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periodic case

M. Al Haj∗,  L. Paszkowski†
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Abstract

In this paper we are interested in the convergence of accumula-
tion of dislocations to walls of dislocations. We consider the dynam-

ical system generated by the force f(x, y) = x(y2−x2)
(y2+x2)2

, defined over

R × Z\{0}, that describes the phenomena. For initial data X0 ∈
Ω ∩ ℓ∞ =

{

X : |xi − xj | 6
√

3 − 2
√

2 |i− j|
}

∩ ℓ∞, we show the ex-

istence of unique solution X ∈ C1 ∈ ([0,+∞),Ω ∩ ℓ∞). Moreover,
we prove that if X0 is periodic, then X(t) = (xj(t))j∈Z is periodic
for any t > 0 and converges to the barycenter of the initial data,
i.e. xj(t) → c = 1

N

∑N
i=1 x

0
i for every j ∈ Z. We also establish a ℓp

contraction for periodic solutions and perform numerical simulations.

Keywords: Dynamical system, Cauchy Lipschitz theorem, comparison prin-
ciple, periodic solution, viscosity solutions.

1 Introduction

It is well known, in real materials with dislocations, that we can observe
several accumulation of dislocations in walls of dislocations or more general in
cells with several walls. In this paper our aim is to investigate the dynamics of
dislocations that interact together and converge to such walls of dislocations.
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1.1 Presenting the problem

Let us consider a model describing horizontal motion of dislocation lines
parallel to the z-axis. Considering the cross section of these lines, we can
reduce the problem to its two-dimensional counterpart where each dislocation
line is represented by its position (xi(t), i) ∈ R× Z. Finally, such horizontal
evolution can be characterized as follows

x′
i =

∑

j 6=i

f(xj − xi, j − i) for i ∈ Z. (1.1)

Here f : R×Z\{0} → R is an anisotropic force of two-body interactions. An
example of such a force, according to [6], is

f(x, y) =
x(y2 − x2)

(y2 + x2)2
. (1.2)

An important aspect of interatomic interactions is that atoms can attract
each other at longer distances and repel at short distances aggregating into
various bulk forms. Such behaviour, of course, depends on the form of the
considered potentials.

One of the forces describing both long-range attraction and short-range
repulsion between atoms is the interaction force given by (1.2). In such an
example two particles attract each other if the vertical angle between them
is less then π

4
and, on the other hand, repel each other if the angle is greater

then π
4
, see Figure 1 and Figure 2.

In the literature, however, there is a convention to express force in terms
of energy potentials or commonly called interatomic potentials. Thus a gen-
eral force acting on an atom can be seen as the negative derivative of some
potential function with respect to its position: f(r) = −φ′(r).

The system of all particles acting together under the force defined in (1.2)
can be rewritten in the following way







d

dt
X(t) = F (X(t)), t > 0,

X(0) = X0,
(1.3)

where X(t) = (xi(t))i∈Z, F (X) = (Fi(X))i∈Z and X0 is some given initial
position of dislocations. Moreover, Fi(X) describes a resultant force acting
on an i-th particle, i.e.

Fi(X)
def
=

∑

j 6=i

f(xj − xi, j − i) for each i ∈ Z.
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Figure 1: Interaction force f(x, y) as a function of the distance between two
atoms for some fixed y ∈ Z\{0} with the property f(−x, y) = −f(x, y).
A vertical angle between two particles corresponds to arctan(x

y
). Thus π

4

reads as x = |y|.

Since our aim is to study a long time behaviour of the dynamics of par-
ticles which converges to walls of dislocations, the property of the force f

described in (1.2) forces us to consider the problem (1.3) with a special con-
dition for the initial data. Namely, we assume

f(x, y) =
x(y2 − x2)

(y2 + x2)2
, (1.4a)

X0 ∈ Ω ∩ ℓ∞, (1.4b)

where

Ω =

{

X : |xi − xj| 6
√

3 − 2
√

2 |i− j|
}

. (1.5)

and ℓ∞ = ℓ∞(R) is the Banach space of all bounded sequences over R sup-
plemented with the norm ‖ · ‖∞ = sup

n∈Z
|xn|.

Remark 1.1 (Sign of f when X ∈ Ω). If X(t) = (xi(t))i∈Z ∈ Ω, then, in
particular, we have (j − i)2 ≥ (xj − xi)

2. This implies that if X ∈ Ω, then
(because of (1.2)) f(xj − xi, j − i) has the sign as xj − xi.

Notice here that arctan
(√

3 − 2
√

2
)

= π
8

guarantees that the force f

restricted to Ω is not only attractive but also non-decreasing with respect
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to the first variable. Therefore, we are able to prove a comparison principle,
which helps us to conclude e.g. existence of global-in-time solutions, which
stays in Ω.

Figure 2: A fixed particle xi attracts all other particles if they are placed in a
region marked in blue and pink. However, the force f is non-decreasing only
if the particles are located in the region marked in pink. Such domain we call
Ωi and thus we can present Ω, defined in (1.5), as Ω = ∩i∈ZΩi.

1.2 Main results

Our first result deals with the existence of solutions to the considered prob-
lem. More precisely, it reads as follows

Theorem 1.2 (Existence of a unique solution). Let (1.4) hold. Then there
exists a unique solution X ∈ C1([0,+∞),Ω ∩ ℓ∞) of the Cauchy problem
(1.3). Moreover, if the initial data X0 is N -periodic (i.e. x0

i = x0
i+N , for

every i ∈ Z), then the solution remains N -periodic for every time t > 0.
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The proof of the theorem consists in the application of the classical
Cauchy-Lipschitz theorem and the comparison principle result. Notice that
in general the locally Lipschitz condition with respect to the first variable of
the function f is sufficient to obtain a unique local-in-time solution. In order
to extend it to the global-in-time one we need to provide an apriori estimate,
e.g. the comparison principle that ensures us that ℓ∞-norm of the solution
does not blow up.

However, if the function f satisfies the Lipschitz condition globally, which
happens when f is defined by (1.4a), we immediately obtain a unique global-
in-time solution by extending it with the universal step T > 0, see [2, Thm
7.3, p. 184]. Thus, in that case the comparison principle is needed only to
ensure that the solution belongs to Ω for all times t > 0.

To prove the comparison principle for the problem (1.3), the monotonicity
of a function f is a necessary assumption. Hence, the reason why we consider
the initial condition in the special domain Ω is that the function f defined
by (1.4a) is indeed monotone over that set.

Our second result is the long time behaviour of the dynamics of parti-
cles where we prove that dislocations accumulate creating so-called walls of
dislocations. This result can be stated in the following way

Theorem 1.3 (Convergence to flat walls). Let X be the N-periodic solution
of the problem (1.3)-(1.4). Then it converges to a constant stationary solution
of the problem (1.3)-(1.4) i.e. for every i ∈ Z, we have lim

t→∞
xi(t) = c, where

c = 1
N

∑N

i=1 x
0
i is the barycenter of the initial data.

For the proof of the above theorem we refer to Section 4, and Section 6 for
numerical experiments which show the convergence and more information.

We have also proved the following ℓp contraction for periodic solutions:

Proposition 1.4 (lp contraction). Let X and Y be two N -periodic solutions
of the problem (1.3)-(1.4) with N -periodic initial data X0 and Y 0 respectively.
Then the following estimate

‖X(t) − Y (t)‖p 6 ‖X0 − Y 0‖p, for all t > 0

holds true provided p > 2.

1.3 Related results

Another possible model, first proposed in 1924 and repeatedly improved in
subsequent years, involves the Lennard-Jones potential [7]

φ(r) = 4ε

[( r

σ0

)−12

−
( r

σ0

)−6
]

,
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where r is a distance between two atoms, ε is the depth (minimum) of the
energy and σ0 is the finite distance at which the interparticle potential is zero.
Due to its computational simplicity and relatively good approximations, the
Lennard-Jones potential is extensively used to describe the properties of gases
and in computer simulations [7, 8].

There is no necessity to deal only with two-body potentials. One approach
to represent the many-body potentials energy is to consider it as a sum of
two-body, three-body, . . ., N -body terms. An example of such constructed
energy potential is the Stillinger-Weber potential [10] for semiconductor sil-
icon containing only two- and three-body terms.

More facts about dislocations, examples of potentials used in various mod-
els, and numerical simulations performed on these models can be found in
the book of Bulatov and Cai [3].

A similar model to ours, where a finite number of dislocations of differ-
ent types occur (for instance positive and negative ones), was considered by
El Hajj, Ibrahim and Monneau [6]. The authors studied horizontal motion
of dislocation lines and they derived formally a two-dimensional mean field
model called Groma-Balogh model. In the same paper, they also investigated
a model with additional boundary conditions. They observed that positive
dislocations move to the right, whereas the negative ones move to the left. In
particular, numerical simulations of deformations of a slab under an external
shear stress have been performed.

Related models called individual cell-based models occur not only in the
theory of dislocations but also in the study of e.g. chemotherapy where xi

denotes a center of a tumour cell [5], chemotaxis [9] and many others. More-
over, particles may also evolve according to stochastic differential equations,
see [1] and references therein for numerical simulations.

2 Comparison principle

In this section, we prove a comparison principle result for a general system
of equations:

d

dt
X(t) = G(X(t)), t > 0, (2.1)

where X(t) = (xi(t))i∈Z, G(X) = (Gi(X))i∈Z with Gi(X)
def
=

∑

j 6=i g(xj −
xi, j − i) for each i ∈ Z, and g : R × Z\{0} → R is C1 and globally non-
decreasing with respect to first variable. We will apply this later in Section
3.
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Lemma 2.1 (Comparison principle). Let T > 0 and assume that X, Y ∈
C1([0, T ), ℓ∞) be two solutions of (2.1) with X(0) = X0 and Y (0) = Y 0.

Assume that X0 6 Y 0, then X(t) 6 Y (t) for every t ∈ [0, T ).

Proof. Notice that the assumption X0 = X(0) 6 Y (0) = Y 0 reads as x0
n :=

xn(0) 6 yn(0) =: y0n for every n ∈ Z, and we shall prove that xn(t) 6 yn(t)
for every n ∈ Z and t ∈ [0, T ).

Define then new functions Z(t) = (zn(t))n∈Z and M(t) as

zn(t) = xn(t) − yn(t), M(t) = sup
n∈Z

zn(t). (2.2)

Since X(t) , Y (t) ∈ ℓ∞ for all t ∈ [0, T ), then from the definition of M, we
have

∀t∗∈[0,T ) ∃n∗(t∗) M(t∗) = zn∗(t∗)(t
∗), (2.3)

where n∗(t∗) may not be necessarily finite. Our goal is to show that

M(t) 6 0 for all times t ∈ [0, T ). (2.4)

The way to prove (2.4) is to show that for all t ∈ [0, T ), we have M ′(t) ≤
0 in the viscosity sense. Then by a comparison principle or the Gronwall
inequality we deduce (2.4).

Step 1: n∗(t∗) ∈ Z.
Let t∗ ∈ [0, T ) and consider a test function φ such that

{

M(t) 6 φ(t),

M(t∗) = φ(t∗).

Then M ′(t∗) ≤ 0 in the viscosity sense if φ′(t∗) ≤ 0, see [4, Definition 2.2] for
a definition of viscosity solutions.

From (2.2) and (2.3), we have

zn∗(t)(t) 6 M(t) 6 φ(t), zn∗(t∗)(t
∗) = M(t∗) = φ(t∗), (2.5)

thus φ′(t) = d
dt
zn∗(t)(t) at t = t∗, since zn∗(t), φ are sufficiently smooth

(X, Y ∈ C1([0, T ), ℓ∞)).
If φ′(t) = d

dt
zn∗(t)(t) ≤ 0 at t = t∗, then we have M ′(t∗) ≤ 0 in the

viscosity sense. Thus using the Gronwall inequality (which in the viscosity
solutions framework is nothing else but the comparison principle), we deduce

M(t) ≤ M(0).
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But zn(0) = xn(0) − yn(0) ≤ 0 for all n ∈ Z, thus M(t) ≤ M(0) ≤ 0.
Therefore our goal now is to show that indeed d

dt
zn∗(t)(t) 6 0 at t = t∗.

Set n∗ = n∗(t∗), using the Taylor expansion of the function G, we have

dzn∗(t)

dt
=

dxn∗(t)

dt
− dyn∗(t)

dt
= Gn∗(X(t)) −Gn∗(Y (t))

=
∑

m∈Z

∂mGn∗(Θ(t))(xm(t) − ym(t)),

where Θ(t) = αX(t) + (1 − α)Y (t) for some α ∈ (0, 1). Here ∂mGn(X) is to
be understood as

∂mGn(X) :=
dGn(X)

dxm

.

In particular for t = t∗, we obtain

dzn∗(t∗)

dt
= ∂n∗Gn∗(Θ(t∗))zn∗(t∗) +

∑

m∈Z
m 6=n∗

∂mGn∗(Θ(t∗))(xm(t∗) − ym(t∗))

6 ∂n∗Gn∗(Θ(t∗))zn∗(t∗) + zn∗(t∗)
∑

m∈Z
m 6=n∗

∂mGn∗(Θ(t∗))

= zn∗(t∗)
∑

m∈Z

∂mGn∗(Θ(t∗)) = 0.

(2.6)

The inequality in the middle line and the last equality in the above compu-
tations can be justified as follow.

First, we notice that for every m 6= n∗ and by the assumption on mono-
tonicity of the function g, we have

∂mGn∗(Θ(t∗)) = gx(Θm(t) − Θn∗(t),m− n∗)α > 0.

Here gx denotes the partial derivative of g = g(x, y) with respect to the first
variable x.

Second, we can calculate explicitly ∂n∗Gn∗(Θ(t∗)). Namely, by the struc-
ture of the function G, we get

∂n∗Gn∗(Θ(t∗)) = −
∑

m 6=n∗

gx(Θm(t) − Θn∗(t),m− n∗)α.

Summing up all the derivatives of G, we arrive at the last equality of (2.6).
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Step 2: n∗(t∗) = +∞.
Then there exists a subsequence nk such that

M(t∗) = sup
n∈Z

zn(t∗) = lim
k→+∞

znk
(t∗). (2.7)

Let us redefine the sequences up to shift the indices, we have







xk
n(t) = xn+nk

(t) → x∞
n

ykn(t) = yn+nk
(t) → y∞n

zkn(t) = zn+nk
(t) → z∞n = x∞

n − y∞n

∣
∣
∣
∣
∣
∣
∣

as k → +∞.

The convergence of the sequences takes place up to subsequence of k, since
xk
n, ykn and zkn are bounded.

Moreover, we have from (2.7) that

M(t∗) = lim
k→+∞

znk
(t∗) = lim

k→+∞
zk0 (t∗)

= z∞0 (t∗) ≤ sup
n∈Z

z∞n (t∗)

and

M(t∗) = sup
n∈Z

zn(t∗)

≥ zn+nk
(t∗) = zkn(t∗) for all n ∈ Z,

i.e. M(t∗) ≥ z∞n (t∗), and hence M(t∗) ≥ sup
n∈Z

z∞n (t∗).

Therefore,
M(t∗) = z∞0 (t∗) = sup

n∈Z
z∞n (t∗),

and hence n∗ = 0. In addition, we have

z∞n (0) = x∞
n (0) − y∞n (0) ≤ 0.

Thus, applying the result of Step 1 for z∞n (t), we prove the desired result. �

3 Existence and uniqueness of solution

We give, in this section, the proof of Theorem (1.2) which combines the
classical Cauchy-Lipschitz theorem [2, Thm 7.3, p. 184] and the comparison
principle, Lemma 2.1.

Proof of Theorem 1.2. In the proof we argue in several steps.
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Step 0: Properties of the function f .
Consider the function f be defined in (1.4a). Clearly, we have f(·, y) ∈ C∞(R)
and f(±∞, y) = ∓0 for every y ∈ Z\{0} fixed. Moreover, f(·, y) is antisym-

metric and there exists xy =
√

3 −
√

2|y| such that

f(xy, y) = max
x∈R

f(x, y), f(−xy, y) = min
x∈R

f(x, y)

and f(·, y) is non-decreasing over [−xy, xy], see for instance Figure 1.
Moreover, we see that for fixed y ∈ Z\{0}

∣
∣
∣
∣

d

dx
f(x, y)

∣
∣
∣
∣
6

d

dx
f(0, y) =

1

y2
. (3.1)

Hence, f is globally Lipschitz continuous over R with 1
y2

Lipschitz constant
depending on fixed y.

Step 1: Existence of a unique global solution for (1.3).
Let X = (xi)i∈Z, Y = (yi)i∈Z ∈ ℓ∞. Using (3.1), we have

‖F (X) − F (Y )‖ℓ∞ = max
i∈Z

|Fi(X) − Fi(Y )|

= max
i∈Z

∣
∣
∣

∑

j 6=i

f(xj − xi, j − i) − f(yj − yi, j − i)
∣
∣
∣

6 max
i∈Z

∑

j 6=i

|f(xj − xi, j − i) − f(yj − yi, j − i)|

6 max
i∈Z

∑

j 6=i

1

(j − i)2

(

|xj − yj| + |xi − yi|
)

6 4‖X − Y ‖ℓ∞
+∞∑

k=1

1

k2
.

Thus

‖F (X) − F (Y )‖ℓ∞ ≤ 2

3
π2‖X − Y ‖ℓ∞ . (3.2)

Therefore, using the classical Cauchy-Lipschitz theorem [2, Thm 7.3, p. 184],
there exists a unique solution X ∈ C1([0,+∞), ℓ∞) of (1.3).

Step 2: Invariance: X(t) ∈ Ω for every t ≥ 0.
In this step we show that if X(0) = X0 ∈ Ω, then the solution X(t) given in
Step 1 satisfies

X(t) ∈ Ω for every t ≥ 0.
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Step 2.1: Variant system of (1.3).
For y ∈ Z\{0} fixed, define a new function f̃ = f̃(x, y) as follows







f̃(x, y) = f(x, y) for x ∈ [−xy, xy],

f̃(x, y) = f(xy, y) for all x > xy,

f̃(x, y) = f(−xy, y) for all x 6 −xy.

(3.3)

Clearly, f̃ is Lipschitz and non-decreasing with respect to the first variable
over the whole space. Moreover, since d

dx
f(±xy, y) = 0 for fixed y 6= 0, then

f̃ is C1 with respect to the first variable on R.

Then we consider the following system






d

dt
X̃(t) = F̃ (X̃(t)) t > 0,

X̃(0) = X0 ∈ Ω ∩ ℓ∞,
(3.4)

where again X̃(t) = (x̃i(t))i∈Z and F̃ (X̃) = (F̃i(X̃))i∈Z, with

F̃i(X̃(t)) :=
∑

j 6=i

f̃(x̃j − x̃i, j − i). (3.5)

Similarly to Step 1 we show for every X̃ = (x̃i)i∈Z, Ỹ = (ỹi)i∈Z, that

‖F̃ (X̃) − F̃ (Ỹ )‖ℓ∞ ≤ 2

3
π2‖X̃ − Ỹ ‖ℓ∞ .

Therefore, using the classical Cauchy-Lipschitz theorem [2, Thm 7.3, p. 184],
there exists a unique solution X̃ ∈ C1([0,+∞), ℓ∞) of the variant problem
(3.4).

Step 2.2: X̃(t) ∈ Ω for every t ≥ 0.
We have X̃(0) = X0 ∈ Ω, i.e.

−
√

3 − 2
√

2|i− j| 6 x0
i − x0

j 6

√

3 − 2
√

2|i− j|, ∀i, j ∈ Z.

Setting m = i− j, we obtain

xm
i (0) := x0

i−m −
√

3 − 2
√

2|m| 6 x0
i 6 x0

i−m +

√

3 − 2
√

2|m| =: xm
i (0),

for every i,m ∈ Z.
Moreover, from the definition of the function F̃ , see (3.5), it is clear that

the problem (3.4) is invariant by translations. Hence,

Xm =

(

x̃i−m(t) −
√

3 − 2
√

2|m| =: xm
i

)

i∈Z
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and

X
m

=

(

x̃i−m(t) +

√

3 − 2
√

2|m| =: xm
i

)

i∈Z

are two solutions of (3.4) for each m ∈ Z. Now, since f̃ is non-decreasing, we
can apply the comparison principle, Lemma 2.1 (with T = +∞), and deduce
that for every i,m ∈ Z

xm
i (t) 6 x̃i(t) 6 xm

i (t) for t > 0.

Hence, X̃(t) ∈ Ω for all t > 0.

Step 2.3: X̃ solves (1.3).
We have that X̃(t) ∈ Ω for all t > 0. Thus

−xy = −
√

3 − 2
√

2|i− j| 6 x̃i − x̃j 6

√

3 − 2
√

2|i− j| = xy, ∀i, j ∈ Z.

However, f̃(·, i− j)|[−xy,xy ]
= f(·, i− j)|[−xy,xy ]

, hence

F̃ (X̃(t)) = F (X̃(t)) over t > 0.

Therefore, X̃ solves (1.3).

Step 2.4: Conclusion: X(t) ∈ Ω for every t ≥ 0.
Since

X̃(0) = X0 = X(0),

then by the uniqueness of the solution of system (1.3) (See Step 1), we get

X(t) = X̃(t) ∈ Ω for every t ≥ 0.

Thereupon, we have proved that X(t) is the unique global solution of the
problem (1.3)-(1.4).

Step 3: X is periodic.
Assume that X(0) = X0 is N -periodic; i.e. x0

i = x0
i+N for every i ∈ Z. Define

Y = (yi)i∈Z = (xi+N)i∈Z, where we recall that X = (xi)i∈Z. Then X and
Y are two solutions of (1.3) with X(t) , Y (t) ∈ Ω for all t ≥ 0. Moreover,
we have Y (0) = (x0

i+N)i∈Z = X0 (Y (0) ≤ X0 and X0 ≤ Y (0)). Since f is
non-decreasing over Ω, then using the comparison principle (Lemma 2.1 with
T = +∞), we deduce that

Y (t) = X(t) for every t ≥ 0,

i.e xi = xi+N for every t ≥ 0. �
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4 Convergence to flat walls

The aim of this section is to prove that under the periodicity assumption
imposed on the initial data, the solution constructed in Theorem 1.2 con-
verges to a special stationary solution of the problem (1.3). Precisely, in this
section, we prove Theorem 1.3.

Proof of Theorem 1.3.

Step 0: preliminary (reformulation of (1.3)).
Let X = (xi)i∈Z ∈ C1([0,∞),Ω ∩ ℓ∞) be a N -periodic (i.e. xi+N = xi)
solution of (1.3). For i = 1, ..., N we have

d

dt
xi(t) =

∑

j 6=i

f(xj − xi, j − i)

=
N∑

j=1
j 6=i

∑

k∈Z

f(xj+kN − xi, j − i + kN).

Using the periodicity of X (xj+kN = xj), we get that

d

dt
xi(t) =

N∑

j=1
j 6=i

∑

k∈Z

f(xj − xi, j − i + kN).

Hence, we can transform (1.1) into the following equation

d

dt
xi(t) =

N∑

j=1
j 6=i

g(xj − xi, j − i), i = 1, . . . , N, (4.1)

where g(x, y) =
∑

k∈Z

f(x, y + kN). Moreover, since for every y 6= 0, the map

x 7→ f(x, y) is Lipschitz with 1
y2

Lipschitz constant (see Step 0, in the proof

of Theorem 1.2), g(0, y) = f(0, y) = 0 and x ∈ ℓ∞, then

|g(x, y)| =

∣
∣
∣
∣
∣

∑

k∈Z

f(x, y + kN) − f(0, y + kN)

∣
∣
∣
∣
∣
≤

∑

k∈Z

1

(y + kN)2
|x| ≤ M

(4.2)
for some M > 0. Hence, g is uniformly bounded in x.

In order to prove the convergence of the solution, we set

M(t) =
1

2

N∑

i=1

x2
i (t) (4.3)

13



and we argue by steps.

Step 1: M is non-increasing.
Indeed, we have

1

2

d

dt

N∑

i=1

x2
i (t) =

N∑

i=1

N∑

j=1
j 6=i

xi(t) g(xj(t) − xi(t), j − i)

=
N∑

i=1

N∑

j=i+1

xi(t) g(xj(t) − xi(t), j − i) +
N∑

i=1

i−1∑

j=1

xi(t) g(xj(t) − xi(t), j − i)

=
N∑

i=1

N−i∑

k=1

xi(t) g(xi+k(t) − xi(t), k) −
N∑

j=1

N∑

i=j+1

xi(t) g(xi(t) − xj(t), i− j)

=
N∑

i=1

N−i∑

k=1

xi(t) g(xi+k(t) − xi(t), k) −
N∑

j=1

N−j
∑

k=1

xj+k(t) g(xj+k(t) − xj(t), k)

=
N∑

i=1

N−i∑

k=1

(xi(t) − xi+k(t)) g(xi+k(t) − xi(t), k) 6 0.

First, let us mention that due to the fact that the function f = f(x, y),
defined by (1.4a) is symmetric in y and antisymmetric in x, the function
g = g(x, y) possesses such property as well. Moreover, as a result of the
boundedness of the function g(·, y) (which comes form the Lipschitz condition
of f(·, y)) and the fact that only finite sums are considered, we are allowed to
use Fubini’s theorem and change the order of summation. These facts justify
the third equality.

The inequality is obtained by the fact that each single expression under
the sums is nonpositive due to the definitions of the functions g, f and the
fact that X(t) ∈ Ω ∩ ℓ∞ for t > 0 (see Remark 1.1).

Finally, we conclude that M(t) → M0 as t → ∞ since M(t) is nonnegative
and non-increasing.

Step 2: limit of X(t) as t → +∞.
Let us define Xn(t) := X(t+n). Then Xn is a solution of (1.3). Since f(x, y) is
Lipschitz with 1

y2
Lipschitz constant (independent if x), hence d

dt
Xn(t) ∈ ℓ∞

uniformly in n. Using Ascoli’s theorem, up to some subsequence, Xn(t) →
X∞(t) as n → ∞ for every t > 0. Thus, we can write

M0 = lim
n→∞

M(t + n) = lim
n→∞

1

2

N∑

i=1

(
xn
i (t)

)2
=

1

2

N∑

i=1

(
x∞
i (t)

)2
. (4.4)
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Since Xn is a solution of (4.1) and Xn(t) ∈ Ω ∩ ℓ∞, then the limit X∞

is a classical solution and X∞(t) ∈ Ω ∩ ℓ∞. Therefore, repeating all the
computations performed in Step 1 for X∞, we arrive at

0 =
d

dt
M0 =

d

dt

1

2

N∑

i=1

(
x∞
i (t)

)2

=
N∑

i=1

N−i∑

k=1

(x∞
i (t) − x∞

i+k(t)) g(x∞
i+k(t) − x∞

i (t), k).

Since the solution lives in Ω, g(x∞
i+k(t) − x∞

i (t), k) and x∞
i+k(t) − x∞

i (t) have
the same sign (see Remark 1.1), then

(x∞
i (t) − x∞

i+k(t)) g(x∞
i+k(t) − x∞

i (t), k) ≤ 0

for all i ∈ {1, .., N − 1} and k ∈ {1, ..., N − i}. Thus, either

x∞
i (t) = x∞

j (t) for all i = 1, . . . , N − 1 and j = i + 1, . . . , N, (4.5)

or we have g = 0. However, since X∞(t) ∈ Ω ∩ ℓ∞, then g = 0 immediately
implies (4.5) (see (1.4a) and the definition of g).

Therefore, we get from (4.5) that

x∞
1 (t) = x∞

2 (t) = · · · = x∞
N (t).

Next, we plug X∞ into the equation (4.1) to see that indeed d
dt
x∞
i (t) = 0

(since g(0, y) = 0); thus, x∞
i (t) = x∞

i (0) = c, for all i = 1, . . . , N , and for
some c ∈ R. Moreover, we can write the explicit value of M0, i.e.

M0 =
1

2
Nc2.

Now take another convergent subsequence, Xm(t) of X(t) such that Xm(t) →
X

∞
(t) as m → ∞. Repeating all the calculations performed for the sequence

Xn, we may show that x∞
i (t) = x∞

i (0) = b for all i = 1, . . . , N , t > 0 and
some b ∈ R. As before we conclude that

M0 =
1

2
Nb2.

Thus, b = c, because we may assume, without loss of generality, that b, c > 0,
since the problem (4.1) is invariant by translations and the initial data can
be shifted to be positive.

This implies that the accumulation point of X is unique. Hence, xi(t) → c

as t → ∞ for all i = 1, . . . , N .
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Step 3: identification of the limit.
In this step we prove that the barycenter is preserved in time, i.e.

N∑

i=1

xi(t) =
N∑

i=1

xi(0) for all t > 0,

which allows us to determine the value of the constant c.

We have
d

dt

N∑

i=1

xi(t) =
N∑

i=1

N∑

j=1
j 6=i

g(xj − xi, j − i).

But
N∑

i=1

N∑

j=1
j 6=i

g(xj − xi, j − i) =
N∑

j=1

N∑

i=1
i 6=j

g(xj − xi, j − i) =
N∑

i=1

N∑

j=1
j 6=i

g(xi − xj, i− j),

where we have changed the order of summation in the first equality (this
is possible because g is a bounded function), and we replaced i and j in
the second equality. Moreover, since g(x, y) is antisymmetric w.r.t. x and
symmetric w.r.t. y (because f antisymmetric and symmetric w.r.t. x and y

respectively), then we get

N∑

i=1

N∑

j=1
j 6=i

g(xj−xi, j− i) =
N∑

i=1

N∑

j=1
j 6=i

g(xi−xj , i− j) = −
N∑

i=1

N∑

j=1
j 6=i

g(xj−xi, j− i).

Therefore, we deduce that

d

dt

N∑

i=1

xi(t) =
N∑

i=1

N∑

j=1
j 6=i

g(xj − xi, j − i) = 0,

and hence
N∑

i=1

xi(t) =
N∑

i=1

xi(0).

Finally, since x(t) → c as t → ∞, we conclude that

N∑

i=1

xi(0) = lim
t→∞

N∑

i=1

xi(t) = Nc,

i.e.

c =
1

N

N∑

i=1

xi(0) (4.6)

thus, we have proved the desired result. �.
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5 From micro to macro model

We show in this section the ℓP contraction estimate of periodic solutions of
(1.3)-(1.4), namely we give the proof of Proposition 1.4.

Proof of Proposition 1.4. Let X = (xi)i∈Z and Y = (yi)i∈Z be a N -periodic
(i.e. xi+N = xi, yi+N = yi) solution of (1.3) of the class C1([0,∞),Ω ∩ ℓ∞).
We proceed as in Section 4, Step 1. First, without loss of generality, we may
transform (1.1) into the following equation

d

dt
xi(t) =

N∑

j=1
j 6=i

g(xj − xi, j − i), i = 1, . . . , N,

with the function g(x, y) =
∑

k∈Z

f(x, y + kN) uniformly bounded in x. Thus,

we calculate

d

dt

1

p

∥
∥X(t) − Y (t)

∥
∥
p

p
=

N∑

i=1

∣
∣xi(t) − yi(t)

∣
∣
p−2(

xi(t) − yi(t)
)(
ẋi(t) − ẏi(t)

)
=

N∑

i=1

N∑

j=1
j 6=i

∣
∣xi(t)−yi(t)

∣
∣
p−2(

xi(t)−yi(t)
)(
g(xj(t)−xi(t), j−i)−g(yj(t)−yi(t), j−i)

)

=
N∑

i=1

N−i∑

k=1

(
∣
∣xi(t) − yi(t)

∣
∣
p−2(

xi(t) − yi(t)
)
−
∣
∣xi+k(t) − yi+k(t)

∣
∣
p−2(

xi+k(t) − yi+k(t)
)
)

︸ ︷︷ ︸

I1

·
(

g(xi+k(t) − xi(t), k) − g(yi+k(t) − yi(t), k)

)

︸ ︷︷ ︸

I2

6 0.

Let us mention here that due to the fact that the function f = f(x, y),
defined by (1.4a), is symmetric in y and antisymmetric in x, the function
g = g(x, y) possesses such property as well. Moreover, as a result of the
boundedness of the function g(·, y) (which comes form the Lipschitz condition
of f(·, y)) and the fact that only finite sums are considered, we are allowed to
use Fubini’s theorem and change the order of summation. These facts justify
the third equality.

Furthermore, we notice that for fixed y ∈ Z the function f(x, y) is nonde-

creasing in the variable x provided |x| 6
√

3 − 2
√

2|y|. Hence, by definition
the function g(x, y) is also nondecreasing in the variable x under the same
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condition on x. Suppose now that I2 6 0. This immediately implies, in view
of the above information, that xi+k(t)−yi+k(t) 6 xi(t)−yi(t); hence, I1 > 0.
On the contrary, if I2 > 0, then I1 6 0. Hence, we conclude

d

dt

1

p
‖X(t) − Y (t)‖pp 6 0,

which completes the proof. �

Corollary 5.1 (lp contraction for a rescaling of xi). Let p > 2. Fix ε > 0
and let us define new variables in the following way

xi(t) =
1

ε
uε(εi, εt), ∀i ∈ Z.

Then the above theorem reads as

‖uε(·, τ) − vε(·, τ)‖p 6 ‖uε
0 − vε0‖p.

6 Numerical experiments

Here we present results of some numerical experiments to confirm the results
obtained in Theorem 1.3. We construct an adaptive scheme as follows. Let
N > 0 denote the total number of interacting particles. Let ∆t denote a
time-step and let us define an approximate solution of (1.3) by a solution
Xn = (Xn

1 , . . . , X
n
N ) of the following forward Euler scheme

Xn+1 = Xn + ∆tF (Xn)
def
= S(Xn). (6.1)

Lemma 6.1 (Monotonicity of the scheme). The scheme derived in (6.1) is
monotone if and only if the time-step satisfies ∆t 6 3

π2 and the initial data
X0 ∈ Ω defined in (1.5).

Proof. To prove the monotonicity it is enough to show that ∂jSi(X
n) > 0 for

all i, j = 1, . . . , N . First, we notice that due to Lemma 2.1 we get Xn ∈ Ω
for all n ∈ N.

Step 1: j 6= i.
∂jFi(X

n) = ∆t fx(Xn
j −Xn

i , j − i) > 0, (6.2)

since considered function f is nondecreasing with respect to the first variable.
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Step 2: j = i.

∂iFi(X
n) = 1 − ∆t

N∑

j=1
j 6=i

fx(Xn
j −Xn

i , j − i)

> 1 − ∆t

N∑

j=1
j 6=i

fx(0, j − i)

> 1 − ∆t
∑

j∈Z
j 6=i

1

(j − i)2

> 1 − ∆t
π2

3
> 0.

To justify the first inequality we use the properties of the function f described
in the proof of Theorem 1.2 Step 1. Moreover, we extend the finite sum by
its infinite version and we conclude its nonnegativity. �
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Figure 3: Evolution of dislocations of (1.3) with initial data X0 ∈ Ω.

In our numerical experiments we assume the initial data X0 ∈ Ω ∩ ℓ∞

which is denoted by ”x” on the left-upper plot in Figure 3. Furthermore, in
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every picture, by ”*” we emphasised what the limit solution (by Theorem
1.3 the limit solution is at the barycenter of initial data) is. In Figure 3 we
observe the evolution of dislocations which eventually converge.

However, we may also consider the initial data X0 ∈ Ω where

Ω =

{

X :

√

3 − 2
√

2 |i− j| < |xi − xj| < |i− j|
}

, (6.3)

see the blue region in Figure 2. It is worth noticing that for such initial data,
the force acting on dislocations is still attractive; however, we do not have a
comparison principle and we cannot guarantee that solution stays in Ω, but
we can perform numerical experiments to see what happen with dislocations.

−40 −30 −20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

−40 −30 −20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

−40 −30 −20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

−40 −30 −20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

Figure 4: Evolution of dislocations of (1.3) with initial data X0 ∈ Ω. Each
simulation starts with different initial data.

In the above pictures we can see that even small perturbation of initial
data produces completely different solutions. The only one (right-lower plot
in Figure 4) converged to a flat wall, while the remainder does not.
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