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Artificial boundary conditions to compute correctors in linear

elasticity

V. Bonnaillie-Noël∗, D. Brancherie†, M. Dambrine‡ and G. Vial§

1 Introduction

This work is motivated by the asymptotic analysis for a boundary singular perturbation in an
elliptic boundary value problem. Let Ω0 be a bounded domain of R×R+, with the origin 0 being a
regular point on its boundary. In the following, the first coordinate axis coincides with the tangent
direction of ∂Ω0 at point 0. We denote by ω another bounded domain containing 0. The perturbed
domain Ωε is obtained from Ω0 by removing a rescaled version of ω at size ε: Ωε = Ω0\(εω) . The
problem we focus on is the following







−µ∆uε − (λ+ µ)grad div uε = f in Ωε,

uε = ud on Γd,
σ · n = g on Γt,

(1)

where Γd and Γt are the Dirichlet and Neumann boundaries, respectively. It concerns Navier
equations of linear elasticity. The perturbation point 0 lies on the Neumann boundary. Besides,
the volumic load f and the traction g are assumed to vanish near the perturbation. Problem (1)
naturally involves two scales: the size of the structure (scale 1), and the characteristic length ε of
the perturbation (scale ε). At scale 1, the domain Ωε tends to Ω0 as ε→ 0, while the limit domain
after rescaling (i.e. limit of Ωε/ε) is the semi-infinite domain H∞ defined as H∞ = (R × R+)\ω.
We briefly present the leading terms in the asymptotic expansion of the solution uε to Problem (1)
obtained by following the methods presented in [5]. This description requests two variables: x
(slow variable) and x/ε (fast variable), corresponding to scale 1 and scale ε, respectively. The
behavior of uε in the fast variable relies on profiles, which are normalized functions defined in H∞

and contributing to the expansion in variable x/ε. Let us introduce the profile basis (Vℓ)ℓ=1,2 as
the solutions of

{

−µ∆Vℓ − (λ+ µ)graddivVℓ = 0 in H∞,

σ(Vℓ) · n = Gℓ on ∂H∞,
(2)

with G1 = (n1, 0), G2 = (0, n1) and n = (n1, n2) the outer normal on ∂H∞. Regularity of the
solution of Navier equation has been studied, for example, in [4]. We emphasize that Problem (2)
depends exclusively on the geometry. In particular, Vℓ is independent of the loading of Problem (1).

The expansion of uε takes the form

uε(x) = u0(x) − ε
[

α1V1

(x

ε

)

+ α2V2

(x

ε

)]

+ rε(x), (3)

with

• u0 solves Problem (1) for ε = 0 (i.e. is solution in the unperturbed domain Ω0),

• the coefficients α1 and α2 are the stress values associated with u0 at point 0, namely

α1 = σ11(u0)(0) and α2 = σ12(u0)(0),
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‡LMA, Université de Pau et des Pays de l’Adour, CNRS, F-64000 Pau, France
§Institut Camile Jordan, Ecole Centrale de Lyon, CNRS, F-69130 Ecully, France

1



• the remainder rε satisfies the following estimate in the energy norm

‖rε‖H1(Ωε) ≤ Cε2. (4)

As regards the computation of uε for small values of ε, asymptotics expansion (3) leads to an alter-
native numerical strategy to adaptative mesh refinement. Indeed the knowledge of the unperturbed
solution u0 and of the profiles Vℓ gives a reasonable approximation of uε, see [1]. To approximate
the profile defined by, we compute a solution of a problem posed in a bounded domain. To that
end, we introduce an artificial boundary at ∂BR = {|x| = R, R > 0} and we need to impose a
boundary condition on this boundary in the spirit of [3]. Since, the corrector decreases at infinity,
the most natural artificial condition is the Dirichlet one. However, this condition is not precise.

In this note, we present the derivation of a higher order artificial boundary condition, we explain
that this condition sparks theoretical questions and finally present some numerical simulations.

2 Seeking an artificial boundary condition

To derive artificial boundary conditions for the linear elasticity, the domain under consideration
here is the upper half plane R × R+. Since we aim at writing artificial conditions on a circle of
radius R, it is more convenient to work with the polar coordinates and we define u = urer + uθeθ.
To approximate more accurately the profile, we cancel the leading singular parts at infinity of the
solution in polar coordinates.

2.1 Computing the leading terms at infinity

Let L = µ∆ + (λ+ µ)graddiv, then

Lu =

(

(λ+ 2µ)

[

∂2
rur +

1

r
∂rur −

1

r2
ur

]

+
µ

r2
∂2

θur −
λ+ 3µ

r2
∂θuθ +

λ+ µ

r
∂2

rθuθ

)

er

+

(

µ

[

∂2
ruθ +

1

r
∂ruθ −

1

r2
uθ

]

+
λ+ 2µ

r2
∂2

θuθ +
λ+ µ

r
∂2

rθur +
λ+ 3µ

r2
∂θur

)

eθ.

In polar coordinates, the stress tensor takes the form:

σ(u) =

[

(λ+ 2µ)∂rur + λ
r
(ur + ∂θuθ) µ

(

1
r
(∂θur − uθ) + ∂ruθ

)

µ
(

1
r
(∂θur − uθ) + ∂ruθ

)

(λ+ 2µ) 1
r
(∂θuθ + ur) + λ∂rur

]

. (5)

We seek the displacement under the form u = rs[ϕr(θ), ϕθ(θ)]
T . Consequently, we obtain

Lu = rs−2

[

µϕ′′

r + (λ+ 2µ)(s2 − 1)ϕr + [(λ+ µ)s− (λ+ 3µ)]ϕ′

θ

(λ+ 2µ)ϕ′′

θ + µ(s2 − 1)ϕθ + [(λ+ µ)s+ (λ+ 3µ)]ϕ′

r

]

, (6)

σ(u) = rs−1

[

λϕ′

θ + ((λ+ 2µ)s+ λ)ϕr µ(ϕ′

r + (s− 1)ϕθ)

µ(ϕ′

r + (s− 1)ϕθ) (λ+ 2µ)ϕ′

θ + (λs+ (λ+ 2µ))ϕr

]

. (7)

Using (6), we reduce the second order system Lu = 0 to a bigger system of first order: Define
ψr = ϕ′

r and ψθ = ϕ′

θ, and U = (ϕr, ϕθ, ψr, ψθ)
T , then

U′ = AU,

with

A =











0 0 1 0
0 0 0 1

(λ+2µ)(1−s2)
µ

0 0 (λ+3µ)−(λ+µ)s
µ

0 µ(1−s2)
λ+2µ

− (λ+3µ)+(λ+µ)s
λ+2µ

0











.
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The eigenvalues of A are ±i(s±1). Hence, the polar functions ϕr, ϕθ belong to the space generated
by cos ((s± 1)θ), sin ((s± 1)θ). We look for coefficients Ar, Br, Aθ, Bθ so that

ϕr = Ar cos((s− 1)θ) +Br sin((s− 1)θ) + Cr cos((s+ 1)θ) +Dr sin((s+ 1)θ),

ϕθ = Aθ cos((s− 1)θ) +Bθ sin((s− 1)θ) + Cθ cos((s+ 1)θ) +Dθ sin((s+ 1)θ).

Writing Lu = 0 gives:














αAr +Bθ = 0
αBr −Aθ = 0
Cr +Dθ = 0
Dr − Cθ = 0

with α =
(λ+ µ)s+ (λ+ 3µ)

(λ+ µ)s− (λ+ 3µ)
. (8)

Consequently, the functions ϕr and ϕθ satisfy:

ϕr = Ar cos((s− 1)θ) +Br sin((s− 1)θ) + Cr cos((s+ 1)θ) +Dr sin((s+ 1)θ), (9)

ϕθ = αBr cos((s− 1)θ) − αAr sin((s− 1)θ) +Dr cos((s+ 1)θ) − Cr sin((s+ 1)θ). (10)

The boundary conditions read: σ(u) · eθ = 0 for Θ = 0, π, that is to say
{

ϕ′

r(Θ) + (s− 1)ϕθ(Θ) = 0,
(λ+ 2µ)ϕ′

θ(Θ) + ((λ+ 2µ)s+ λ)ϕr(Θ) = 0.

Boundary conditions at θ = 0 reads
{

(s− 1)Br + (s+ 1)Dr + (s− 1)(Aθ + Cθ) = 0,
(λ+ 2µ)((s− 1)Bθ + (s+ 1)Dθ) + (λs+ λ+ 2µ)(Ar + Cr) = 0.

Boundary conditions at θ = π reads










sin sπ[(s− 1)(Ar −Bθ −Dθ) + (s+ 1)Cr] − cos sπ[(s− 1)(Aθ +Br + Cθ) + (s+ 1)Dr] = 0

sin sπ ((λ+ 2µ)[(s− 1)(Aθ + (s+ 1)Cθ] − (λ+ 2µ+ λs)(Br +Dr))
− cos sπ ((λ+ 2µ)[(s− 1)Bθ + (s+ 1)Dθ] + (λs+ λ+ 2µ)(Ar + Cr)) = 0

Using (8), we deduce that the coefficients Ar, Br, Cr, Dr have to satisfied

M(Ar, Br, Cr, Dr)
T = 0,

with

M =









0 γ 0 2s
β 0 −2µs 0

γ sin sπ −γ cos sπ 2s sin sπ −2s cos sπ
−β cos sπ −β sin sπ 2µs cos sπ 2µs sin sπ









,

and
β = (1 + α)(λ+ 2µ) + 2(λ− α(λ+ 2µ)), γ = (s− 1)(1 + α).

We compute
detM = −4(sin sπ)2(µγ + β)2.

Therefore, s 7→ detM cancels only for s ∈ Z and for s such that µγ + β = 0 that is to say

s =
µ− λ+

√

λ2 + 6λµ+ 25µ2

2µ
> 2 and s =

µ− λ−
√

λ2 + 6λµ+ 25µ2

2µ
< −2.

Then the leading term is obtained for s = −1. For s = −1, we have

α = −
µ

λ+ 2µ
, β = 0, γ = −

2(λ+ µ)

λ+ 2µ
.

In this case, system M(Ar, Br, Cr, Dr)
T = 0 and (8) read

γBr − 2Dr = 0, 2µCr = 0, Cθ = Dr.

Consequently, setting A = Ar and B = −Br in (9), the functions ϕr and ϕθ take the form






ϕr = A cos 2θ +B sin 2θ,

ϕθ =
µ

λ+ 2µ
(B cos 2θ −A sin 2θ) +B

λ+ µ

λ+ 2µ
.
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2.2 Using the singular profiles to obtain a transparent boundary condi-

tion for the half plane

We go back to the expression for σ(u) · er deduced from (7). When s = −1, we have

σ(u) · er = r−2

[

λϕ′

θ − 2µϕr

µ(ϕ′

r − 2ϕθ)

]

= r−1









−
4µ(λ+ µ)

λ+ 2µ
0

−
2µ(λ+ µ) sin 2θ

µ+ (λ+ µ) cos 2θ

2µ(λ+ µ)(1 − cos 2θ)

µ+ (λ+ µ) cos 2θ









u.

This means that the relation between u and σ(u) · n on ∂BR has variable (in the θ variable)
coefficients, this fact makes the interpretation of this computation more difficult. Hence, we search
a relation with the second order tangential derivative of the displacement: If such a relationship
exists, the associated bilinear form still remains symmetric. Notice that

ϕ′

r = −
λ+ 2µ

2µ
ϕ′′

θ ,

we can also write

σ(u) · er = r−2





−
4µ(λ+ µ)

λ+ 2µ
ϕr

µϕ′

r − 2µϕθ



 =
1

R









−
4µ(λ+ µ)

λ+ 2µ
ur

−2µuθ −
λ+ 2µ

2
∂2

θuθ









.

For the elasticity problem, we observe that the leading decreasing profile at infinity satisfies the
following inequality on the circle of radius R:

σ(u) · n +
2µ

R

[

2(λ+µ)
λ+2µ

0

0 1

]

u +
λ+ 2µ

2R

[

0 0
0 1

]

∂2
θu = 0.

Lamé’s coefficients are linked to Young’s modulus and Poisson’s coefficient throught the relations:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
with E > 0, −1 < ν < 0.5.

So that, this boundary condition of Ventcel’s type rewrites on ∂BR ∩ R × R+:

σ(u) · n +
1

R

E

1 + ν

[

1
1−ν

0

0 1

]

u +
1

R

E(1 − ν)

2(1 + ν)(1 − 2ν)

[

0 0
0 1

]

∂2
θu = 0. (11)

The main difficulty here is that the coefficient E(1−ν)
2(1+ν)(1−2ν) is positive; meaning that the varia-

tional formulation of the boundary value problem for the profiles Vℓ























−µ∆Vℓ − (λ+ µ)graddivVℓ = 0 in BR ∩ H∞,

σ(Vℓ) · n = Gℓ on ∂H∞ ∩BR,

σ(Vℓ) · n +
1

R

E

1 + ν

[

1
1−ν

0

0 1

]

Vℓ +
E(1 − ν)

2(1 + ν)(1 − 2ν)R

[

0 0
0 1

]

∂2
θVℓ = 0 on ∂BR ∩ H∞,

(12)
is not coercive. Therefore, the question of existence and uniqueness of the solution to (12) is open.
For the model scalar case of

{

−∆V = 0 in Ω,

∂nV + αV + β∆ΓV = G on ∂Ω,

with β > 0 and ∆Γ denotes the Laplace-Beltrami operator on ∂Ω, it has been shown in [2] that,
for a fixed R, the boundary value problem has a unique solution if α/β avoid a countable set of
values, and moreover, that it has a unique solution for R large enough. We expect similar results
for the elasticity case and we work in that direction.
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3 Numerical results

In order to investigate Problem (12) from a numerical point of view, we have considered the test
situation where the domain ω is the top half of a ball: H∞ = R×R+\B(0, 1). We have successively
considered the following two questions:

(i) resolubility of the Ventcel-type boundary condition (11),

(ii) order of precision of this condition as an artificial boundary condition for Problem (2).

For the first question, we consider the norm of the inverse operator (LR)−1 corresponding to
Problem (12):

LR : Vℓ 7→ Gℓ.

In Figure 1, we show the evolution of this norm with respect to the radius R. The computation
have been performed with the finite element library Mélina (see [6]), the domain (a ring) has
been meshed into 128 quadrangular elements of degree 8, and a Q10 interpolation is used for the
finite element method.

Figure 1 shows some values of R for which the resolvent is unbounded, but theses values remain
close to 1. It seems that Problem (12) is uniquely solvable for R sufficiently large (which is the
result shown for the scalar model problem).
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Figure 1: Norm of (LR)−1 with respect to R.

For question (ii), we consider Problem (12) where the data Gℓ is chosen so that the solution
Vℓ is the sum of two dual singular solutions:

Vℓ = s1 + s2,

where s1 is given by (2.1) and s2 has the form

s2(r, θ) = r−2
[

ϕ2
r(θ)er + ϕ2

θ(θ)eθ

]

,

with

ϕ2
r(θ) = A′ cos(3θ) −B′ sin(3θ) +

3αλ− λ− 4µ

4µ
A′ cos θ +

3

4
(1 + α)B′ sin θ,

ϕ2
θ(θ) = αB′ cos(3θ) + αA′ cos(3θ) −

3

4
(1 + α)B′ cos θ +

3αλ− λ− 4µ

4µ
A′ sin θ,

and

α =
−λ+ µ

−3λ− 5µ
.

With this choice, the function Vℓ solves Problem (2) in the infinite domain H∞. In Figure 2, we
show the H1-norm of the difference between the exact solution of (2) and its approximation with
artificial boundary conditions (Dirichlet or Ventcel). It turns out that – as expected – the Dirichlet
condition is of order 1 and the Ventcel condition of order 2.

Remark 1 Writing the variational formulation of (12) makes appear ponctual terms which need
a specific treatment for the numerical approach with the finite element method.
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