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Introduction

This note is a complement to the study in [B.13] of period integrals of non quasihomogeneous polynomials in n + 1 variables with n + 2 monomials. We focuse here on the dependance of these period integrals on the "natural" parameter λ ∈ C * which is the only "free" coefficient of such a polynomial modulo the dilatations of the variables1 For that purpose we recall first the fact that for a polynomial function f depending polynomially of a parameter λ we may define a natural "b-connection" on the highest (f, λ)-relative de Rham cohomology group of f which induces the derivation ∂ ∂λ on period integrals. The construction for any holomorphic function depending of a holomorphic parameter is precised in the appendix. Then we show how to compute explicitely this connection in our specific situation and we obtain a simple partial differential equation for the period integrals associated to any monomial in C[x 0 , . . . , x n ] when we consider a polynomial of the type

f λ (x) = n+1 j=1 x α j + λ.x α n+2 where α j ∈ N n+1 , j ∈ [1, n + 2]
with he following assumptions i) The (n + 2, n + 2)-matrix obtained from M := (α 1 , . . . , α n+2 ) by adding a first line of 1 has rank n + 2.

ii) The elements α 1 , . . . , α n+1 form a basis of Q n+1 .

Note that the first condition is equivalent to the fact that f is not quasi-homogeneous, and that the condition ii) is always satisfied assuming i), up to change the order of the monomials (and then to change the parameter λ to c.λ m for some c ∈ Q * some m ∈ Z * ).

2 The λ-connection.

2.1 The general situation.

We consider here a polynomial 

f ∈ R := C[x 0 , . . . , x n ][λ]
f := Ω n+1 / d / f ∧ d / Ω n-1 / has a natural left A[λ]-module structure defined by
• The action of a is given by the multiplication by f .

• The action of b is given by d

/ f ∧ d -1 / .
Remark that for fixed λ, assuming that f λ has an isolated singularity at 0, the b-completion 

E f ⊗ C[b] C[[b]]
Ã.[µ.dx] in E f ⊗ C[b] C[[b]
] and it determines a finite set of possible eigenvalues for the monodromies around s = 0 for the period integrals (λ fixed)

ϕ λ (s) = γ λ,s µ.dx d / f
for any horizontal family γ λ,s of compact n-dimensional cycles in the fibers of f λ .

It is important to remark that if f λ has a non isolated singularity at the origin, despite the fact that there is no finiteness for the C

[[b]]-module E f ⊗ C[b] C[[b]],
the conclusion above is still valid because the quotient à Ã.P (µ), and so its image in

E f ⊗ C[b] C[[b]], is a finite type C[[b]]-module.
Then the product decomposition

P d = (a -r 1 .b) . . . (a -r d .b
), where r 1 , . . . , r d are (explicitely computable) rational numbers, gives that the set {e 2iπ.r 1 , . . . , e 2iπ.r d } contains the spectrum of these monodromies (counting multiplicities).

Question. Is it true that P d is equal to the Bernstein element2 of the Brieskorn module Ã.

[µ.dx] in E f ⊗ C[b] C[[b]
] when f λ has an isolated singularity at the origin ?

Proposition 2.1.1 There exists a C-linear operator ∇ : E f → E f with the following properties :

1. For ω = d / ξ ∈ Ω n+1 / we have ∇([ω]) = [d / f ∧ ∂ξ ∂λ -∂f ∂λ .ω].
2. The map b -1 .∇ well defined on b. Ẽf where Ẽf := E f (b -torsion), with value in Ẽf , commutes with a and b and is a λ-connection.

If

(γ s,λ ) (s,λ)∈S×Ω is a horizontal family of compact n-cycles in the fibers of (f, λ) over an open set in C × C * \ C(f, λ) where C(f, λ) is the set of critical values of the map (f, id) : C n+1 × C * → C × C * , we have for any ω ∈ Ω n+1 / the equality ∂ ∂s ∂ ∂λ γ s,λ ω d / f = γ s,λ ∇(ω) d / f .
Proof. Remark first that ∇ is well defined because for ξ = d / η we have

∇(d / ξ) = d / f ∧ ∂(d / η) ∂λ = d / f ∧ d / ( ∂η ∂λ ) so it induces 0 in E f . Let ω = d / ξ ∈ Ω n+1 / and let d / η = d / f ∧ ξ. Then we have ∇(b.[ω]) = ∇(d / η) = d / f ∧ ∂η ∂λ - ∂f ∂λ .d / η = d / f ∧ ( ∂η ∂λ - ∂f ∂λ .ξ) = b d / ( ∂η ∂λ - ∂f ∂λ .ξ) = b ∂ d / f ∂λ ∧ ξ + d / f ∧ ∂ξ ∂λ - ∂f ∂λ .d / ξ -d / ( ∂f ∂λ ) ∧ ξ) = b d / ( ∂f ∂λ ).ξ + ∇(d / ξ) -d / ( ∂f ∂λ ) ∧ ξ) = b ∇(d / ξ)
as d / and ∂ ∂λ commute. So we have b.∇ = ∇.b. We have also

∇(a.[ω]) = ∇(f.d / ξ) = ∇(d / (f.ξ)) -∇(d / f ∧ ξ) = d / f ∧ ∂(f ξ) ∂λ - ∂f ∂λ .f.d / ξ - ∂f ∂λ .d / f ∧ ξ -∇(b.[ω]) = a.∇([ω]) -b.∇([ω]).
This implies the equality a.b -1 .∇ = b -1 .∇.a as C-linear maps from b. Ẽf to Ẽf .

Note that the equalities ∇.b = b.∇ and ∇.a = (a -b).∇ as C-endomorphisms of E f are more precise than the relations above.

Finally let ϕ ∈ C[λ] then we have

∇(ϕ.d / ξ) = ∇(d / (ϕ.ξ)) = d / f ∧ ∂ϕ.ξ ∂λ - ∂f ∂λ .ϕ.d / ξ = ∂ϕ ∂λ .(d / f ∧ ξ) + ϕ.∇(d / ξ) = ∂ϕ ∂λ .b[d / ξ] + ϕ.∇(d / ξ)
and this shows that b -1 .∇ is a λ-connection.

Note again that we proved the equality in E f : ∇(ϕ.ω) = ∂ϕ ∂λ .b.ω + ϕ.∇(ω) valid for ϕ ∈ C[λ] and ω ∈ E f which is more precise.

To prove the point 3. of the statement consider ξ ∈ Ω n / and let d be the total de Rham differential (in x and λ). We have

dξ = dλ ∧ ∂ξ ∂λ + d / ξ and df = dλ. ∂f ∂λ + d / f. Assume we can write dξ = dλ ∧ v + d / f ∧ u with u, v ∈ Ω n / .
Then we obtain

dξ = dλ ∧ (v - ∂f ∂λ .u) + d / f ∧ u with u = d / ξ d / f and v = ∂ξ ∂λ . If (γ s,λ
) is a horizontal family of compact n-cycles in the fibers of the map (f, id) :

C n+1 × C * → C × C * , we shall have d γ s,λ ξ = γ s,λ (v - ∂f ∂λ .u) .dλ + γ s,λ u .ds.
So, has the chain ∪ s,λ γ s,λ is proper and without λ-relative boundary we obtain

∂ ∂s γ s,λ ξ = γ s,λ d / ξ d / f and ∂ ∂λ γ s,λ ξ = γ s,λ ∂ξ ∂λ - ∂f ∂λ . d / ξ d / f Now consider ω ∈ Ω n+1 / and write ω = d / ξ. Then b[ω] = [d / f ∧ ξ] and we have γ s,λ b[ω] d / f = γ s,λ ξ and ∂ ∂s γ s,λ b[ω] d / f = γ s,λ ω d / f .
So we conclude that we have

∂ ∂λ γ s,λ ω d / f = ∂ ∂λ γ s,λ ξ = γ s,λ ∂ξ ∂λ - ∂f ∂λ . d / ξ d / f = ∂ ∂λ γ s,λ ∇[ω] d / f
2.2 The case of a polynomial with n + 2 monomials in n + 1 variables.

So we consider now the case were f := n+2 j=1 m j where m j := x α j j ∈ [1, n + 1] and m n+2 := λ.x α n+2 with the following hypotheses (see [B. 13]) : the rank of the square matrix M ′ := (α 1 , . . . , α n+1 ) is n + 1 and the rank of the square matrix M obtained by adding a first line of 1 to the matrix M := (α 1 , . . . , α n+2 ) is n + 2.

Recall that if we write (with a minimal positive integer r) r.α n+2 = n+1 j=1 p j .α j where p 1 , . . . , p n+1 are in Z, and if we define 

d = inf{r - j,p j ≤0 p j , j,
E f is exactely the image in E f of C[m 1 , . . . , m n+2 ][λ].dx ⊂ Ω n+1 / with m j = x α j with j ∈ [1, n + 1] and m n+2 = λ.x α n+2 .
Our next result uses the following easy lemma:

Lemme 2.2.1 Let Q ∈ A a homogeneous element in (a, b) of degree k. Then for any λ ∈ C we have : b.Q.b -1 .(a -λ.b) = (a -(λ + k).b).Q.
proof. Remark first that the map A → A sending x ∈ A to b.x.b -1 is well defined and bijective thanks to the following facts : b is injective and b.A = A.b. We shall prove the lemma by induction k. As the case k = 0 is obvious, assume that the lemma is proved for k < k 0 where k 0 ≥ 1 and consider an homogeneous element Q of degree k 0 . We may assume4 that Q = b.R or that we may find µ ∈ C such that Q = (a -µ.b).R, where R is homogeneous of degree k 0 -1. In the first case we have, using the induction hypothesis :

b.b.R.b -1 .(a-λ.b) = b.(a-(λ+k 0 -1).b).R = (a-(λ+k 0 ).b).b.R = (a-(λ+k 0 ).b).Q.
In the second case we have, using the induction hypothesis :

b.(a -µ.b).R.b -1 .(a -λ.b) = (a -(µ + 1).b).b.R.b -1 .(a -λ.b) = (a -(µ + 1).b).(a -(λ + k 0 -1).R = (a -(λ + k 0 ).b).(a -µ.b).R = (a -(λ + k 0 ).b).Q. Proposition 2.2.2 Let µ be a monomial of degree k in C[x 0 , . . . , x n+1 ]. Then we have in E f the relation ∇([µ]) = -1 λ .(σ.a + (τ -k.σ).b)[µ]
where σ, τ are defined by the relation m n+2 .

[µ] = (σ.a + τ.b) [µ]. Moreover the value5 of σ is ±r/h so it does not depend on the choice of the monomial µ.

As a consequence, if we have on an open set S × Ω in C * × C * , a horizontal family (γ s,λ ) (s,λ)∈S×Ω of compact n-cycles in the fibers of the map

C n+1 × C * → C × C * defined by (x, λ) → (f λ (x), λ), the holomorphic function (s, λ) → ϕ(s, λ) := γ s,λ µ.dx d / f
satisfies the partial differential equation

-λ. ∂ ∂λ ∂ ∂s ϕ = σ. ∂(s.ϕ) ∂s + (τ -k).ϕ on S × Ω.
Proof. As we have λ.∇([1]) = -m n+2 in E f and as we know that there exist σ, τ in Q such that (σ.a + τ.b)[1] = m n+2 for the case µ = 1 the only thing to prove is the computation of σ. Using the Cramer system with matrix (n + 2, n + 2) obtained by adding a first line of 1 to the matrix M := (α 1 , . . . , α n+2 ), computing a[1] and the b i [1] we find that σ is the coefficient (n + 2, 1) in the matrix M-1 . Let M ′ be the principal (n + 1, n + 1) minor of M . This implies that σ = (-1) n+1 det(M ′ ) det( M) .

But using the relation α n+2 = n+1 j=1 p j r .α j we obtain

det( M ) = (-1) n+1 .(1 - n+1 j=1 p j r ).det(M ′ ) so we conclude that σ = r r -n+1 j=1 p j . Now we have two cases : i) r -p j <0 p j = d + h > p j >0 p j = d. Then r -n+1 j=1 p j = (d + h) -d = h. So σ = r/h, and the exponent of λ in P is r. ii) p j >0 p j = d + h > r -p j <0 p j = d. Then r -n+1 j=1 p j = d -(d + h) = -h. So σ = -r/h,
and the exponent of λ in P is -r.

Consider now the case of a degree

k monomial µ ∈ C[x 0 , . . . , x n ]. Then there exists again σ ′ , τ ′ in Q such that (σ ′ .a + τ ′ .b)[µ] = [m n+2 .µ] in E f . As a[µ], (β i + 1).b[µ], i ∈ [0, n]
, where β i is the degree in x i of µ := x β , are again given from the [m j .µ], j ∈ [1, n + 2] by the same Cramer system, we conclude that σ ′ = σ. To conclude the proof it is enough to apply the proposition 2.1.1. Note that in the case i) above P := P d+h + c.λ r .P d annihilated [µ] in E f and in the case ii) we have P := P d+h + c.λ -r .P d .

The lemma 2.2.1 gives that λ.∇(P. Remark. Recall that in [B.13] we have built in an explicit way a differential equation in s ∈ S, depending in a very simple and concrete way on λ ∈ C * which is satisfied by ϕ. So it is easy to see that the knowledge of a formal asymptotic expansion when s goes to 0 in S6 for a given λ 0 , of the type

ϕ(λ 0 , s) ≃ i,j C i,j .s ρ i .(Logs) j
where ρ 1 , . . . , ρ I are in -1 + Q * + , j ∈ [0, n] are integers and C i,j are in C[[s]], determines (uniquely) via the partial differential equation above, a formal expansion of the same type for each given λ ∈ Ω, whose coefficients C λ i,j are polynomials in Logλ easily computable from the coefficients C λ 0 i,j := C i,j of the asymptotic expansion at the initial value λ 0 of λ. This is described in the following lemma.

Lemme 2.2.3 Let Ω be a simply connected domain in C * . Let (ρ i ) i∈I be a finite collection of rational numbers strictly bigger than -1. Assume that the formal power serie 2. The generalization of this proposition to several holomorphic parameters is immediate.

ϕ λ := N k=0 i∈I m≥0 c i,k m (λ).
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	p j } and	d + h = sup{r -	p j ,	p j }
	p j >0	j,p j ≤0	j,p j >0	
	there exists an element P in A[λ, λ -1 ] of the form		
	P :=			

In our hypothesis we may assume that all monomials have coefficient 1 excepted the last one up to a linear diagonal change of variable.

For a (a,b)-module E with one generator as a Ã-module, the relation between its Bernstein element P d ∈ A and its Bernstein polynomial B is given by the formula (see [B.09]) (-b) d .B(-b -1 .a) = P d where d is the rank of E.

More is proved in [B.13] : P d+h and P d factorize in product of (ar j .b) with r j ∈ Q.

Recall that any homogeneous element in A which is monic in a factorizes as a product of linear factors (ar i .b), where the r i are complex numbers; see[B.09].

The sign is precised in the proof and only depends on α 1 , . . . , α n+2 .

This is always the case when S contains an open sector with edge at the origin.

Proof. The partial differential equation implies the following recursion relation for each i, k, m : (m + ρ i + 1).λ. ∂c i,k m+1 (λ) ∂λ + λ. ∂c i,k+1 m+1 (λ) ∂λ = α.(m

We shall make a descending induction on k. For k = N the recursion relation reduces to

and an easy induction on m ≥ 0 gives our assertion for k = N. Assuming the statement proved for k + 1 a simple quadrature in λ implies the case k.

3 Two families of examples with d = 2 and h = 1.

The family x

The condition to be in our situation is u.v.w > 0. Then we have the relation m 2 4 = λ 2 .m 1 .m 2 .m 3 and it shows that d = 2 and h = 1. Note that the only singularity of f in {f = 0} is the origine. To compute P := P 3 + c.λ -2 .P 2 which annihilates [1] is not difficult. We find

In this case we have

Here we are in the case ii) above (so σ = -2).

Let me illustrate this family on a simple example :

In this case we find

3.2 The family x 2p .z u + y 2q .z v + z u+v + λ.x p .y q .

The condition to be in our situation is p.q.(u + v) > 0. Note that the singularity at the origine is not isolated in general in these cases. We have here the equality

The relation which determines P annihilating [1] is given by m 2 4 .m 3 = λ 2 .m 1 .m 2 , so r = 2, d = 2, h = 1 and we are in the case i). The computation of P gives

The computation of (σ, τ ) such that (σ.a + τ.b)[1] = m 4 is easy and it gives

Again let me illustrated by an example : for p = q = 2 and u = v = 1 so for f = x 4 .z + y 4 .z + z 2 + λ.x 2 .y 2 . We find

4 Appendix

It is interesting to remark that the proposition 2.1.1 is a special case in a specific algebraic setting of a general result on the the filtered Gauss-Manin connexion of a holomorphic function depending holomorphically of a parameter. This is the goal of this appendix to precise this point.

Let Denote by (K • / , d / ) the topological restriction of the λ-relative de Rham complex (defined above) for the map (λ, x) → (λ, f (λ, x)), to the analytic subset

and let H p the p-th cohomology sheaf of this complex. Recall that these cohomogy sheaves have a natural structure of left A[λ]-modules with the action of a given by the multiplication by f and with the action of b defined by d / f ∧ d -1 / .

Proposition 4.0.1 There exists a natural graded map ∇ • : H • → H • with the following properties :