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NONLINEAR WAVES IN NETWORKS: A SIMPLE APPROACH USING

THE SINE–GORDON EQUATION

JEAN-GUY CAPUTO∗ AND DENYS DUTYKH

Abstract. To study the propagation of nonlinear waves across Y– and T–type junctions,

we consider the 2D sine–Gordon equation as a model and study the dynamics of kinks

and breathers in such geometries. The comparison of the energies reveals that the angle

of the fork plays no role. Motivated by this, we introduce a 1D effective equation whose

solutions agree well with the 2D simulations for kink and breather solutions. For branches

of equal width, breather crossing occurs approximately when v > 1 − ω, where v is the

breather celerity and ω is its frequency. We then characterize the breathers in the two

upper branches by estimating their velocity and frequency. These new breathers are slower

than the initial breather and up-shifted in frequency. In perspective, this study could be

generalized to more complex nonlinear waves.
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1. Introduction

The propagation of nonlinear waves in networks is a very common problem. Examples
are the nerve impulse traveling in arrays of neurons, the motion of the pulse wave in the
arterial circulatory system or the propagation of waves in the electrical power grid. In
general the problem is difficult to tackle because both the equation of motion and the
geometry are complex. A first direction is to look at what happens in a simpler geometry
like a Y–junction, see Fig. 1. Another simplification is to examine what happens for a
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linear wave equation. In this context, a number of researchers have examined so-called
quantum graphs where the Schrödinger equation is solved on a network. See [2] for a
review. For these linear systems, the scattering formalism can be employed and this gives
the reflection and transmission coefficients for a harmonic wave. This is detailed specifically
for a Y–junction and for the Klein–Gordon linear wave equation in [3].

In many cases however the nonlinearity cannot be neglected. For fluid systems, one can
note the works by Bona & Cascaval [4] and Mugnolo & Rault [5] who used the Benjamin–
Bona–Mahoney (BBM) shallow water equation to describe a fluid network. The authors
used the fact that the BBM equation is unidirectional, hence, most of the energy is propa-
gated downstream. Note the numerical work by Nachbin & Da Silva Simoes [13] where they
solved the Boussinesq equations on a junction using a conformal mapping technique. These
studies do not provide a simple understanding of the behavior of the waves, in particular
one cannot see easily how energy travels across the network.

To address these issues it is easier to consider first a typical nonlinear wave equation.
For instance, before tackling the propagation of shallow water waves in a river basin, for
which there are two variables, the water elevation and the potential flow, it is useful to
consider a simpler nonlinear hyperbolic equation. The sine–Gordon equation is precisely a
simpler nonlinear hyperbolic equation that admits localized solutions. Furthermore it is a
Hamiltonian system in any dimension, integrable in 1D so that one can test the numerical
solutions versus their exact counterpart propagation in a 1D channel. Finally, the sine–
Gordon equation arises naturally in the modelling of Josephson junctions as a result of the
continuous limit [14].

Consider the 2D sine–Gordon equation defined in a Y–junction such as shown in Fig. 1.
A first work on the problem is by Gulevich & Kusmartsev [1] who examined numerically
how kinks propagate in such a system, in the context of Josephson junctions. They showed
that the kink needs a sufficient velocity to cross the branch. Here we follow up on this
and defined a 2D symmetric junction parameterized by the angle θ between the branches
and their widthes w1,2, so that it can go from a Y–junction to a T–junction θ = 180◦. We
solved the 2D problem using the FreeFem++ finite element library [9]. We made sure that
energy was conserved by the code and had to find a suitable time discretisation for this.
We first considered the propagation of a kink. A first result is that there is no dependence
of the velocity on the angle of the fork even for the full 2D simulation. We therefore
introduced a 1D effective partial differential equation to capture the essential features
of the 2D propagation. This model incorporates the junction, using the ideas of graph
Laplacian [6]; its solutions agree well with the 2D solutions. For the kink propagation
in a junction we confirm the existence of a critical velocity given approximately by the
simple energy conservation argument. Below this velocity the kink gets reflected by the
fork. Above it, it passes through the junction and splits into two kinks that propagate in
the two different branches. For breathers there are two parameters, ω the frequency and
v the velocity. We mapped the parameter plane (v, ω) and showed that breathers cross
when v > 1 − ω. After the passage through the junction it gives rise to new breathers in
the branches. We characterize these new breathers using their energy density and estimate
their velocity and frequency. We always observe an up-shift of the frequency and a slight
down-shift of the velocity.
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Figure 1. Sketch of the computational domain Ω .

The article is organized as follows. In Section 2 we derive the 1D effective model from
the the 2D sine–Gordon equation defined in the fork. In Section 3 we recall the energies
for the kink and the breather and show how they can be used to estimate a critical velocity.
Section 4 introduces energy conserving discretisations for the finite element 2D problem
and the 1D effective equation. Their solutions are compared in Section 5 for both kink and
breather initial conditions. Conclusions are presented in Section 6.

2. Sine–Gordon 2D and 1D effective model

We consider the 2D sine–Gordon equation

ϕtt −∆ϕ+ sinϕ = 0, (2.1)

on a bounded domain Ω ⊂ R
2 with Neuman boundary conditions:

∇ϕ · n = 0,

where n is an exterior normal. The t subscript indicates time derivative and ∆ is the usual
Laplacian. This equation conserves the energy

E =

ˆ

Ω

[

1

2
ϕ2
t +

1

2
|∇ϕ|2 + (1− cosϕ)

]

dx dy. (2.2)

This can be checked easily by multiplying (2.1) by ϕt, integrating over the domain and
using the Stokes formula for the spatial operator.
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Figure 2. Sketch of the tree geometry for the 1D effective model.

2.1. 1D effective model

Since the boundary conditions of the 2D problem are homogeneous Neuman it is natural
to assume that the solution is uniform in the transverse direction. In other words we keep
only the first transverse Fourier mode. Then equation (2.1) reduces in each branch to a
1D sine–Gordon equation,

ϕi
tt − ϕi

xx + sinϕi = 0, i = 1, 2, 3 , (2.3)

where the label i corresponds to the three branches as shown in Fig. 2. These equations
are coupled at the apex by two conditions; one is the continuity of ϕi

ϕ1(x = l) = ϕ2(x = 0) = ϕ3(x = 0) , (2.4)

and the other is the flux conservation or the Kirchoff law

w1ϕ
1
x + w2ϕ

2
x + w3ϕ

3
x = 0, (2.5)

where ϕi
x is the normal velocity in branch i. Let us now briefly justify this flux relation. For

that, consider the fork domain F obtained by taking the normals at the different branches
as close as possible to the fork as shown in Fig. 3. Integrating the two-dimensional equation
(2.1) on F yields

ˆ

F

(ϕtt + sinϕ)−
ˆ

∂F

∇ϕ · n = 0, (2.6)

where n is the normal to the edge of the domain ∂F . The second term is equal to the
left hand side of (2.5). The first one is of order w2. In the limit of small width of the
branches, wi → 0 with w2/w1 and w2/w1 constant, the first term vanishes while the second
one remains.
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The numerical scheme used to solve this 1D effective model is described below (see
Section 4); it is a finite difference approximation. The junction corresponds to the four
nodes highlighted on Fig. 2; these are labeled as 1, 2, 3 for the three branches and are
connected to the central node 4. The outer nodes are the last nodes updated by the PDE
solver; let us name the value of the solution there ϕ1, ϕ2, ϕ3 for each branch. The value at
the central node ϕ4 can be computed from the interface conditions (2.4) and (2.5). Using
a forward finite difference approximation for ϕi

x we get from (2.5)

w1(ϕ1 − ϕ4) + w2(ϕ2 − ϕ4) + w3(ϕ3 − ϕ4) = 0,

where we have assumed the same space step on the three branches and used the notation
ϕi ≡ ϕ(xi). We have also omitted the j index corresponding to the different branches. We
then obtain

ϕ4 =
w1ϕ1 + w2ϕ2 + w3ϕ3

w1 + w2 + w3

. (2.7)

3. Theoretical considerations

In 1D the sine–Gordon equation is integrable, see for example [11]. It has two families
of localized exact solutions, the kink

ϕ(x, t) = 4 arctan [exp(γ(x− vt))] , (3.1)

and the breather [12]

ϕ(x, t) = 4 arctan

[
√
1− ω2 cos(ωγ(t− vx))

ω cosh(
√
1− ω2γ(x− vt))

]

, (3.2)
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where the Lorentz factor γ is given by

γ =
1√

1− v2
. (3.3)

Let us consider the kink first. Its energy is

Ek = 8γ. (3.4)

The energy of the breather depends also on the frequency. It is given by

Eb = 16γ
√
1− ω2. (3.5)

In two dimensions the equation is not integrable. In addition there is the complication
of the boundaries. Therefore the only relations that can be used are conservation laws,
and in particular the conservation of energy. When the kink is in branch 1, its energy is
8w1γ because it is homogeneous in the transverse direction. Similarly in branch 2, it has
energy 8w2γ2. The conservation of energy reads

w1

8
√

1− v21
= 2w2

8
√

1− v22
. (3.6)

This expression gives a critical velocity v1 for which v2 = 0:

vk =

√

1−
( w1

2w2

)2

. (3.7)

This formula was derived in [1] and tested in a given configuration with success. In the
next section we confirm by numerical simulations that this is a good estimate and show its
limitations.

A similar argument for the breather yields the following result for the parameters {v1, ω1}
in the bottom branch and the parameters {v2, ω2} in the top branches

v21 − 1

ω2
1 − 1

=
( w1

2w2

)2 v22 − 1

ω2
2 − 1

. (3.8)

This gives a critical velocity v1 for which v2 = 0

vk =

√

1− ω2
1 − 1

ω2
2 − 1

( w1

2w2

)2

. (3.9)

The practical application of the previous formula is difficult because ω2 remains unknown.
Note however that for small amplitudes, i.e. in the linear limit ω1 = ω2 so that we recover
(3.7) for the critical velocity.

4. Numerical methods

We now describe the numerical methods used to solve the 2D and the 1D effective
problems. We solve (2.1) using the finite element method. For that we recall the standard
scalar product in L2(Ω):

(ϕ, ψ) ≡
ˆ

Ω

ϕψ dx dy.
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Using this scalar product we project the operator on a test function and use the Green’s
theorem to integrate the Laplacian [8]. For now we did not discretize in time. To do
this, we approximate the second derivative in time by a standard three step discretisation.
We also average the Laplacian over the current and the following time steps. The final
semi-discrete scheme is the following weak formulation

1

∆t2
(

ϕn+1 − 2ϕn + ϕn−1, ψ
)

+
1

2

(

∇(ϕn+1 + ϕn),∇ψ
)

+
(

sinϕn, ψ
)

= 0, (4.1)

where ψ ∈ L2(Ω) is the test function, ∆t is the time-step and ϕn−1, ϕn, ϕn+1 are respectively
the solution at times steps tn−1, tn, tn+1, where tj := j∆t. For the spatial discretization
we use a non-structured triangular mesh with P2 finite element space. The computations
are performed using the FreeFem++ open-source software [9]. The boundary conditions are
set to be homogeneous Neuman:

∇ϕ · n = 0,

where n is an exterior normal to the boundary of the domain Ω.
The total discrete energy is calculated as

En =
1

2

ˆ

[

(ϕn+1 − ϕn−1

2∆t

)2

+ |∇ϕn|2 − 2(1− cosϕn)

]

dx dy. (4.2)

This quantity is conserved up to order O(h4), where h is the typical space step. There is no
trend in the relative error on the total energy |En−E0|/E0 in the course of the computations
as shown in Fig. 4. The time for this plot corresponds to breather of velocity v = 0.8 and
frequency ω = 0.3 crossing the fork (see Section V). For a kink the error is even smaller. In
the numerical simulations presented below we used the mesh with a typical size ∆x ≈ 0.05
and the time step ∆t = 0.0075. Because of the implicit nature of the scheme (4.1), we
could take a much bigger time step. However, we preferred to keep it small enough in order
to vanish the time discretization error.

The one dimensional effective problem is solved using the finite difference method. The
scheme employed reads:

ϕn+1
j + ϕn−1

j − 2ϕn
j

∆t2
−
ϕn
j+1 + ϕn

j−1 − 2ϕn
j

∆x2
+ sinϕn

j = 0, (4.3)

where n and j are the time and space indices correspondingly. Despite the simplicity of the
scheme (4.3) it can be shown that in fact, it is a symplectic Euler method derived for the
sine–Gordon equation recast in the Hamiltonian form [7]. Consequently, the 1D scheme
also enjoys good stability and energy conservation properties. Typical values of the space
step and the time step are ∆x = 0.05 and ∆t = 0.01.
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Figure 4. Relative energy |En −〈En〉|/〈En〉 for the 2D finite-element solution of

a breather propagating in a 2D domain. The symbol 〈·〉 denotes the
average operator.

5. Numerical results

We consider the propagation of a kink in Y– and T–junctions. Our main findings are that
the kink gets reflected if it does not have enough energy (velocity). Also the motion depends
very weakly on the angle. To illustrate this fact, we show in Fig. 5 a kink propagating in
a T–junction and crossing it. We take the same kink and run it into a Y–junction. This
is shown in Fig. 6. As can be seen the time intervals for propagation are about the same.
This can be seen very clearly when examining the evolution of the energy in the branches
1 (bottom) and 2 (left); this is displayed in Fig. 7. Note also that a very small amount of
energy, typically 5% of the total energy, is left in branch 1 once the kink has crossed over
into branches 2 and 3.

We now compare systematically the 2D solution with the one of the 1D effective equation.
This is to validate this approximation. We have conducted a parametric study where we
varied w1, w2 and w3 such that w2 = w3 = w1 + α where w1 = 1 and α = −0.3, −0.1, 0.1,
0.3. The results for the critical velocity as well as the estimate (3.7) are reported in the
Table 1. The 2D and 1D models are very close even for α > 0. On the other hand the
energy estimate is a lower estimate for α > 0, The 2D and 1D effective results reveal that
the kink crosses the junction but that there are oscillations. The front seems to oscillate
and then reshape as it enters more into branches 2 and 3. We do not see this effect when
α ≤ 0. Despite this, the values are all within a 10% interval of error.
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(a) t = 1350

(b) t = 3000

Figure 5. Motion in a T–junction. Snapshots of a kink starting in branch 1

with a velocity v1 = 0.75. The values of the time are t = 1350 (a)
and t = 3000 (b) .

α 2D vc 1D vc vk from (3.7)

0.3 0.98 0.99 0.92

0.1 0.965 0.955 0.89

0 0.92 0.94 0.86

-0.1 0.885 0.85 0.83

-0.3 0.73 0.71 0.7

Table 1. Critical velocities for the 2d model, the 1d effective model and the en-

ergy estimate as a function of α. The widths of the branches are w1 = 1,
w2 = w3 = w1 + α.
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(a) t = 900

(b) t = 1500

(c) t = 3500

Figure 6. Motion of a kink in a 90◦ Y–junction. Snapshots of a kink starting in
branch 1 with a velocity v1 = 0.75. The values of the time are t = 900

(a), t = 1500 (b) and t = 3500 (c).

For the breather, things are more complicated because of the additional parameter, the
frequency. Fig. 8 shows the parameter space (v, ω). The crossing (resp. reflection) of the
breather is indicated by the + (resp. ×) sign. One can see that for large enough velocities,
the breather crosses independently of its frequency. On the other hand, for frequencies
close to one, the breather crosses even for small velocities. This situation is close to the
linear case for which we expect always some energy transfer to the other branch [3].
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Figure 7. Time evolution of the energy for the kink motion in branch 1 and

branch 2 for the T–junction in full line (red online) and for the Y–
junction in dashed line (blue online). The parameters are the same
as in Figs. 5 and 6

.

There is always a small reflection from the fork. For example, we show the time evolution
of the energy of a breather in Fig. 9. Notice how the energy in branch 1 does not drop to
0 as for the kink. There is a emainder.

To characterize the breathers in the other branches is difficult because the wave oscillates.
We found that plotting the energy density

dE =
1

2
ϕ2
t +

1

2
ϕ2
x + 1− cosϕ, (5.1)

gives a good indication of the position of the breather. Let us analyze in more details the
specific configuration where a breather of speed v = 0.8 and frequency ω = 0.3 crosses
the junction. Fig. 10 shows the energy density for three different times in the branch 1
(left panel) and in the branch 2 (right panel) after the breather has passed the junction.
Then the energies in branch 1 and branch 2 are respectively E1 = 2.16 and E2 = 13.23.
The velocities estimated by a least square fit on the center of mass of the breather density
are respectively v1 = −0.75 and v2 = 0.6. They are lower than the initial velocity to
accommodate for the crossing of the breather. The frequencies of the breathers in branches
1 and 2 can be estimated, they are respectively ω1 = 0.996 and ω2 = 0.75. All these
parameters are very different from the initial breather parameter making the scattering of
a breather much more complex than the one of a kink.

Using the parameters above we can plot the fitted breathers and compare them with the
numerical solution. Fig. 10 shows in the top panel, branch 1 before the breather crosses.
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Figure 8. Parameter space (v, ω) for the crossing of breathers obtained from the
1D effective model. The small + symbol (red online) corresponds to
the breather crossing while the × symbol (blue online) corresponds to

the breather being reflected by the junction.

There the analytical solution matches perfectly the numerical one. The middle and bottom
panels show respectively branch 2 and branch 1 after the crossing. Here the agreement is
not as good but remains quite acceptable.

To conclude this study we examine systematically the influence of the breather frequency
on its crossing. We took v1 = 0.8 and chose ω1 = 0.3, 0.5, 0.7 and 0.9. The results are
reported in the Table 2.
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Figure 9. Time evolution of the energy in branches 1 and 2 for a breather ini-

tial condition for the 2d partial differential equation in full line (red
online) and the 1d effective model in dashed line (blue online). The
parameters are wi = 1, i = 1, 2, 3, v1 = 0.8, ω1 = 0.3, x0 = 10.
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Figure 10. Snapshots of the energy density of a breather at three different times

in branches 1 (top) and 2 (bottom). The parameters are wi = 1,
i = 1, 2, 3, v1 = 0.8, ω1 = 0.3. The initial position of the breather is
x0 = 10.
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Figure 11. Snapshots of the breather analytical solution with the fitted param-
eters, before and after the crossing in branch 1 (panels (a, b, c, d)
and after the crossing in branch 2 (panels (e, f)). The correspond-
ing times are t = 20.2, 40.4, 80.8, 90.9 for panels (a, b, c, d) and

t = 80.8, 90.9 for panels (e) and (f).

branch 1 1-return 2 1 1-return 2
index i

ωi 0.3 0.99 0.79 0.5 0.99 0.87

vi 0.8 0.8 0.56 0.8 0.8 0.65

energy E 25.42 2.1 11.66 23.07 2.12 10.48

ωi 0.7 0.998 0.93 0.9 0.999 0.98

vi 0.8 0.85 0.73 0.8 0.85 0.8

energy E 19.03 1.91 8.57 11.61 1.23 5.192

Table 2. Velocities and frequencies for the crossing of a breather of initial ve-

locity v1 = 0.8 and different frequencies ω1 = 0.3, 0.5 (top rows) and
ω1 = 0.7, 0.9 (bottom rows). The columns indicate the branches, 1,
“1-return” and 2. The label “1-return” corresponds to branch 1 after

the collision.
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6. Conclusion

We analyzed numerically and theoretically how a 2D sine–Gordon kink or breather
crosses a Y– or T–junction. The similarities between the energies in the different branches
for both cases shows that the angle of the junction plays almost no role in the dynamics.

This suggested to introduce a 1D effective model where at the junction, we satisfy
continuity of the solution and a jump condition for the gradient given by the conservation
of flux. The solutions of this effective model accurately reproduce the 2D solutions.

The parameters for the kink to cross obey the simple relation obtained from the conser-
vation of energy. There is a critical velocity below which no crossing is possible.

On the contrary the breather crossing is more complex. There are two parameters: the
velocity v and frequency ω. For equal widths of the branches, we observe that crossing
happens when v > 1−ω. Then the breather gives rise to other breathers in the two upper
branches that we characterize using the energy density and the value of the energy. These
new breathing solutions propagate slower than the initial condition and it is also up-shifted
in frequency. We always observe a small reflexion at the crossing into the first branch.

This study can be extended by considering more branches. Another interesting extension
would be to add a source at the junction, enabling to control the crossing. It would be
useful to understand how this study can be generalized to another application, like the
reflexion of shallow water waves.

Acknowledgements

D.D. acknowledges the support from ERC under the research project ERC-2011-AdG
290562-MULTIWAVE and thanks INSA de Rouen for its hospitality during his visit in
December 2012. The authors thank D. Mitsotakis and G. Sadaka for useful discussions
on the finite element numerical method. The authors acknowledge the Centre de Ressources
Informatiques de Haute Normandie where most of the calculations were done.

References

[1] D. R. Gulevich and F. V. Kusmarstev, Phys. Rev. Lett. 97, 017004, (2006). 2, 6

[2] S. Gnutzmann and U. Smilansky, Advances in Physics, Vol. 55, Nos. 5–6, 527–625, (2006). 2

[3] P. N. Bibikov and L. V. Prokhorov, J. Phys. A Math. Theor. Vol. 42, 045302, (2009). 2, 10

[4] J. L. Bona and R. C. Cascaval, “Nonlinear dispersive waves on trees”, Canadian applied math. quar-

terly, 16, 1, (2008). 2

[5] D. Mugnolo and J.F. Rault, “Construction of exact traveling waves for the Benjamin-Bona-Mahoney

equation oon networks”, arxiv:1302.2104v1 2

[6] J.-G Caputo , A. Knippel and E. Simo, J. Phys. A: Math. Theor. 46, 035100, (2013). 2

[7] B. Leimkhuler and S. Reich, Simulating hamiltonian dynamics, Cambridge University Press, (2004).

7

[8] J. Argyris, M. Haase and J. C. Heinrich, Computer methods in applied mechanics and engineering,

86,1-26, (1991). 7

[9] F. Hecht. New development in FreFem++, Journal of Numerical Mathematics, 20(3–4), 251–265,

2012. 2, 7



J.-G. Caputo & D. Dutykh 16 / 16

[10] J. G. Caputo, D. Dutykh and D. Mitsotakis, in preparation.

[11] A. C. Scott, “Nonlinear science, emergence and dynamics of coherent structures”, Oxford University

Press (2003). 5

[12] R. K. Dodd , J. C. Eilbeck , J. D. Gibbon and H. C. Morris, “Solitons and Nonlinear Wave Equations”,

Academic Press, (1984). 5

[13] A. Nachbin and V. Da Silva Simoes, “Solitary waves in open channels with abrupt turns and branching

points”, Journal of Nonlinear Mathematical Physics, Vol. 1, 1–21, (2009). 2

[14] A. Benabdallah and J.-G. Caputo, “Influence of the passive region on zero field steps for window

Josephson junctions”, J. Appl. Phys., 92(7), 3852, 2002 2
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LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-

du-Lac Cedex, France

E-mail address : Denys.Dutykh@ucd.ie

URL: http://www.denys-dutykh.com/


	Introduction
	Sine–Gordon 2D and 1D effective model
	1D effective model

	Theoretical considerations
	Numerical methods
	Numerical results
	Conclusion

