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1 Introduction

This note is a complement to the study in [B.13] of period integrals of non quasi-
homogeneous polynomials in n + 1 variables with n + 2 monomials. We focuse
here on the dependance of these period integrals on the “natural” parameter λ ∈ C∗

which is the only “free” coefficient of such a polynomial modulo the dilatations of
the variables1

For that purpose we recall first the fact that for a polynomial function f depend-
ing polynomially of a parameter λ we may define a natural “b−connection” on
the highest (f, λ)−relative de Rham cohomology group of f which induces the
derivation ∂

∂λ
on period integrals. The construction for any holomorphic function

depending of a holomorphic parameter is precised in the appendix.
Then we show how to compute explicitely this connection in our specific situation
and we obtain a simple partial differential equation for the period integrals asso-
ciated to any monomial in C[x0, . . . , xn] when we consider a polynomial of the
type

fλ(x) =

n+1
∑

j=1

xαj + λ.xαn+2 where αj ∈ Nn+1, j ∈ [1, n+ 2]

with he following assumptions

i) The (n + 2, n + 2)−matrix obtained from M := (α1, . . . , αn+2) by adding a
first line of 1 has rank n + 2.

ii) The elements α1, . . . , αn+1 form a basis of Qn+1.

Note that the first condition is equivalent to the fact that f is not quasi-homogeneous,
and that the condition ii) is always satisfied assuming i), up to change the order of
the monomials (and then to change the parameter λ to c.λm for some c ∈ Q∗

some m ∈ Z∗).

2 The λ−connection.

2.1 The general situation.

We consider here a polynomial f ∈ R := C[x0, . . . , xn][λ] depending polynomially
on a parameter λ. We consider on R⊗ Λ∗(Cn+1) := Ω∗

/ the λ−relative de Rham

complex, where (Cn+1)∗ := ⊕n
i=0 C.dxi, and we denote d/ its differential.

We shall denote by A the unitary (non commutative) algebra generated by a and
b with the commutation relation a.b − b.a = b2 and by A[λ] := A⊗C C[λ] with
its natural structure of algebra for which λ commutes with a and b.
Then the quotient Ef := Ωn+1

/

/

d/f ∧ d/Ω
n−1
/ has a natural left A[λ]−module

structure defined by

1In our hypothesis we may assume that all monomials have coefficient 1 excepted the last one
up to a linear diagonal change of variable.
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• The action of a is given by the multiplication by f .

• The action of b is given by d/f ∧ d−1
/ .

Remark that for fixed λ, assuming that fλ has an isolated singularity at 0, the
b−completion Ef ⊗C[b] C[[b]] is the usual (formal) Brieskorn module associated to
fλ at 0. For a given monomial µ ∈ C[x0, . . . , xn] the decomposition theorem
of [B.13] (theorem 3.1.2) applies to the the quotient Ã

/

Ã.P (µ) where Ã is the
b−completion of A and where P (µ) is the element in A constructed in the
theorem 1.2.1 of [B.13]. Then Pd(µ) is a (left-)multiple of the Bernstein element
of Ã.[µ.dx] in Ef ⊗C[b] C[[b]] and it determines a finite set of possible eigenvalues
for the monodromies around s = 0 for the period integrals (λ fixed)

ϕλ(s) =

∫

γλ,s

µ.dx

d/f

for any horizontal family γλ,s of compact n−dimensional cycles in the fibers of fλ.

It is important to remark that if fλ has a non isolated singularity at the origin,
despite the fact that there is no finiteness for the C[[b]]−module Ef ⊗C[b] C[[b]],

the conclusion above is still valid because the quotient Ã
/

Ã.P (µ), and so its image
in Ef ⊗C[b] C[[b]], is a finite type C[[b]]−module. Then the product decomposition
Pd = (a− r1.b) . . . (a− rd.b), where r1, . . . , rd are (explicitely computable) rational
numbers, gives that the set {e2iπ.r1 , . . . , e2iπ.rd} contains the spectrum of these
monodromies (counting multiplicities).

Question. Is it true that Pd is equal to the Bernstein element2 of the Brieskorn
module Ã.[µ.dx] in Ef ⊗C[b] C[[b]] when fλ has an isolated singularity at the
origin ? �

Proposition 2.1.1 There exists a C−linear operator ∇ : Ef → Ef with the
following properties :

1. For ω = d/ξ ∈ Ωn+1
/ we have ∇([ω]) = [d/f ∧ ∂ξ

∂λ
− ∂f

∂λ
.ω].

2. The map b−1.∇ well defined on b.Ẽf where Ẽf := Ef

/

(b− torsion), with

value in Ẽf , commutes with a and b and is a λ−connection.

2For a (a,b)-module E with one generator as a Ã−module, the relation between its Bernstein
element Pd ∈ A and its Bernstein polynomial B is given by the formula (see [B.09])

(−b)d.B(−b−1.a) = Pd where d is the rank of E.
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3. If (γs,λ)(s,λ)∈S×Ω is a horizontal family of compact n−cycles in the fibers of
(f, λ) over an open set in C × C∗ \ C(f, λ) where C(f, λ) is the set of
critical values of the map (f, id) : Cn+1 × C∗ → C × C∗, we have for any
ω ∈ Ωn+1

/ the equality

∂

∂s

∂

∂λ

[

∫

γs,λ

ω

d/f

]

=

∫

γs,λ

∇(ω)

d/f
.

Proof. Remark first that ∇ is well defined because for ξ = d/η we have

∇(d/ξ) = d/f ∧
∂(d/η)

∂λ
= d/f ∧ d/(

∂η

∂λ
)

so it induces 0 in Ef .
Let ω = d/ξ ∈ Ωn+1

/ and let d/η = d/f ∧ ξ. Then we have

∇(b.[ω]) = ∇(d/η) = d/f ∧
∂η

∂λ
−

∂f

∂λ
.d/η

= d/f ∧ (
∂η

∂λ
−

∂f

∂λ
.ξ) = b

[

d/(
∂η

∂λ
−

∂f

∂λ
.ξ)

]

= b
[∂

(

d/f
)

∂λ
∧ ξ + d/f ∧

∂ξ

∂λ
−

∂f

∂λ
.d/ξ − d/(

∂f

∂λ
) ∧ ξ)

]

= b
[

d/(
∂f

∂λ
).ξ +∇(d/ξ)− d/(

∂f

∂λ
) ∧ ξ)

]

= b
[

∇(d/ξ)
]

as d/ and ∂
∂λ

commute. So we have b.∇ = ∇.b.
We have also

∇(a.[ω]) = ∇(f.d/ξ) = ∇(d/(f.ξ))−∇(d/f ∧ ξ)

= d/f ∧
∂(fξ)

∂λ
−

∂f

∂λ
.f.d/ξ −

∂f

∂λ
.d/f ∧ ξ −∇(b.[ω])

= a.∇([ω])− b.∇([ω]).

This implies the equality a.b−1.∇ = b−1.∇.a as C−linear maps from b.Ẽf to Ẽf .

Note that the equalities ∇.b = b.∇ and ∇.a = (a− b).∇ as C−endomorphisms
of Ef are more precise than the relations above.

Finally let ϕ ∈ C[λ] then we have

∇(ϕ.d/ξ) = ∇(d/(ϕ.ξ)) = d/f ∧
∂ϕ.ξ

∂λ
−

∂f

∂λ
.ϕ.d/ξ

=
∂ϕ

∂λ
.(d/f ∧ ξ) + ϕ.∇(d/ξ) =

∂ϕ

∂λ
.b[d/ξ] + ϕ.∇(d/ξ)
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and this shows that b−1.∇ is a λ−connection.

Note again that we proved the equality in Ef : ∇(ϕ.ω) = ∂ϕ
∂λ
.b.ω + ϕ.∇(ω) valid

for ϕ ∈ C[λ] and ω ∈ Ef which is more precise.

To prove the point 3. of the statement consider ξ ∈ Ωn
/ and let d be the total

de Rham differential (in x and λ). We have

dξ = dλ ∧
∂ξ

∂λ
+ d/ξ and df = dλ.

∂f

∂λ
+ d/f.

Assume we can write dξ = dλ ∧ v + d/f ∧ u with u, v ∈ Ωn
/ . Then we obtain

dξ = dλ ∧ (v −
∂f

∂λ
.u) + d/f ∧ u with u =

d/ξ

d/f
and v =

∂ξ

∂λ
.

If (γs,λ) is a horizontal family of compact n−cycles in the fibers of the map
(f, id) : Cn+1 × C∗ → C× C∗, we shall have

d
(

∫

γs,λ

ξ
)

=
[

∫

γs,λ

(v −
∂f

∂λ
.u)

]

.dλ+
[

∫

γs,λ

u
]

.ds.

So, has the chain ∪s,λ γs,λ is proper and without λ−relative boundary we obtain

∂

∂s

∫

γs,λ

ξ =

∫

γs,λ

d/ξ

d/f
and

∂

∂λ

∫

γs,λ

ξ =

∫

γs,λ

(∂ξ

∂λ
−

∂f

∂λ
.
d/ξ

d/f

)

Now consider ω ∈ Ωn+1
/ and write ω = d/ξ. Then b[ω] = [d/f ∧ ξ] and we have

∫

γs,λ

b[ω]

d/f
=

∫

γs,λ

ξ and
∂

∂s

∫

γs,λ

b[ω]

d/f
=

∫

γs,λ

ω

d/f
.

So we conclude that we have

∂

∂λ

∫

γs,λ

ω

d/f
=

∂

∂λ

∫

γs,λ

ξ =

∫

γs,λ

(∂ξ

∂λ
−

∂f

∂λ
.
d/ξ

d/f

)

=
∂

∂λ

∫

γs,λ

∇[ω]

d/f
�

2.2 The case of a polynomial with n+2 monomials in n+1
variables.

So we consider now the case were f :=
∑n+2

j=1 mj where mj := xαj j ∈ [1, n+ 1]
and mn+2 := λ.xαn+2 with the following hypotheses (see [B. 13]) : the rank of the
square matrix M ′ := (α1, . . . , αn+1) is n+1 and the rank of the square matrix M̃
obtained by adding a first line of 1 to the matrix M := (α1, . . . , αn+2) is n+ 2.



6

Recall that if we write (with a minimal positive integer r) r.αn+2 =
∑n+1

j=1 pj.αj

where p1, . . . , pn+1 are in Z, and if we define

d = inf{r −
∑

j,pj≤0

pj,
∑

j,pj>0

pj} and d+ h = sup{r −
∑

j,pj≤0

pj,
∑

j,pj>0

pj}

there exists an element P in A[λ, λ−1] of the form

P := Pd+h + c.λ±r.Pd

which annihilated the class [dx] in Ef , where Pd+h and Pd are homogeneous
elements in A, respectively of degree d + h and d which are monic in a with
rational coefficients3, and where c is in Q∗. The sign in the exponent of λ will
be precised in the proof of the proposition 2.2.2.
Recall also that in this situation the A[λ] module generated by the class [dx] in
Ef is exactely the image in Ef of C[m1, . . . , mn+2][λ].dx ⊂ Ωn+1

/ with mj = xαj

with j ∈ [1, n+ 1] and mn+2 = λ.xαn+2 .

Our next result uses the following easy lemma:

Lemme 2.2.1 Let Q ∈ A a homogeneous element in (a, b) of degree k. Then
for any λ ∈ C we have :

b.Q.b−1.(a− λ.b) = (a− (λ+ k).b).Q.

proof. Remark first that the map A → A sending x ∈ A to b.x.b−1 is well
defined and bijective thanks to the following facts : b is injective and b.A = A.b.
We shall prove the lemma by induction k. As the case k = 0 is obvious, assume
that the lemma is proved for k < k0 where k0 ≥ 1 and consider an homogeneous
element Q of degree k0. We may assume4 that Q = b.R or that we may find
µ ∈ C such that Q = (a− µ.b).R, where R is homogeneous of degree k0 − 1. In
the first case we have, using the induction hypothesis :

b.b.R.b−1.(a−λ.b) = b.(a−(λ+k0−1).b).R = (a−(λ+k0).b).b.R = (a−(λ+k0).b).Q.

In the second case we have, using the induction hypothesis :

b.(a− µ.b).R.b−1.(a− λ.b) = (a− (µ+ 1).b).b.R.b−1.(a− λ.b)

= (a− (µ+ 1).b).(a− (λ+ k0 − 1).R

= (a− (λ+ k0).b).(a− µ.b).R

= (a− (λ+ k0).b).Q. �

3More is proved in [B.13] : Pd+h and Pd factorize in product of (a− rj .b) with rj ∈ Q.
4Recall that any homogeneous element in A which is monic in a factorizes as a product of

linear factors (a− ri.b), where the ri are complex numbers; see [B.09].
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Proposition 2.2.2 Let µ be a monomial of degree k in C[x0, . . . , xn+1]. Then
we have in Ef the relation

∇([µ]) =
−1

λ
.(σ.a + (τ − k.σ).b)[µ]

where σ, τ are defined by the relation mn+2.[µ] = (σ.a + τ.b)[µ]. Moreover the
value5 of σ is ±r/h so it does not depend on the choice of the monomial µ.
As a consequence, if we have on an open set S×Ω in C∗×C∗, a horizontal family
(γs,λ)(s,λ)∈S×Ω of compact n−cycles in the fibers of the map Cn+1 ×C∗ → C× C∗

defined by (x, λ) 7→ (fλ(x), λ), the holomorphic function

(s, λ) 7→ ϕ(s, λ) :=

∫

γs,λ

µ.dx

d/f

satisfies the partial differential equation

−λ.
∂

∂λ

∂

∂s
ϕ = σ.

∂(s.ϕ)

∂s
+ (τ − k).ϕ

on S × Ω. �

Proof. As we have λ.∇([1]) = −mn+2 in Ef and as we know that there exist
σ, τ in Q such that (σ.a + τ.b)[1] = mn+2 for the case µ = 1 the only thing to
prove is the computation of σ.
Using the Cramer system with matrix (n+2, n+2) obtained by adding a first line
of 1 to the matrix M := (α1, . . . , αn+2), computing a[1] and the bi[1] we find
that σ is the coefficient (n+ 2, 1) in the matrix M̃−1. Let M ′ be the principal
(n+ 1, n+ 1) minor of M̃ . This implies that

σ = (−1)n+1det(M
′)

det(M̃)
.

But using the relation αn+2 =
∑n+1

j=1
pj
r
.αj we obtain

det(M̃) = (−1)n+1.(1−

n+1
∑

j=1

pj
r
).det(M ′)

so we conclude that
σ =

r

r −
∑n+1

j=1 pj
.

Now we have two cases :

i) r −
∑

pj<0 pj = d+ h >
∑

pj>0 pj = d. Then r −
∑n+1

j=1 pj = (d+ h)− d = h.

So σ = r/h, and the exponent of λ in P is r.

5The sign is precised in the proof and only depends on α1, . . . , αn+2.
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ii)
∑

pj>0 pj = d+h > r−
∑

pj<0 pj = d. Then r−
∑n+1

j=1 pj = d− (d+h) = −h.

So σ = −r/h, and the exponent of λ in P is −r.

Consider now the case of a degree k monomial µ ∈ C[x0, . . . , xn]. Then there
exists again σ′, τ ′ in Q such that (σ′.a + τ ′.b)[µ] = [mn+2.µ] in Ef . As
a[µ], (βi + 1).b[µ], i ∈ [0, n], where βi is the degree in xi of µ := xβ , are again
given from the [mj .µ], j ∈ [1, n+ 2] by the same Cramer system, we conclude that
σ′ = σ. To conclude the proof it is enough to apply the proposition 2.1.1. �

Note that in the case i) above P := Pd+h + c.λr.Pd annihilated [µ] in Ef and in
the case ii) we have P := Pd+h + c.λ−r.Pd.

The lemma 2.2.1 gives that λ.∇(P.[µ]) = −(σ.a + (τ ′ − k.σ).b).P [µ] which makes
explicit the fact that λ.∇ is well defined on A[λ].[µ] ⊂ Ef .

Remark. Recall that in [B.13] we have built in an explicit way a differential
equation in s ∈ S, depending in a very simple and concrete way on λ ∈ C∗ which
is satisfied by ϕ. So it is easy to see that the knowledge of a formal asymptotic
expansion when s goes to 0 in S6 for a given λ0, of the type

ϕ(λ0, s) ≃
∑

i,j

Ci,j.s
ρi.(Logs)j

where ρ1, . . . , ρI are in − 1 +Q∗+, j ∈ [0, n] are integers and Ci,j are in C[[s]],
determines (uniquely) via the partial differential equation above, a formal expansion
of the same type for each given λ ∈ Ω, whose coefficients Cλ

i,j are polynomials

in Logλ easily computable from the coefficients Cλ0

i,j := Ci,j of the asymptotic
expansion at the initial value λ0 of λ. This is described in the following lemma.

Lemme 2.2.3 Let Ω be a simply connected domain in C∗. Let (ρi)i∈I be a finite
collection of rational numbers strictly bigger than −1. Assume that the formal power
serie

ϕλ :=

N
∑

k=0

∑

i∈I

∑

m≥0

ci,km (λ).sm+ρi .(Logs)k
/

k!

where ci,km are holomorphic functions in Ω, satisfies the partial differential equation

λ.
∂

∂λ

∂

∂s
ϕλ = α.s

∂(ϕλ)

∂s
+ β.ϕλ

for each λ ∈ Ω. Then for each i, k fixed, the function ci,km is a polynomial in
Logλ of degree ≤ m for each m. Moreover the collection of numbers ci,km (λ0) for
a given λ0 ∈ Ω determines uniquely these polynomials.

6This is always the case when S contains an open sector with edge at the origin.



9

Proof. The partial differential equation implies the following recursion relation
for each i, k,m :

(m+ ρi + 1).λ.
∂ci,km+1(λ)

∂λ
+ λ.

∂ci,k+1
m+1 (λ)

∂λ
=

(

α.(m+ ρi) + β
)

.ci,km (λ) + α.ci,k+1
m (λ)

We shall make a descending induction on k. For k = N the recursion relation
reduces to

(m+ ρi + 1).λ.
∂ci,Nm+1(λ)

∂λ
=

(

α.(m+ ρi) + β
)

.ci,Nm (λ)

and an easy induction on m ≥ 0 gives our assertion for k = N .
Assuming the statement proved for k + 1 a simple quadrature in λ implies the
case k. �

3 Two families of examples with d = 2 and h = 1.

3.1 The family x2u + y2v + z2w + λ.xu.yvzw.

The condition to be in our situation is u.v.w > 0. Then we have the relation
m2

4 = λ2.m1.m2.m3 and it shows that d = 2 and h = 1.
Note that the only singularity of f in {f = 0} is the origine.
To compute P := P3 + c.λ−2.P2 which annihilates [1] is not difficult. We find

P = (a− (2 +
u+ v

2u.v
).b)(a− (1 +

u+ w

2u.w
).b))(a− (

v + w

2v.w
).b) +

− 4λ−2.(a− (
3

2
+

u.v + v.w + w.u

2u.v.w
).b))(a−

u.v + v.w + w.u

2u.v.w
).b)).

In this case we have

λ.∇([1]) = 2.(a− (
u.v + v.w + w.u

2u.v.w
).b)[1] = −m4.

Here we are in the case ii) above (so σ = −2).
Let me illustrate this family on a simple example : f = x4 + y4 + z2 + λ.x2.y2.z
corresponding to u = v = 2, w = 1. In this case we find

P := (a−
5

2
.b)

[

(a−
7

4
.b)(a−

3

4
.b)− 4.λ−2.(a− b)

]

and λ.∇([1]) = 2(a− b)[1].

3.2 The family x2p.zu + y2q.zv + zu+v + λ.xp.yq.

The condition to be in our situation is p.q.(u + v) > 0. Note that the singularity
at the origine is not isolated in general in these cases. We have here the equality

2.α4 = α1 + α2 − α3
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The relation which determines P annihilating [1] is given by m2
4.m3 = λ2.m1.m2,

so r = 2, d = 2, h = 1 and we are in the case i).
The computation of P gives

P = (a− (2 +
p+ q

2p.q
).b)(a− (

1

2
+

p.u+ q.v + 2p.q

2p.q.(u+ v)
).b)(a− (

p.u+ q.v + 2p.q

2p.q.(u+ v)
).b) +

− 4λ2.(a− (1 +
p.u+ q.v + 2p.q + p.(u+ v)

2p.q.(u+ v)
).b)(a− (

p.u+ q.v + 2p.q + q.(u+ v)

2p.q.(u+ v)
).b).

The computation of (σ, τ) such that (σ.a + τ.b)[1] = m4 is easy and it gives

λ.∇([1]) = −(2.a−
p.u+ q.v + 2p.q

p.q.(u+ v)
.b) = −m4.

Again let me illustrated by an example : for p = q = 2 and u = v = 1 so for
f = x4.z + y4.z + z2 + λ.x2.y2. We find

P := (a−
5

2
.b)(a−

5

4
.b)(a−

3

4
.b)−4λ2.(a−2b)(a−b) and λ.∇([1]) = −2(a−

3

4
.b)[1]

4 Appendix

It is interesting to remark that the proposition 2.1.1 is a special case in a specific
algebraic setting of a general result on the the filtered Gauss-Manin connexion of a
holomorphic function depending holomorphically of a parameter. This is the goal
of this appendix to precise this point.

Let M be a complex manifold, D an open disc in C and let f : D ×M → C

be a holomorphic function. Denote Kp
/ := Ker

[

d/f∧; Ω
p
/ → Ωp+1

/

]

for p ≥ 2

and K1
/ := Ker

[

d/f∧ : Ω1
/ → Ω2

/

]/

O.d/f where d/f is the λ−relative differential

of f and Ωp
/ the sheaf of λ−relative holomorphic p−forms (compare with [B.08]).

Denote by (K•
/ , d/) the topological restriction of the λ−relative de Rham complex

(defined above) for the map (λ, x) 7→ (λ, f(λ, x)), to the analytic subset

Z := {d/f = 0}

and let Hp the p−th cohomology sheaf of this complex. Recall that these cohomogy
sheaves have a natural structure of left A[λ]−modules with the action of a given
by the multiplication by f and with the action of b defined by d/f ∧ d−1

/ .

Proposition 4.0.1 There exists a natural graded map ∇• : H• → H• with the
following properties :

1. For ω = d/ξ ∈ Kp+1
/ ∩Ker d/ we have ∇([ω]) = [d/f ∧ ∂ξ

∂λ
− ∂f

∂λ
.ω].
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2. The map b−1.∇ well defined on b.H̃• where H̃• := H•
/

(b− torsion), with

value in H̃•, commutes with a and b and is a λ−connection.

3. If (γs,λ)(s,λ)∈S×Ω is a horizontal family of compact p−cycles in the fibers
of (f, λ) over an open set in D × M \ C(f, λ) where C(f, λ) is the set
of critical values of the map (id, f) : D × M → D × C, we have for any
ω ∈ Kp+1

/ ∩Ker d/ the equality

∂

∂s

∂

∂λ

[

∫

γs,λ

ω

d/f

]

=

∫

γs,λ

∇(ω)

d/f
.

Proof. First remark that if ω = d/ξ ∈ Kp+1 with d/f ∧ ξ = 0, we have

d/(
∂f
∂λ
) ∧ ξ + d/f ∧ ∂ξ

∂λ
= 0 so ∇(d/ξ) = −d/(

∂f
∂λ
.ξ) is in d/K

p.
Now for ω = d/ξ ∈ Kp+1 we have d/f ∧ ∇(d/ξ) = 0 and

d/
(

∇(d/ξ)
)

= −d/f ∧ d/
(∂ξ

∂λ

)

− d/
(∂f

∂λ

)

∧ d/ξ

and we obtain that

d/
(

∇(d/ξ)
)

= −
∂

∂λ

(

d/f ∧ ω
)

= 0

using the fact that ∂
∂λ

(

d/f ∧ ω
)

≡ 0.
The proof of the other statements are analogous to the corresponding ones in propo-
sition 2.1.1. �

Remarks.

1. As above we have a more precise formulation for the properties in assertion 2.
of the proposition above with the following relations in H•

∇(ϕ.ω) =
∂ϕ

∂λ
.b.ω + ϕ.∇(ω) for ϕ ∈ Oλ and ω ∈ H•

b.∇ = ∇.b and ∇.a = (a− b).∇.

2. The generalization of this proposition to several holomorphic parameters is
immediate. �
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U.M.I. (9) II (2009) p.651-697.

• [B.13] Barlet, D. Algebraic differential equations associated to some
polynomials arXiv:1305.6778 ( math.arxiv 2013).


