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Abstract. To study how nonlinear waves propagate across Y- and T-type junctions, we

consider the 2D sine-Gordon equation as a model and examine the crossing of kinks and

breathers. Comparing energies for different geometries reveals that, for small widths, the

angle of the fork plays no role. Motivated by this, we introduce a 1D effective model whose

solutions agree well with the 2D simulations for kink and breather solutions. These exhibit

two different behaviors: a kink crosses if it has sufficient energy; conversely a breather

crosses when v > 1 − ω, where v and ω are respectively its velocity and frequency. This

methodology can be generalized to more complex nonlinear wave models.
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1. Introduction

The propagation of nonlinear waves in networks is a very common problem. Examples
are the nerve impulse traveling in arrays of neurons [14], the motion of the pulse wave in the
arterial circulatory system [13] or the propagation of waves in the electrical power grid [1].
In general the problem is difficult to tackle because both the equation of motion and the
geometry are complex. A first direction is to consider a simpler geometry like a Y-junction,
see Fig. 1. Another simplification is to study what happens for a linear wave equation. In
this context, a number of researchers have examined so-called quantum graphs where the
Schrödinger equation is solved on a network. See [7] for a review. For these linear systems,
the scattering formalism can be employed and this gives the reflection and transmission
coefficients for a harmonic wave. This is detailed specifically for a Y-junction and for the
Klein–Gordon linear wave equation in [3].

In many cases however, the nonlinearity cannot be neglected. For fluid systems, note the
works by Bona and Cascaval [4] and Mugnolo and Rault [11] who used the Benjamin–Bona–
Mahoney (BBM) shallow water equation to describe a fluid network. The authors used
the fact that the BBM equation is unidirectional, hence, most of the energy is propagated
downstream. For the Boussinesq equation in a junction, Nachbin and Da Silva Simoes
[12] used a conformal map technique. However, all these studies do not provide a simple
understanding of the behavior of the waves, in particular one cannot see easily how energy
travels across the network.

To address these issues, a first step is to consider a simpler model. For instance, before
tackling the propagation of shallow water waves in a river basin, for which there are two
variables, the water elevation and the potential flow, it is useful to consider a simpler
nonlinear hyperbolic equation. The sine-Gordon equation is precisely a simple nonlinear
hyperbolic equation that admits localized solutions. It is also a Hamiltonian system in any
dimension, integrable in 1D so that one can compare the numerical solutions with their
exact counterpart as they propagate in a 1D channel. Finally, the sine-Gordon equation
is an excellent model of an extended Josephson junction between two superconductors [2].
Here, to simplify the issue and to keep the Hamiltonian framework, we exclude external
actions on the network, like a current or a magnetic field, that are commonly used in
Josephson junction arrays.

Consider the 2D sine-Gordon equation defined in a Y-junction such as shown in Fig. 1.
A first work on the problem is by Gulevich and Kusmartsev [8] who examined numerically
how kinks propagate in such a system, in the context of Josephson junctions. They showed
that the kink needs a sufficient velocity to cross the branch. Here we follow up on this
and define a 2D symmetric junction parameterized by the angle θ between the branches
and by the widths w1,2 of the branches. This setup can describe a Y-junction up to a T-
junction (θ = 180◦). We solve the 2D problem using the FreeFem++ finite element library
[10]. It is important that the energy is conserved by the code; for this we found a suitable
time discretisation. The study of the propagation of a kink in the junction yielded the
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Figure 1. Sketch of the computational domain Ω.

immediate result, that for small widths, there is no dependence of the velocity on the
angle of the fork for the full 2D simulation. We therefore introduce a 1D effective partial
differential equation to capture the essential features of the 2D propagation. This model
incorporates the junction, using the ideas of graph Laplacian [5]; its solutions agree well
with the 2D solutions. For the kink propagation in a junction we confirm the existence of
a critical velocity given approximately by the simple energy conservation argument. Below
this velocity, the kink gets reflected by the fork. Above it, it passes through the junction
and splits into two kinks that propagate in the two different branches. For breathers there
are two parameters, ω the frequency and v the velocity. For a given velocity v, junction
crossing is only possible above the frequency ω ≈ 1 − v indicating a nonlinear resonance.
After the breather passes through the junction it gives rise to new breathers in the branches.
We characterize these using their energy density and estimate their velocity and frequency.
We always observe an up-shift of the frequency and a slight down-shift of the velocity.

The article is organized as follows. In Section 2 we derive the 1D effective model from
the 2D sine-Gordon equation defined in the fork. In Section 3 we recall the energies for
the kink and the breather and show how they can be used to estimate a critical velocity.
Section 4 introduces energy conserving discretisations for the finite element 2D problem
and the 1D effective equation. Their solutions are compared in section V for both kink
and breather initial conditions. Conclusions are presented in Section 5.
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2. The 1D effective sine-Gordon model

We consider the 2D sine-Gordon equation

φtt −∆φ+ sinφ = 0, (2.1)

on a bounded domain Ω ⊂ R
2 with Neuman boundary conditions:

∇φ · n = 0,

where n is an exterior normal. The t subscript indicates the time derivative and ∆ is the
usual Laplacian in spatial coordinates. This equation conserves the energy

E =

ˆ

Ω

[

1

2
φ2

t +
1

2
|∇φ|2 + (1− cosφ)

]

dx dy. (2.2)

This can be checked easily by multiplying (2.1) by φt, integrating over the domain and
using the Stokes formula for the spatial operator.

Since the boundary conditions of the 2D problem are homogeneous Neuman it is natural
to assume that the solution is uniform in the transverse direction. In other words we keep
only the first transverse Fourier mode. Then equation (2.1) reduces in each branch to a
1D sine-Gordon equation,

φi
tt − φi

xx + sin φi = 0, i = 1, 2, 3 , (2.3)

where the label i corresponds to the three branches as shown in Fig. 2. These equations
are coupled at the apex by two conditions; one is the continuity of φi

φ1(x = l) = φ2(x = 0) = φ3(x = 0) , (2.4)

and the other is the flux conservation or the Kirchoff law

− w1φ
1

x + w2φ
2

x + w3φ
3

x = 0, (2.5)

where φi
x is the normal velocity in branch i. Let us now briefly justify this flux relation. For

that, consider the fork domain F obtained by taking the normals at the different branches
as close as possible to the fork as shown in Fig. 3. Integrating the two-dimensional equation
(2.1) on F yields

ˆ

F

(φtt + sin φ) dxdy −
ˆ

∂F

∇φ · n ds = 0, (2.6)

where n is the normal to the edge of the domain ∂F . The second term is equal to the left
hand side of (2.5). The first one is of order w2 where w is the typical width of the branches.
In the limit of small w, such that wi → 0 with w2/w1 and w2/w1 constant, the first term
vanishes while the second one remains, yielding (2.5).

The numerical scheme used to solve this 1D effective model is described below (see
Section 4); it is a finite difference approximation. The junction corresponds to the four
nodes highlighted on Fig. 2; these are labeled as 1, 2, 3 for the three branches and are
connected to the central node 4. The outer nodes are the last nodes updated by the PDE
solver; let us name the value of the solution there φ1, φ2, φ3 for each branch. The value at
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Figure 2. Sketch of the tree geometry for the 1D effective model.

the central node φ4 can be computed from the interface conditions (2.4) and (2.5). Using
a forward finite difference approximation for φi

x we get from (2.5)

−w1(φ4 − φ1) + w2(φ2 − φ4) + w3(φ3 − φ4) = 0,

where we have assumed the same space step on the three branches and used the notation
φi ≡ φ(xi). We have also omitted the j index corresponding to the different branches. We
then obtain

φ4 =
w1φ1 + w2φ2 + w3φ3

w1 + w2 + w3

. (2.7)

3. Theoretical considerations

In 1D the sine-Gordon equation is integrable, see for example [14]. It has two families
of localized exact solutions, the kink

φ(x, t) = 4 arctan [exp(γ(x− vt))] , (3.1)
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and the breather [6]

φ(x, t) = 4 arctan

[
√
1− ω2 cos(ωγ(t− vx))

ω cosh(
√
1− ω2γ(x− vt))

]

, (3.2)

where the Lorentz factor γ is given by

γ =
1√

1− v2
. (3.3)

Let us first consider the kink, its energy is

Ek = 8γ. (3.4)

The energy of the breather depends also on the frequency, it is given by

Eb = 16γ
√
1− ω2. (3.5)

In two dimensions the equation is not integrable. In addition there is the complication
of the boundaries. Therefore the only relations that can be used are conservation laws,
and in particular the conservation of energy. When the kink is in branch 1, its energy is
8w1γ because it is homogeneous in the transverse direction. Similarly in branch 2, it has
energy 8w2γ2. The conservation of energy reads

w1

8
√

1− v21
= 2w2

8
√

1− v22
, (3.6)

where we assumed w2 = w3. This expression gives a critical velocity v1 for which v2 = 0:

vk =

√

1−
( w1

2w2

)2

. (3.7)

This formula was derived in [8] and compared successfully to the 2D numerical results for
a fixed angle and widths w3 = w1, 0 < w2/w1 < 1. In the next section we confirm this
estimate by numerical simulations and show its limitations.
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A similar argument for the breather yields the following result for the parameters {v1, ω1}
in the bottom branch and the parameters {v2, ω2} in the top branches

v21 − 1

ω2
1 − 1

=
( w1

2w2

)2 v22 − 1

ω2
2 − 1

. (3.8)

This gives a critical velocity v1 for which v2 = 0

vk =

√

1− ω2
1 − 1

ω2
2
− 1

( w1

2w2

)2

. (3.9)

The practical application of the previous formula is difficult because ω2 remains unknown.
Note however that for small amplitudes, i.e. in the linear limit ω1 = ω2 so that we recover
(3.7) for the critical velocity.

4. Numerical methods

We first consider the propagation of a kink in Y- and T-junctions. As expected the kink
gets reflected if it does not have enough energy (velocity). Also the motion depends very
weakly on the angle. To illustrate this fact, we show in Fig. 4 a kink propagating in a
T-junction and crossing it. We take the same kink and run it into a Y-junction. This is
shown in Fig. 5. One can see that the time intervals for propagation are about the same.
This is confirmed by examining the evolution of the energy in the branches 1 (bottom)
and 2 (left), see Fig. 6. Note also that a very small amount of energy, typically 5% of the
total energy, is left in branch 1 once the kink has crossed over into branches 2 and 3. The
solution of the 1D effective model is plotted with points in Fig. 6; it agrees very well with
the 2D solution and this confirms the informal asymptotic reduction from 2D to 1D of the
previous section.

We now compare systematically the 2D solution with the one of the 1D effective equation.
To validate this approximation, we conduct a parametric study choosing w1, w2 and w3 such
that w1 = 1, w2 = w3 = w1+α where α = −0.3, −0.1, 0.1, 0.3. The results for the critical
velocity as well as the estimate (3.7) are reported in the Table 1. The 2D and 1D models
are very close even for α > 0. On the other hand the energy estimate is a lower estimate
for α > 0, The 2D and 1D effective results reveal that the kink crosses the junction but
that there are oscillations. The front seems to oscillate and then reshape as it enters more
into branches 2 and 3. We do not see this effect when α ≤ 0. Despite this, the values are
all within a 10% interval of error.

To check the 2D-1D reduction even further, we conducted simulations with a large
width w1 = w2 = w3 = 10 for large and small velocities. We found that for a small
velocity v1 = 0.75 the kink gets reflected and significant transverse oscillations occur.
These transverse oscillations are the ones that propagate along the equal phase contour
lines; they were studied by Gulevitch et al. [9] who showed that their dispersion is ω = k.
In this situation, the angle becomes important and of course the 2D and the 1D models
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Figure 4. Motion in a T-junction. Snapshots of a kink starting in branch 1 with
a velocity v1 = 0.75. The times are t = 1350 (a) and t = 3000 (b) .

α 2D vc 1D vc vk from (3.7)

0.3 0.98 0.99 0.92

0.1 0.965 0.955 0.89

0 0.92 0.94 0.86

-0.1 0.885 0.85 0.83

-0.3 0.73 0.71 0.7

Table 1. Kink critical velocities for the 2d model, the 1d effective model and the

energy estimate as a function of α. The widths of the branches are w1 = 1,
w2 = w3 = w1 + α.
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Figure 5. Motion of a kink in a 90◦ Y-junction. Snapshots of a kink starting in
branch 1 with a velocity v1 = 0.75. The times are t = 900 (a), t = 1500 (b) and
t = 3500 (c). The widths are w1 = 1, w2 = w3 = 0.7.

disagree. On the other hand, for a large velocity v1 = 0.96, the kink crosses and the
transverse oscillations remain small. Then the 2D and the 1D models are very close.

For the breather, things are more complicated because of the additional parameter, the
frequency. The energy criterion is not sufficient, the breather needs to have the adapted
frequency in order to cross. To illustrate this, we consider a breather of initial velocity
v1 = 0.4 and different frequencies. Fig. 7 shows the energy E1 in branch 1 as a function
of time for frequencies ω1 = 0.5, 0.7, 0.725 and 0.75. The breather does not cross until the
frequency reaches 0.75; for this frequency the initial energy is smaller than for ω1 = 0.5. The
initial energy will not determine crossing, the initial frequency will. Another interesting
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Figure 6. Time evolution of the energy for the kink motion in branches 1 and 2
for the T-junction in full line (red online) and for the Y-junction in dashed line.
The energy for the 1D effective model is plotted with points. The parameters are
the same as in Figs. 4 and 5.

effect is that for ω1 = 0.725 the energy E1 almost goes to 0 in the time interval [200; 300]
-as if the breather crossed the junction- and then it returns almost to its initial value,
indicating reflection. We checked the position of the breather and found that it stays with
an interval of size 10 close to the junction. This long oscillation close to the junction could
indicate a nonlinear bound state associated to the fork.

Fig. 8 shows the crossing vs. non crossing in the parameter space (v, ω). The crossing
(resp. reflection) of the breather is indicated by the + (resp. ×) sign. The calculations were
done both with the 1D effective model and the full 2D equations and the results always
agreed. For large enough velocities, the breather crosses independently of its frequency. On
the other hand, for frequencies close to one, the breather crosses even for small velocities.
This situation is close to the linear case for which we expect always some energy transfer
to the other branch [3].

There is always a small reflection from the fork. For example, we show the time evolution
of the energy of a breather in Fig. 9. Notice how the energy in branch 1 does not drop to
zero as for the kink. There is a remainder.The small scale oscillations present in Fig. 9 are
the ones seen in Fig. 7; at this time we do not know their origin.
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Figure 7. Energy in branch 1 as a function of time for the 1D model and a

breather of initial velocity v1 = 0.4 and frequencies ω1 = 0.5, 0.7, 0.725 and 0.75.
Notice the crossing for ω1 = 0.75. The widths are w1 = w2 = w3 = 1.

To characterize the breathers in the other branches is difficult because the wave oscillates.
We found that plotting the energy density

dE =
1

2
φ2

t +
1

2
φ2

x + 1− cosφ, (4.1)

gives a good indication of the position of the breather. Let us analyze in more details the
specific configuration where a breather of speed v = 0.8 and frequency ω = 0.3 crosses
the junction. Fig. 10 shows the energy density for three different times in the branch 1
(top panel) and in the branch 2 (bottom panel) after the breather has passed the junction.
Then the energies in branch 1 and branch 2 are respectively E1 = 2.16 and E2 = 13.23.
The velocities estimated by a least square fit on the center of mass of the breather density
are respectively v1 = −0.75 and v2 = 0.6. They are lower than the initial velocity to
accommodate for the crossing of the breather. The frequencies of the breathers in branches
1 and 2 can be estimated, they are respectively ω1 = 0.996 and ω2 = 0.75. All these
parameters are very different from the initial breather parameter making the scattering of
a breather much more complex than the one of a kink.

Using the parameters above we can plot the fitted breathers and compare them with the
numerical solution. Fig. 11 shows in the top panel, branch 1 before the breather crosses.
There the analytical solution matches perfectly the numerical one. The middle and bottom
panels show respectively branch 1 after the crossing and branch 2. Here the agreement
is not as good but remains quite acceptable. The reflected breather in branch 1 (middle
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Figure 8. Parameter space (v, ω) for the crossing of breathers for the 2D and

the 1D models. The crosses (red online) indicate crossing and the squares
reflection. The widths are w1 = w2 = w3 = 1.

panel) has a small amplitude of about 0.2. Its frequency as seen from Table 2 is 0.99 so
that it is very close to the dispersion curve ω =

√
1 + k2. This can explain the dispersion

observed.
To conclude this study we examine systematically the influence of the breather frequency

on its crossing. We took v1 = 0.8 and chose ω1 = 0.3, 0.5, 0.7 and 0.9. The results are
reported in Table 2.

5. Conclusion

We analyzed numerically and theoretically how a 2D sine-Gordon kink or breather crosses
a Y- or T–junction. Comparing the energies in the different branches for both cases revealed
that the angle of the junction plays almost no role in the dynamics for thin trees. This
suggested to introduce a 1D effective model where at the junction, we satisfy continuity
of the solution and flux conservation. The solutions of this effective model accurately
reproduce the 2D solutions.

The parameters for the kink to cross obey the simple relation obtained from the conser-
vation of energy. There is a critical velocity below which no crossing is possible.

Breather crossing is more complex because there are two parameters: the velocity v
and frequency ω. For equal widths of the branches, we observe crossing when v > 1 − ω.
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Figure 9. Time evolution of the energy in branches 1 and 2 for a breather for
the 2d partial differential equation in full line (red online) and the 1d effective
model in dashed line. The parameters are w1 = w2 = w3 = 1,
v1 = 0.8, ω1 = 0.3, x0 = 10.

branch 1 1-return 2 1 1-return 2

index i

ωi 0.3 0.99 0.79 0.5 0.99 0.87

vi 0.8 0.8 0.56 0.8 0.8 0.65

energy E 25.42 2.1 11.66 23.07 2.12 10.48

ωi 0.7 0.998 0.93 0.9 0.999 0.98

vi 0.8 0.85 0.73 0.8 0.85 0.8

energy E 19.03 1.91 8.57 11.61 1.23 5.192

Table 2. Velocities and frequencies for the crossing of a breather of initial
velocity v1 = 0.8 and different frequencies ω1 = 0.3, 0.5 (top rows) and ω1 = 0.7,

0.9 (bottom rows). The columns indicate the branches, 1, “1-return” and 2. The
label “1-return” corresponds to branch 1 after the collision.
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Figure 10. Snapshots of the energy density of a breather at different times in
branches 1 (top) and 2 (bottom). The times are indicated on the plots. The

parameters are w1 = w2 = w3 = 1, v1 = 0.8, ω1 = 0.3. The initial position of the
breather is x0 = 10.

Then the breather gives rise to two other breathers in the two upper branches that we
characterize using the energy density and the value of the energy. These new breathers are
slower than the initial condition and are also up-shifted in frequency. We always observe
a small reflexion at the crossing into the first branch.

This study can be extended by considering more branches. Another interesting extension
would be to add a source at the junction, enabling to control the crossing. It would be
useful to understand how to transpose this to another application, like the reflexion of
shallow water waves.
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