusse/DEMO/

2 http://iphome.hhi.de/suehring/tml/
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4.1 Detection Threshold

The choice of the optimal detection threshold was obtained by computing

the false alarm and missed detection rate on 100 samples, each sample is

made of three consecutive intra frames. The false positive and false negative

rates were computed and led to an optimum detection threshold at 0.3 as

depicted in Figure 8. These thresholds allow minimization of false positives,

while granting a very weak false negative rate. We deliberately chose here to

avoid false positives, in order to ensure that no watermark is detected in an

unmarked video. Figure 8 shows the detection performances for five benchmark

video sequences. Gray curves indicate the detector result when it is looking for

a wrong watermark, while the black curve indicates the results for an original

watermark.

In Figure 8(a) the watermarked sequences were re-encoded using a QP

value of 34, whereas, in Figure 8(b) the re-encoding used a QP value of 40,

and thus the true positives decreases.

Concerning the selection of a detection threshold, two detection scenarios

need to be considered. The hypothesis H
0

when no watermark is actually em-

bedded into the host media (or the detector seek for a di↵erent watermark),

and the hypothesis H
1

when the correct watermark is indeed embedded into

the input sequence. The detector is run on a large number of sequences under

the two assumptions, H
0

and H
1

, and the distribution of the detector is plot-

ted for both cases. This way, two distinct distributions (commonly Gaussian)

can be observed while varying the detection threshold. Ideally, the two distri-

butions H
0

and H
1

should not overlap, which then allows us to set a detection

threshold in between the two distributions. Distributions for the two hypothe-
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Fig. 8: Experimental analysis for threshold selection (false positives and true
negatives).

ses H
0

and H
1

for QP value of 34 and 40 are depicted in Figure 9(a) and

Figure 9(b) respectively. Moreover, Figure 9(c) shows all the 500 detections

(whether detected or undetected) for all the sequences. In this plot, five input

sequences were considered (“bus”, “mobile”, “paris”, “tempete” and “water-

fall”), each one was either watermarked with the correct embedding sequence

that is used by the detector (H
1

, represented by gray circles) or watermarked

with a di↵erent watermark sequence (H
0

, represented by white squares). For

each of the five input sequences, 100 watermarked versions were generated,

and thus, the H
0

and H
1

distributions are each composed of 500 data points.
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Fig. 9: a) H
0

vs. H
1

analysis and detection for all five input sequences.

4.2 Analysis of payload, bit-rate and visual quality

The watermark embedding payload is dependent on two parameters: video

content and QP value. The more the video content exhibits textures and mo-

tion, the higher is the payload. Table 2 shows the payload, bit-rate increment

and PSNR decrease for the benchmark sequences at QP value of 24. The neg-

ative value of bit-rate modification actually represents a reduction in bit-rate.

Bit-rate change is so small that it is shown in milli(10�3) of percent. One can

observe that the proposed technique has a negligible e↵ect on PSNR as well,

with only 0.064 dB increase, while having an acceptable payload, and a sim-

ilar bit-rate. It is important to notice that there is a negligible change in the

bit-rate despite the fact that we have embedded the watermark message with
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the maximum embedding strength allowed by DCTune, to make our scheme

more robust.

Table 2: Analysis of the proposed algorithm in terms of payload (per frame),
bit-rate and PSNR at QP Values of 24 for benchmark sequences.

Seq Payload Bit-rate increase PSNR decrease
(per frame) (x 10�3%) (dB)

“bus” 210.76 -0.52 0.06
“mobile” 275.28 -0.47 0.13
“paris” 117.88 -0.38 0.06
“tempete” 179.24 -0.13 0.05
“waterfall” 173.6 -0.12 0.02

Average 191.35 -0.324 0.064

Table 3: Analysis of the proposed algorithm in terms of payload (per frame),
bit-rate and PSNR for di↵erent QP Values for the tempete sequence.

QP Payload Bit-rate increase PSNR decrease
(per frame) (x 10�3%) (dB)

16 250.38 -0.11 0.28
20 221.28 -0.16 0.12
24 179.24 -0.13 0.05
28 132.8 -0.39 0.02
32 72.54 0.12 0
36 23.02 -0.80 0

Video content can be encoded at di↵erent quality levels using di↵erent QP

values. Hence, it is important to observe the payload of the proposed scheme

on di↵erent QP values. Table 3 shows the analysis of our proposed scheme

at di↵erent QP values for benchmark video sequence tempete. It is evident

that the proposed scheme conserves bit-rate and PSNR for the whole range

of QP values. Nevertheless, payload reduces with increase in QP value. It is

because we embed our watermark symbols only in blocks where solely non-
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zero coe�cients are a↵ected. The number of such blocks is reduced with the

increase in the QP value.

4.3 Robustness against re-compression.

Re-compression is the most traditional non-intentional attack against water-

marked videos. Evidently, the higher is the quantization step, the more dev-

astating is the attack. Table 4 summarizes the cross-correlation peaks for five

benchmark video sequences for re-compression with 10 di↵erent QP values

(from 24 to 42 with a step of 2). These results show that the watermark is

successfully detected up to a QP value of 40. In Table 4 the gray shaded cells

represent the missed detections (the peak correlation is below the detection

threshold).

Table 4: Watermark detection rate for benchmark video sequences under re-
compression at di↵erent QP values (originally encoded at QP value of 24).

Video/QP 24 26 28 30 32 34 36 38 40 42

“bus” 1.00 0.79 0.77 0.74 0.71 0.66 0.54 0.39 0.30 0.23

“mobile” 0.99 0.82 0.81 0.81 0.80 0.71 0.66 0.52 0.56 0.43

“paris” 0.98 0.94 0.84 0.80 0.75 0.69 0.55 0.46 0.33 0.32

“tempete” 1.00 0.83 0.72 0.71 0.67 0.62 0.58 0.52 0.42 0.32

“waterfall” 0.97 0.82 0.78 0.72 0.60 0.51 0.45 0.39 0.34 0.21

4.4 Comparison with previous works

For the sake of comparison with the recent works on H.264/AVC watermark-

ing, we compared the performances of our watermarking system with [19] and

[20] in terms of both PSNR and watermark payload. The PSNR were com-

puted for three watermarked videos, either for the watermarking technique
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operating within the encoder or in the bitstream. In the following experiments

QCIF sequences were used (144⇥ 176 pixels), as this was the format used by

the authors in [19] and [20]. Figure 10 shows the PSNR for both the proposed

technique and [20]. It is important to notice that in [20], the spreading of the

prediction error when the watermark is embedded in the bitstream quickly

leads to a severe quality loss. On the other hand, PSNR closely overlap in

the proposed scheme. For example, for the bus video sequence, the PSNR are

respectively 40.05 dB and 39.93 dB in the encoder and in the bitstream. The

di↵erence in the PSNR in the proposed scheme is due to the quantization step.

Moreover, in [20], the authors stated: On average, watermark embedding

using our algorithm increases the bit rate of the video by about 5.6% (...)

readers might find it useful to know that the PSNR of the watermarked video

decreases 0.58 dB compared to the compressed (but unwatermarked) video (...).

As we will see in the following, in the proposed method, the bit-rate increase

is marginal, and the PSNR decrease remains very low.

We summarize in Table 5 the performances of our algorithm in terms of

bit-rate increase, PSNR decrease, and payload. We highlight the di↵erences in

terms of payload between the proposed watermarking system and the works

in [19]. We can notice on this table that the two methods present similar

watermark payload. Moreover, we also present in Table 5 the payload obtained

in [20]. We can notice that the payload from our proposed embedding technique

cannot compete with the payload presented in [20], but on the other hand the

bit-rate modification is marginal with our method. The authors in [20] did not

provide the bit-rate increase per input sequence, but, as explained above, the

average bit-rate increase for their method was about 5.6%.
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(a) Algorithm [20]

(b) Proposed algorithm

Fig. 10: Comparison of PSNR values with the method presented in [20]. Seven
QP values for both the Encoder and Bitstream scenarios.

It is important to notice that the watermarking methods in [19,20] are

blind, whereas our algorithm is semi-blind, as previously explained.

Finally, we show in Table 6 a performance comparison with [16] in terms

of both bit-rate increase and Payload.

Again, we can witness that the method from [16] o↵ers a higher embedding

capacity, but also leads to a higher bit-rate increase. Such an increase could

become an important issue when dealing with high definition video sequences.
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Table 5: Comparison of payload per frame with the algorithm presented in
[19] and [20]. BRi: bit-rate increase, PSNRd: PSNR decrease, P: Payload (in
bits per frame)

Proposed method from [19] from [20]

PSNRd BRi P BRi P P

(dB) (%) (bpf) (%) (bpf) (bpf)

“Carphone” 0.11 -2.69e-5 37 0.80 44 891
“Claire” 0.14 1.75e-3 34 0.44 22 450
“Mobile” 0.38 -3.51e-3 71 0.23 85 2291
“Mother” 0.14 8.11e-4 36 0.69 42 630
“Salesman” 0.12 1.23e-3 52 N/A N/A 953
“Soccer” 0.11 -2.14e-5 52 N/A N/A N/A
“Table” 0.08 1.09e-3 44 0.31 38 810

“Tempete” 0.14 2.79e-4 45 0.44 81 N/A

Table 6: Comparison with [16] in terms of bit-rate modification and Payload.

Proposed Ma et al. [16]

BRi (%) P (bpf) BRi (%) P (bpf)

“carphone” -2.69e-5 37 3.24 806
“mobile” -3.51e-3 71 0.88 910

“salesman” 1.23e-3 52 7.17 936

5 Discussion

In these experiments, we have only embedded in very specific 4⇥ 4 blocks: 1)

all of the coe�cients involved in watermark embedding are non-zero, 2) the

cross-correlation gap between the two watermarking patterns must be greater

than ✓, and 3) the embedding strength must be within DCTune threshold for

that block. If all the three constraints are satisfied, we embed the watermark

message bit using the maximum allowable strength by DCTune. In our exper-

iments, we have selected only two solutions to embed a watermark and if any

of the above-mentioned constraints are not met for those two solutions, we do

not embed any watermark bit in that block.
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Our main goal in this work was to provide a robust embedding technique

while granting a minimum bit rate modification and high quality marked se-

quences. We did not intend to provide a high payload embedding. However,

it is important to note that the watermark payload, and consequently, the

robustness could significantly be improved if more than two solutions were se-

lected. The above-mentioned objectives (robustness, invisibility, bit-rate) were

reached using a bipolar watermark. Nevertheless, future works will be devoted

to study the possible improvements of using a multipolar watermark.

In [20], the authors used a human visual system model adapted for 4 ⇥ 4

DCT blocks, while we have used DCTune for this purpose. Since the embedding

position inside the 4 ⇥ 4 block depends on the solutions of the linear system

and such solution patterns could be randomly selected to increase security.

We have used the experimental threshold for embedding and cross-correlation

to detect the watermark. In [20], the authors establish a theoretical framework

for watermark detection, however, this framework only applies for blind detec-

tion. Our experiment prove that our algorithm can resist recompression even

associated with a high quality degradation.

6 Conclusion

In this paper, we proposed an intra-drift-free robust watermarking algorithm

for H.264/AVC in the compressed domain. A system of linear equations is

solved to determine additive watermarking patterns for the H.264 4⇥ 4 trans-

form coe�cients that do not cause intra-drift in the pixel domain. The water-

marking strength is adjusted with an adapted DCTune JND mask. A cross-

correlation based detection system is employed to guarantee the robustness.
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The proposed scheme preserves the bit-rate on average, there is often even

a decrease in bit-rate. This is a significant advantage compared to previ-

ously proposed approaches, which lead to an increase in bit-rate of the wa-

termarked video. Another advantage of our approach is its runtime-e�ciency.

Hence the proposed scheme is very suitable for real-time applications, such

as video streaming of actively fingerprinted content. At the same time, we

see a negligible e↵ect on visual quality (results are given in terms of PSNR).

The watermark remains detectable in re-compressed videos, even in very low

quality and highly distorted video sequences (encoded with a high QP).
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