
HAL Id: hal-00951516
https://hal.science/hal-00951516v1

Submitted on 7 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Immersed-boundary methods for general
finite-difference and finite-volume Navier-Stokes solvers

Alfredo Pinelli, I. Z. Naqavi, Ugo Piomelli, Julien Favier

To cite this version:
Alfredo Pinelli, I. Z. Naqavi, Ugo Piomelli, Julien Favier. Immersed-boundary methods for general
finite-difference and finite-volume Navier-Stokes solvers. Journal of Computational Physics, 2010, 229
(24), pp.9073-9091. �10.1016/j.jcp.2010.08.021�. �hal-00951516�

https://hal.science/hal-00951516v1
https://hal.archives-ouvertes.fr

Immersed-Boundary Methods for General Finite-Difference

and Finite-Volume Navier-Stokes Solvers

A. Pinellia,∗, I. Naqavib, U. Piomellib, J. Faviera

aCIEMAT, Unidad de Modelización y Simulación Numérica, 28040 Madrid, Spain
bDept. of Mechanical and Materials Engineering, Queen’s University, Kingston (Ontario) K7L 3N6,

Canada

Abstract

We present an immersed-boundary algorithm for incompressible flows with complex
boundaries, suitable for Cartesian or curvilinear grid system. The key stages of any
immersed-boundary technique are the interpolation of a velocity field given on a mesh
onto a general boundary (a line in 2D, a surface in 3D), and the spreading of a force
field from the immersed boundary to the neighboring mesh points, to enforce the de-
sired boundary conditions on the immersed-boundary points. We propose a technique
that uses the Reproducing Kernel Particle Method [Liu et al., Int. J. Num. Meth. Fluids
20(8) (1995) 1081–1106] for the interpolation and spreading. Unlike other methods pre-
sented in the literature, the one proposed here has the property that the integrals of the
force field and of its moment on the grid are conserved, independent of the grid topology
(uniform or non-uniform, Cartesian or curvilinear). The technique is easy to implement,
and is able to maintain the order of the original underlying spatial discretization. Appli-
cations to two- and three-dimensional flows in Cartesian and non-Cartesian grid system,
with uniform and non-uniform meshes are presented.

1. Introduction

Over the last few years several authors have turned their attention to immersed-
boundary methods (IBMs) for their ability to handle moving or deforming bodies with
complex surface geometry embedded in a fluid flow. The key feature of IBMs is the
fact that the Eulerian grid is not required to conform to the immersed-body geometry,
since the no-slip boundary conditions are enforced on the body surface by appropriate
boundary forces.

Peskin [1] presented the first application of this method. The flow motion was solved
using a uniform mesh (referred to as the Eulerian grid in the following). The immersed
surface was represented by a set of Lagrangian markers, and the boundary forces took
the form of singular functions along the immersed surface in the continuous equations.

∗Corresponding author
Email addresses: a.pinelli@ciemat.es (A. Pinelli), ugo@me.queensu.ca (U. Piomelli),

julien.favier@ciemat.es (J. Favier)

Preprint submitted to Elsevier July 28, 2010

They were introduced in the discretized equations in conjunction with regularized delta
functions that spread (regularize) the force field over the neighboring Eulerian cells.
Peskin originally used the IBM to simulate blood flow inside a heart with flexible valves,
and the forcing function was computed using Hooke’s law [1, 2]. By considering a large
value of the spring stiffness, this method could also be applied to rigid boundaries [3, 4].

Other authors obtain the singular forces by a feed-back mechanism [5, 6, 7, 8, 9]: a
deviation from the local desired value of velocity (or position) generates a force in the
opposite direction, determined by a system of virtual springs and dampers attached to
the Lagrangian markers. Undesirable features of these formulations are the introduction
of additional free parameters and the compromise that must be taken, when dealing with
rigid objects, between severe restrictions on the time step for negligible deformations or
larger time steps accepting mild deformation of the embedded body [3, 9].

To avoid the drawbacks of the original IBM formulation for rigid objects, Fadlun et
al. [10] introduced a direct formulation of the force term. The direct forcing modifies
the discretized momentum equation so that the interpolated velocity at the Lagrangian
points takes the desired values. Further developments of this technique were proposed,
among others, by Kim et al. [11], Yang and Balaras [12], and Taira and Colonius [13].
Kim et al. [11] used an explicit variant of the direct forcing method that maintains the
matrix structure of a standard finite-difference method. Yang and Balaras [12] developed
a multi-dimensional interpolation for complex boundary shapes. Taira and Colonius [13]
proposed the immersed-boundary projection method, in which the pressure and singular
forces are treated together as Lagrangian multipliers in the framework of a projection
method.

Fadlun et al. [10] present an example of a flow involving moving boundaries; during
the relative motion, however, the boundary force is not smooth. This was recognized
by Uhlmann [14], who showed that the interpolation procedure used to relate the force
at fixed grid nodes and the arbitrarily located boundaries, in simulations with moving
bodies, can lead to undesirable force oscillations. This observation led to the formulation
of an alternative direct-forcing scheme in which the force is first computed on the La-
grangian markers, then spread onto the neighboring Eulerian nodes. Both interpolation
and spreading use the same discrete Dirac kernel. The algorithm conveys very smooth
hydrodynamic forces while preserving the global order of the spatial scheme. Recently,
Vanella and Balaras [15] have presented an extension of the aforementioned method that
yields sharp boundary resolution similar to Eulerian direct-forcing schemes and boundary
conforming methods, while keeping the simplicity of the original technique.

In most applications of IBMs the underlying Eulerian grid is Cartesian. Curvilin-
ear grids have been used in fewer cases [16, 17]. The common argument against using
immersed-boundary methods with curvilinear grids is the increased cost of curvilinear
codes, compared to Cartesian ones. However, when the grid points must be clustered
close to solid boundaries that are not aligned with grid lines, Cartesian grids may be
suboptimal, as the refinement is extended to regions of the flow in which it is not needed,
or even to the solid region. Furthermore, in wall-bounded turbulent flows it is gener-
ally desirable to use grid cells that are longer in the flow direction than in the other two.
Here, the use of meshes in which the grid lines are nearly aligned with the streamlines can
lead to very significant savings [17]. Therefore, one of the principal goals of the present
contribution is to develop a method that can be applied to both Cartesian (uniform or
non-uniform) and curvilinear Eulerian meshes.

2

One of the reasons that has limited the use of the IBM techniques to Cartesian grids
is due to the discrete delta function, which cannot be trivially extended to more complex
grid systems without losing some fundamental properties of the regularized force field.
In particular, consider the integral conservation of the force (spread onto the Eulerian
grid) and of its first moment:

∑

i,j,k

f(xi,j,k)∆vi,j,k =
∑

m

F(Xm) ∆Vm, (1)

∑

i,j,k

xi,j,k × f(xi,j,k)∆vi,j,k =
∑

m

Xm × F(Xm)∆Vm. (2)

In (1-2), xi,j,k are the Eulerian grid nodes (over which the force has been spread), and
Xm are the Lagrangian markers; ∆vi,j,k is the volume of the (i, j, k) Eulerian cell and
∆Vm the volume defined about the m-th Lagrangian marker. The sums are the discrete
counterparts of three-dimensional integrals. These properties ensure that the forces and
moments exerted by the fluid on the solid can be calculated correctly by integrating the
force field.

Equations (1-2) are verified if the regularized delta function δh(s) has the following
properties [18]:

∑

i,j,k

δh(xi,j,k − X)∆vi,j,k = 1 (3)

∑

i,j,k

(xi,j,k − X)δh(xi,j,k − X)∆vi,j,k = 0. (4)

Reproducing conditions (3-4) are easily met on an uniform Cartesian grid by a number
of regularized delta functions available in the literature. It will be shown later that
correction terms must be introduced in the delta approximant if (1-2) are to be satisfied
on an arbitrary underlying mesh.

In this paper we will follow the ideas originated by Liu et al. [19] to build locally
regularized functions that verify any number of integral conditions. These local ap-
proximants will be used both for interpolating the velocity field and for spreading the
singular force field in the framework of a pressure-correction scheme for the incompress-
ible Navier-Stokes equations. We will also demonstrate that the method conserves the
order of accuracy of the spatial discretization both in Cartesian (uniform or non-uniform)
meshes and in curvilinear ones. It is worth mentioning that, when higher order repro-
ducing conditions are required, the approximant tends toward an exact delta function,
and the resolution of the boundary becomes sharper.

The idea of using modified window functions to extend the immersed-boundary
method to a general grid system is not new. Indeed it was originally proposed by Zhang
et al. [25] in the context of the finite element method (i.e., the immersed finite ele-
ment method). Later on, it was extended to a number of applications by several authors
[24, 26, 27]. Here we formulate the method in a finite difference/ finite volume con-
text, and most importantly, we clarify the necessary conditions to be met for assembling
discrete interpolation and spreading operators that are genuinely dual.

In the following, we will first present the mathematical formulation of the proposed
immersed-boundary method and describe the numerical model. We then present the

3

results of the calculation of two- and three-dimensional flows, using both Cartesian (uni-
form and non-uniform) and curvilinear grids. We will finally draw some conclusions and
make recommendations for future work.

2. Mathematical formulation

2.1. The time advancement method

We start by introducing the general framework of a time-discretized formulation based
on a fractional step method [20, 21] for the incompressible Navier-Stokes equations.
We focus on the pressure-correction method [22] with the only aim of introducing the
general idea of the proposed immersed-boundary formulation. More details on the actual
numerical implementation, including the temporal and spatial discretizations used for
each numerical experiment will be given later.

The standard sequence used to solve the incompressible Navier-Stokes equation by a
fractional step method is:

u∗ − un

∆t
= −Nl(u

n,un−1) − Gφn−1 +
1

Re
L(u∗,un) (5)

Lφ =
1

∆t
Du∗ (6)

un+1 = u∗ − ∆tGφn, (7)

where u∗ is the predicted (non-solenoidal) velocity field, un is the divergence-free velocity
field at time-step n, ∆t is the time step, Nl is the discrete non-linear operator, G and
D are, respectively, the discrete gradient and divergence operators, L is the discrete
Laplacian, φ is a projection variable (related to the pressure field). The operators include
coefficients that are specific to the selected time scheme. Note that we assume explicit
integration of the advective term, and either explicit or implicit integration of the viscous
diffusion, following the technique most often used for the direct or large-eddy simulation
of turbulent flows.

Following Uhlmann [14], the sequence above is modified to impose the desired bound-
ary values on the embedded geometry. The time advancement of the momentum equa-
tions is carried out in two stages: First, a fully explicit step analogous to (5) is performed,
without any constraint on the embedded boundary:

u∗ = un − ∆t

[
Nl(u

n,un−1) − Gφn−1 +
1

Re
L(un)

]
(8)

The velocity field obtained from (8) is then interpolated onto the embedded geometry
Γ, which is discretized through a number of Lagrangian marker points with coordinates
Xk:

U∗(Xk, tn) = I(u∗); (9)

The form of interpolation operator I will be specified later.
The values of U∗(Xk, tn) are used to determine a distribution of singular forces along

Γ, that restore the prescribed boundary values UΓ(Xk, tn) on Γ:

F∗(Xk, tn) =
UΓ(Xk, tn) − U∗(Xk, tn)

∆t
. (10)

4

The singular force field defined over Γ is then transformed by a spreading operator C into
a volume force-field defined on the mesh points xi,j,k:

f∗(xi,j,k, tn) = C [F∗(Xk, tn)] . (11)

The regularized force given by (11) is now used as (5) is solved again (in explicit or
implicit form):

u∗ − un

∆t
= −Nl(u

n,un−1) − Gφn−1 +
1

Re
L(u∗,un) + f∗ (12)

Finally, the algorithm completes the time step, with the usual solution of the pressure
Poisson equation and the consequent projection step (7).

In the next Section we will discuss the key points of the algorithm presented above.
They are the definitions of the interpolation operator I, and of the convolution kernel
involved in C.

2.2. Interpolation and Convolution: Dirac’s delta approximants

We propose to use the Reproducing Kernel Particle Method (RKPM) to define in-
terpolation and spreading operators that satisfy the conservation properties (1-2). We
begin this subsection by outlining the aspects of the method that have a direct bearing on
the definition of the interpolation and spreading operators that we propose. A complete
review and analysis of the technique can be found in [19, 23], while applications of the
RKPM embedded domain technique in a finite element framework are illustrated in [25].

The approximation fa(x) of the value of a given smooth function f(s) at point x ∈ Ω
can be expressed as a kernel approximation:

fa(x) =

∫

Ω

wd(x − s)f(s)ds (13)

where wd is the kernel (or weighting) function, and the subscript indicates that the kernel
depends on an additional parameter d, the dilation parameter. The non-negative kernel
function is assumed to be of compact support (i.e., nonzero in a subdomain ΩI of Ω
and zero outside in Ω\ΩI). The dilation parameter d determines the dimensions of the
support ΩI . Note that if the kernel function is the delta function, fa(x) = f(x) and the
function is reproduced exactly.

Roma et al. [18] proposed a discrete approximation of the delta function

wd(r) =

1
6

(
5 − 3|r| −

√
−3(1 − |r|)2 + 1

)
0.5 ≤ |r| ≤ 1.5

1
3

(
1 +

√
−3r2 + 1

)
|r| ≤ 0.5

0 otherwise

(14)

(where r = (x − s)/d) that satisfies the following properties:

1. wd(r) is continuous ∀r ∈ R;

2. wd(r) = 0 if |r| ≥ 1.5;

3.
∑

l wd(r − l) = 1, ∀l ∈ N;

4.
∑

l(r − l)wd(r − l) = 0, ∀r, l;

5

5.
∑

l [wd(r − l)]
2

= 1/2, ∀r, l.

Since the last three properties involve the integers l, the conservation properties (3-4) can
be met by a function interpolated using (13) and (14) only if the nodes are equispaced.

To extend this approach to a non-uniform sequence of nodes, following Liu et al. [23],
we introduce a modified window function

w̃d(x − s) =
n∑

i=0

bi(y, d)(x − s)iwd(x − s), (15)

where the unknown polynomial coefficients bi(y, d) are determined by imposing the re-
producing conditions

m̃0(x) =

∫

Ω

w̃d(x − s) ds = 1 (16)

m̃i(x) =

∫

Ω

(x − s)i w̃d(x − s) ds = 0 (i = 1, ..., N), (17)

which are the continuous equivalent of the third and fourth conditions met by wd(x− s)
on an uniform mesh.

It is interesting to observe that conditions (16-17) imply the exact representation of
the elements of the canonical polynomial base

{
1, x, x2, ...

}
. For i = 0, and 1, in fact

conditions (16) and (17) yield:

∫

Ω

w̃d(x − s) ds = 1 (18)

∫

Ω

s w̃d(x − s) ds = x; (19)

For i = 2, then, we have

x2

∫

Ω

w̃d(x − s) ds +

∫

Ω

s2 w̃d(x − s) ds − 2x

∫

Ω

s w̃d(x − s) ds = 0 (20)

and, therefore,

x2 =

∫

Ω

s2 w̃d(x − s) ds. (21)

Following this procedure it is possible to show, by induction, that the moment conditions
(16-17) are equivalent to the polynomial-reproducing conditions

xi =

∫

Ω

si w̃d(x − s) ds, i = 0, 1, ..., N. (22)

If we insert in (22) the definition of the polynomial correction (15), it is possible to
write the conditions on the modified moments m̃i(x) in terms of the original moments

6

mi(x) =
∫
Ω
(x − s)i wd(x − s) ds = δi0 (where δij is Kronecker’s delta):

m̃0(x) =

∫

Ω

w̃d(x − s) ds =
n∑

i=0

bi(x)mi(x) = 1

m̃1(x) =

∫

Ω

(x − s) w̃d(x − s) ds =

n∑

i=0

bi(x)mi+1(x) = 0

· · · = · · ·

m̃j(x) =

∫

Ω

(x − s)j w̃d(x − s) ds =

n∑

i=0

bi(x)mi+j(x) = 0

· · · = · · ·

m̃N (x) =

∫

Ω

(x − s)N w̃d(x − s) ds =

n∑

i=0

bi(x)mi+N (x) = 0.

which results in a symmetric linear system

m0 m1 · · · mN

· · · · · · · · · · · ·
mj mj+1 · · · mN+j

· · · · · · · · · · · ·
mN mN+1 · · · m2N

b0

·
bj

·
bN

=

1
·
0
·
0

(23)

for the unknown polynomial coefficients bi, i = 0, 1, ..., N .

Modified window functions that verify the reproducing conditions in higher dimen-
sions can be obtained by imposing the exact representation of a complete polynomial
basis. Note that in 1D to ensure the integral conservation of the force and of its mo-
ments, one needs all the linear combinations of {1, x} to be exactly represented; in 2D,
the linear combinations of {1, x, y} and, in 3D, the ones related with {1, x, y, z}. The
exact representation of higher degree polynomials provides a sharper definition of the
boundary [15]. Of course, the exact representation of higher order polynomials should
be also considered if the underlying order of the Eulerian scheme is increased.

In 2D or 3D problems the mother window function can be given as a Cartesian product
of (14) with itself:

wδ,η(x − s, y − t) = wδ(x − s) wη(y − t) (24)

or
wδ,η,σ(x − s, y − t, z − v) = wδ(x − s)wη(y − t) wσ(z − v) (25)

Here, δ, η and σ are again the dilatation parameters in the three coordinate directions.
Next we look for corrected window functions

w̃δ,η(x − s, y − t) =
[
b0 + (x − s)b1 + (y − t)b2 + (x − s)(y − t)b3

+(x − s)2b4 + (y − t)2b5

]
wδ,η(x − s, y − t) (26)

(where bi = bi(δ, η, x, y) for i = 0, ..., 5) in 2D, and similarly,

w̃δ,η,σ(x − s, y − t, z − v) =
[
b0 + (x − s)b1 + (y − t)b2 + (z − v)b3 + (x − s)(y − t)b4

+(y − t)(z − v)b5 + (z − v)(x − s)b6 + (x − s)2b7

+(y − t)2b8 + (z − v)2b9

]
wδ,η,σ(x − s, y − t, z − v) (27)

7

in 3D (where bi = bi(δ, η, σ, x, y, z) and i = 0, . . . , 10). By imposing the exact representa-

tion of the members of the polynomial basis, a symmetric linear system M2D/3D
~b = ~e1

is obtained. Where

M2D =

m0,0 m1,0 m0,1 m1,1 m2,0 m0,2
m1,0 m2,0 m1,1 m2,1 m3,0 m0,2
m0,1 m1,1 m0,2 m1,2 m2,1 m0,3
m1,1 m2,1 m1,2 m2,2 m3,1 m2,3
m2,0 m3,0 m2,1 m3,1 m4,0 m2,2
m0,2 m1,2 m0,3 m1,3 m2,2 m0,4

 (28)

and

M3D =

m0,0,0 m1,0,0 m0,1,0 m0,0,1 m1,1,0 m0,1,1 m1,0,1 m2,0,0 m0,2,0 m0,0,2
m1,0,0 m2,0,0 m1,1,0 m1,0,1 m2,1,0 m1,1,1 m2,0,1 m3,0,0 m1,2,0 m1,0,2
m0,1,0 m1,1,0 m0,2,0 m0,1,1 m1,2,0 m0,2,1 m1,1,1 m2,1,0 m0,3,0 m0,1,2
m0,0,1 m1,0,1 m0,1,1 m0,0,2 m1,1,1 m0,1,2 m1,0,2 m2,0,1 m0,2,1 m0,0,3
m1,1,0 m2,1,0 m1,2,0 m1,1,1 m2,2,0 m1,2,1 m2,1,1 m3,1,0 m1,3,0 m1,1,2
m0,1,1 m1,1,1 m0,2,1 m0,1,2 m1,2,1 m0,2,2 m1,1,2 m2,1,1 m0,3,1 m0,1,3
m1,0,1 m2,0,1 m1,1,1 m1,0,2 m2,1,1 m1,1,2 m2,0,2 m3,0,1 m1,2,1 m1,0,3
m2,0,0 m3,0,0 m2,1,0 m2,0,1 m3,1,0 m2,1,1 m3,0,1 m4,0,0 m2,2,0 m2,0,2
m0,2,0 m1,2,0 m0,3,0 m0,2,1 m1,3,0 m0,3,1 m1,2,1 m2,2,0 m0,4,0 m0,2,2
m0,0,2 m1,0,2 m0,1,2 m0,0,3 m1,1,2 m0,1,3 m1,0,3 m2,0,2 m0,2,2 m0,0,4

(29)

Here, ~b is the array of unkown polynomial coefficients and ~e1 is the first unit vector of
the canonical basis in R

6 in 2D (R
10 in 3D). The elements of the matrices are:

mi,j =

∫

ΩI

(x − s)i(y − t)j wδ,η(x − s, y − t) ds dt (30)

in 2D, and

mi,j,k =

∫

ΩI

(x − s)i(y − t)j(z − v)k wδ,η,σ(x − s, y − t, z − v) ds dt dv (31)

in 3D. The choice of the support ΩI and the solution procedure required to ensure that
the system (23) is not singular will be described in the following Subsection.

2.3. Interpolation and convolution: discrete approach

We now discuss the implementation of the IB technique based on RKPM in a dis-
crete, generalized-coordinate finite-difference or finite-volume code. We limit ourselves
to the 2D case with a second-order correction polynomial, since the 3D extension is
straightforward.

First, the embedded-boundary curve must be discretized into a number of nodes
XI , I = 1, . . . , Ne. Around each node XI we define a rectangular cage ΩI that contains
at least three nodes of the underlying mesh in each direction, while at the same time
minimizing the number of grid nodes contained in the cage. The cage and underlying
mesh are sketched in Figure 1. Following the definition (14), the edges of the rectangle
measure 3δ in x and 3η in y (recall that δ and η are the dilation parameters in the
coordinate directions). Including at least three nodes in each direction in the cage is
required to avoid a singular moment matrix when considering second-order polynomials
for the correction of the original window function.

To determine the dimensions of the rectangular support centred in XI , first we look
for the grid node closest to XI , xı̂,̂ = (x̂ı,̂, ŷı,̂); next, we consider (in a structured mesh)

8

Figure 1: Definition of the support cage. The dashed line is the embedded curve and the dashed rectangle
is the support cage ΩI (centered about XI). • Lagrangian markers on the embedded curve, grid points,

grid points within the support.

the set of nodes neighboring xı̂,̂, NI = {xı̂+k,̂+l}, for k and l = −1, 0, 1; we then evaluate
h±

x and h±
y as:

h+
x (XI) = max {|xi,j − xi−1,j | : xi,j , xi−1,j ∈ NI} ,

h−
x (XI) = min {|xi,j − xi−1,j | : xi,j , xi−1,j ∈ NI} ,

h+
y (XI) = max {|yi,j − yi,j−1| : yi,j , yi,j−1 ∈ NI} ,

h−
y (XI) = min {|yi,j − yi,j−1| : yi,j , yi,j−1 ∈ NI} .

(32)

Based on these values, we define the length of the edges of the rectangle (3δI and 3ηI)
through the local dilation factors:

δI =

(
5

6
h+

x (XI) +
1

6
h−

x (XI) + ǫx(XI)

)
(33)

ηI =

(
5

6
h+

y (XI) +
1

6
h−

y (XI) + ǫy(XI)

)
(34)

where ǫx(XI) and ǫy(XI) are small fractions of the local mesh spacing, and are added
to avoid the support boundary touching some of the support nodes (to be defined later);
in this case the window function would be zero at those nodes, making the discretized
moment matrix singular.

Finally, a set of mesh nodes that fall within the cage is sought:

SI =

{
xi,j : |x̂ı,̂ − xi,j | <

3

2
δI and |ŷı,̂ − yi,j | <

3

2
ηI

}
. (35)

9

We have verified that with this particular choice, when the underlying mesh is reasonably
smooth, the set of nodes within the support is at least nine almost everywhere (27 in
3D).

The elements of the moment matrix (30) must be evaluated numerically to assemble
the local window function centered in XI . We approximate the entries in the moment
matrix relative to node XI = (XI , YI) using the mid-point quadrature rule:

mI
i,j =

∑

k,l∈SI

(xk,l − XI)
i(yk,l − YI)

j wδI ,ηI
(xk,l − XI , yk,l − YI) ∆Ak,l, (36)

where ∆Ak,l is the area of the cell centered at xk,l. The extension of such an approxima-
tion to the 3D case (31) is trivial. Once the discrete moment matrix is assembled for each
Lagrangian node XI , the coefficients of the correction polynomials are found by solving,
at each Lagrangian point, the symmetric linear system: M

I~b I = ~e1, for I = 1, ..., Ne.
M

I are the discrete equivalent of (28) or (29) (i.e., 6× 6 in a 2D case and 10× 10 in 3D,
with a second-order correction polynomial).

Due to the very low values that the window function may take at the nodes close
to the boundary of the support cage, the moment matrix may become ill-conditioned.
This problem can be avoided by rescaling the linear system, solving the equivalent one
H

I
M

I(HI)−1 ~bI = ~e1, where

H
I = diag

(
1,

1

δI
,

1

ηI
,

1

δIηI
,

1

δ2
I

,
1

η2
I

)
(37)

(the 3D form of H
I is a trivial extension of the one above) in two stages:

H
I
M

I~c I = ~e1, and H
I~c I = ~bI . (38)

The coefficient matrix of the first linear system can be equivalently obtained by nor-
malizing the distances (xk,l − XI) and (yk,l − YI) appearing in (36) with the dilation
parameters (δI and ηI). The matrix product that follows in (38) is needed to undo the
scaling.

The methodology developed so far allows the definition of a localized window function
w̃δI ,ηI

(x − XI) to be used in the convolution integrals symbolically introduced in (9)
and (11). In particular, given a component of the velocity field ui(x, y) known at the
mesh nodes xk,l ∈ SI , the interpolated value at node XI on the embedded line can be
approximated by:

Ui(XI) = I(ui) =
∑

k,l∈SI

ui(xl,k) w̃δI ,ηI
(xk,l − XI , yk,l − YI) ∆Ak,l, (39)

having used the same quadrature rule as in (36). Once the force component Fi(XI)
is found from (10), the distribution of the singular forces over the mesh nodes can be
obtained using a discrete counterpart of (11) as convolution operator. This operator can
be determined by using a quadrature formula over a strip surrounding Γ:

fi(xk,l) = C(Fi) =

Ne∑

I=1

Fi(XI) w̃δI ,ηI
(xk,l − XI , yk,l − YI) εI ∆sI (40)

10

where ∆sI is length of the arc joining XI+1/2 to XI−1/2, and εI is a characteristic
strip-width related to the local dilation coefficients of the window function w̃δI ,ηI

.
To determine the correct value of εI we start by considering the value of the force on

the markers obtained by interpolation from the nodes of the underlying grid:

Fi(XI) =
∑

k,l∈SI

fi(xl,k) w̃δI ,ηI
(xk,l − XI , yk,l − YI) ∆Ak,l (41)

Next we replace the values of fi(xl,k) with those obtained from the spreading step (40):

Fi(XI) =

[
∑

k,l∈SI

∆Ak,l w̃δI ,ηI
(xk,l −XI)

]
×

[
Ne∑

K=1

Fi(XK) w̃δK ,ηK
(xk,l −XK) εK ∆sK

]
.

(42)
Rearranging (42) the following conditions are obtained:

Fi(XI) =

Ne∑

K=1

aI,K εK Fi(XK), I = 1, ..., Ne (43)

where aI,K is the (discrete) integral of the product of the Ith and Kth window functions
over the support of the former one multiplied by ∆sK :

aI,K = ∆sK

∑

k,l∈SI

w̃δI ,ηI
(xk,l − XI) w̃δK ,ηK

(xk,l − XK) ∆Ak,l (44)

In matrix notation, the system (43) can be written as:

[A diag(ε1, . . . , εNe
)] ~Fi = ~Fi; (45)

By requiring that the local width εi is independent of the actual force distribution ~Fi,
the condition

det [A diag(ε1, . . . , εNe
) − I] = 0 (46)

(were I is the identity matrix) is obtained. The array ~ε that verifies the constraint (46)
can be found by solving the linear system:

A ~ε = ~1 (47)

with ~1 = (1, 1, . . . , 1)T .
It is worth noting that, by virtue of (41) and (44), aI,K/∆sK can be interpreted as

the value of w̃δK ,ηK
(x − XK) evaluated at x = XI . Therefore, each Ith equation in

(47) is a condition imposing that the sum of all the K window functions evaluated at
node XI , weighted by εK∆sK , is one. In other words, the weighted window functions
εK ∆sK w̃δK ,ηK

(x − XK) used to carry out the spreading step, must satisfy a partition-
of-unity condition [28].

The conditioning of matrix A depends on the ratios between the distances of the
Lagrangian nodes ∆sK and the dilation factors δI and ηI , or equivalently the ratio
between ∆sK and the local Eulerian grid size. To determine an optimal criterion for the
selection of the number of Lagrangian nodes to be used to discretize an embedded contour

11

Ne ∆s/∆x min(λ) max(λ) ||error||∞ 〈ε〉 rms(ε)

105 1.1818 1.48 9.85 0.0131 0.103 0.103

115 1.0791 0.714 9.83 0.0131 0.103 0.103

125 0.9921 0.0648 9.81 0.0175 0.102 0.103

135 0.9209 7.85×10−3 9.80 0.0235 0.103 0.116

145 0.8577 2.72×10−3 9.80 0.0349 0.103 0.197

155 0.8024 1.11×10−3 9.81 0.103 0.103 0.401

165 0.7510 4.27×10−4 9.81 0.175 0.104 1.30

175 0.7115 1.61×10−4 9.80 0.313 0.105 2.90

185 0.6719 4.94×10−5 9.80 0.486 0.106 4.46

195 0.6364 1.39×10−5 9.81 1.84 0.119 21.1

Table 1: Spreading and interpolation error for a uniform, 2D Cartesian Eulerian grid covering the surface
[0, 5]× [0, 5] and a circle of unitary radius with center at (2.5, 2.5). The first column contains the number
of Lagrangian markers uniformly distributed along Γ. The second and third columns show the values
of the two extreme eigenvalues of A: note that the condition number (λmax/λmin) grows from 6.67 up
to 7.01 × 105 in the worst case. The fourth column shows the error after the spreading-interpolation
procedure. The last two columns give the average value of the solution of system (47) and its root-mean-
square. As a reference value, the interpolation error (only from Eulerian to Lagrangian mesh) for the
case ∆s/∆x = 0.9873 is approximately 0.0273.

on a given Eulerian mesh we have carried out numerical experiments by considering a
circle Γ embedded in a uniform mesh (with the same spacings in the x and y directions)
and in a non-uniform one. The circle is discretized with equispaced Lagrangian nodes
in the former case and non-equispaced nodes in the latter. We have defined a test
function g(x, y) = sinπx cos πy to be used to measure the error induced by the spreading
operation. We then evaluate the infinity norm of the difference between g(XI , YI) and
gIC(XI , YI), i.e., the values of the test function at the same nodes obtained by first
spreading g(XI , YI) onto the Eulerian mesh and then re-interpolating the discrete values
over Γ using (39):

gIC(XI , Yi) = I {C [g(XI , YI)]} . (48)

Table 1 presents a summary of the results obtained for the case of the circle em-
bedded onto an uniform Cartesian Eulerian mesh. The maximum distance between the
equispaced Lagrangian nodes is small enough that the function can be represented ac-
curately. The error increases when ∆s becomes smaller than the Eulerian mesh spacing.
Furthermore, when the Lagrangian nodes become too close to each other, the solution
of (47) becomes oscillatory (as shown by min(λ) → 0, while max(λ), which depends on
the dimension of the support, remains approximately constant). The deterioration of
the solution observed as the number of Lagrangian nodes is increased depends on the
fact that we are re-interpolating a function that had been sampled on Γ at a higher
resolution, resulting in a Gibbs-like phenomenon. A similar behavior was observed when
considering a non-uniform Cartesian mesh. We conclude that the spacing of Lagrangian
nodes should be approximately equal to the local grid size. If this requirement is satis-
fied, the linear system (47) is well-conditioned and the resulting solution ε(s) turns out
to be smooth and positive at all Lagrangian nodes. Note that the positiveness of ε(s)
is consistent with the interpretation of the discrete spreading (40) as an integral over a
finite stripe.

When the underlying grid spacing is coarser than the Lagrangian spacing between

12

neighboring markers, it is still possible to obtain an acceptable solution for ε(s) either
using a singular-value-decomposition when solving (47) (by filtering our the smallest
singular values, or by solving a regularized version of the given linear system). We will
not discuss further this issue, since the criterion for the distribution of the Lagrangian
markers given above appears sufficient to impose the desired boundary value on the
immersed boundary accurately.

Finally, it is worth noting that the conservation properties (1) and (2) are verified
independently of the value assigned to ~ε, whose role is only to enforce a partition-of-unity
condition. Furthermore, the actual entries in matrix A do not need to be computed
explicitly, since the action of A over a given vector ~ε p is simply a sequence of a spreading
action of the unity function over Γ, followed by an interpolation according to (40) (using
~ε p) and (39), respectively. As shown above, if the Lagrangian spacing is comparable to
the local Eulerian grid size, any Krylov-type iterative method, applied to (47), converges
in few iterations (typically 4-6) without any preconditioning.

2.4. The Navier-Stokes solver

The immersed-boundary method discussed so far has been implemented in a curvilin-
ear finite-volume solver for the incompressible Navier-Stokes equations [29]. The time-
advancement follows the procedure roughly described above in Equations (5–7).

In particular, the equations are discretized on a non-staggered grid system using a
curvilinear finite volume code. The method of Rhie and Chow [30] is used to avoid
pressure oscillations. Both convective and diffusive fluxes are approximated by second-
order central differences. A second-order semi-implicit fractional-step procedure [31]
is used for the temporal discretization. The Crank-Nicolson scheme is used for the
temporal discretization of wall-normal diffusive terms, and the second-order Adams-
Bashforth scheme for all the other terms. Fourier transforms are used to reduce the
three-dimensional Poisson equation into a series of two-dimensional Helmoltz equations
in wavenumber space, which are then solved iteratively using the biconjugate gradient
stabilized (BiCGStab) method. The code is parallelized using the MPI message-passing
library and the domain-decomposition technique, and has been widely tested [29, 32, 33,
34] in simulations of turbulent flows using curvilinear, body-fitted grids.

3. Results

In this section the accuracy, convergence and robustness of the RKPM-based immersed-
boundary method proposed here will be investigated. We consider first the laminar flow
around a circular cylinder; we then examine the flow over a two-dimensional hill to show
the implementation of the scheme on non-uniform and non-orthogonal grids. Then we
implement and test the scheme in a three-dimensional case: the flow around the sphere
is simulated in a range of Reynolds numbers that covers both steady and unsteady cases.
Finally, we consider a case in which the body is moving, by examining the impulsive
start of a two-dimensional flat plate orthogonal to its direction of motion.

3.1. Flow around a circular cylinder

The steady flow around a circular cylinder is considered at two Reynolds numbers
(based on the free-stream velocity U∞ and the cylinder diameter D), ReD = 30 and

13

x

||
u
-u

fi
n
es
t||
2

10
-3

10
-2

10
-1

10
-5

10
-4

u

v

x

x
2

x
||
u
-u

fi
n
es
t||

10
-3

10
-2

10
-1

10
-3

10
-2

10
-1

u

v

x

x
2

Figure 2: Grid convergence study. (a) L2 and (b) L∞ norms of the error.

Figure 3: Definition of different parameters of the wake.

ReD = 185. At the low Reynolds number the flow remains steady, while at ReD = 185
periodic vortex shedding is expected; in this case the results depend critically on the
accurate reproduction of the vorticity field in the vicinity of the cylinder, which, in turn,
depends on a correct prescription of pressure and shear forces at the solid boundary.

The flow around the cylinder is simulated using a domain of dimensions [−9D, 40D]
in the streamwise (x) direction and [−17D, 17D] in the vertical (y) direction; the center
of the cylinder is at (0, 0). The dimensions of the domain are comparable to those used
in other numerical studies [14, 15]. A steady uniform velocity is assigned at the inlet
plane, while at the outlet plane convective boundary condition are specified. Free-slip
conditions are applied on the top and the bottom of the domain.

The grid is uniform near the cylinder, in the region −0.6D ≤ x ≤ D and −D ≤ y ≤ D.
Outside this region, it is stretched with a stretching ratio of less than 1.02. Four different
grids (with ∆x = ∆y = 0.0025D, 0.005D, 0.01D and 0.02D in the uniform region) are
considered with 1260, 629, 316 and 153 uniformly spaced Lagrangian points on the
boundary of the cylinder. The results for the finest grid are considered accurate, and the
L2 and L∞ norms of the error obtained on the coarser grids are calculated and shown in
Figure 2. The results demonstrate the second-order accuracy of the method.

14

Figure 4: Streamlines and vorticity contours for the steady-state flow around a cylinder at ReD = 30.

l/D a/D b/D θ CD

Present 1.70 0.56 0.52 48.05o 1.80
Coutanceau and Bouard [35] 1.55 0.54 0.54 50.00o —
Tritton [36] — — — — 1.74

Table 2: Comparison of wake parameters and drag coefficient for steady-state flow around a cylinder at
ReD = 30 with experimental data.

The simulation results are also compared with the experimental data. The most
important physical feature of this flow is the presence of a recirculating region in the
wake of the cylinder. The important parameters associated with the wake are shown in
Figure 3; l is the length of the wake, a is the distance from the cylinder to the center
of the wake vortex, b is the distance between the centres of the wake vortices, and θ is
the angle of separation measured from x-axis. Another important flow parameter is the
drag coefficient, CD = 2D/ρU2

∞D2 (where D is the drag force). Since the interpolation
and spreading operators conserve the force, the drag force D can be calculated directly
from the summation of the forces at all Lagrangian points:

D =

Ne∑

l=1

F∗(Xl) · e1 ∆sl, (49)

where e1 is the unit vector in the flow direction.
The streamlines and vorticity contours for this flow are shown in Figure 4. The wake

parameters computed from the simulation are in good agreement with the experimental
data, as shown in Table 2. To illustrate the effect of the forcing in the vicinity of the
immersed body, in Figure 5 we show profiles of pressure p and of the u and v velocity
components near the cylinder along three lines: a horizontal one, a vertical one, and
one inclined by 45o from the horizontal (and oriented upstream). Note that the region
from [−0.5, 0.5] along the x and y-directions is within the cylinder. We observe some

15

x

v

-0.55 -0.5 -0.45
-0.01

0

0.01
(b)

x

u

-0.55 -0.5 -0.45

0

0.01

0.02

0.03

0.04
(a)

x

p

-0.55 -0.5 -0.45

0

0.2

0.4

0.6

(c)

y

u

0.45 0.5 0.55

0

0.1

0.2

0.3
(d)

y

v

0.45 0.5 0.55
-0.01

0

0.01

0.02

0.03
(e)

y

p

0.45 0.5 0.55
-0.6

-0.4

-0.2

0

(f)

r

v

0.45 0.5 0.55

0

0.1

0.2
(h)

r

u

0.45 0.5 0.55

0

0.1

0.2
(g)

r

p

0.45 0.5 0.55
-0.03

-0.02

-0.01
(i)

Figure 5: Behavior of u, v, and p near the body. Stagnation point region: (a) u, (b) v, (c) p. Top of the
cylinder: (d) u, (e) v and (f) p. Along a line at 45o from point of stagnation: (g) u, (h) v and (i) p.

16

x

|u
la
g
ra
n
g
ia
n
p
t.
-
u
ex
tr
a
p
o
la
te
d
|

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

x

x
2

Figure 6: Variation of absolute difference between extrapolated velocity and Lagrangian point value with
the grid size.

fluctuations in the velocity component normal to the boundary [u at the stagnation point,
Figure 5(a), and v at the top of the cylinder, Figure 5(e)], while the velocity component
parallel to the boundary goes to zero smoothly. The oscillations, however, are confined to
the three points of the support, where the flow is expected to be unphysical, and are not
corrupting the rest of the flow field. Also, notice that the interpolation of the velocities
to the Lagrangian point results in an exact enforcement of the no-slip condition even
when oscillations are present. The pressure shows a large jump, again restricted to the
support points, and varies smoothly away from the body. Figures 5 (g), (h) and (i) show
the velocities u, v and pressure p variation along a line at 45o from the stagnation point.
There are no fluctuations in the velocity components, and pressure and velocities go to
zero at the cylinder wall smoothly. To further quantify the behavior of the flow in the
vicinity of the cylinder boundary a third-order spline extrapolation of the velocity near
the boundary is also plotted on the curves (as a dash-dot-dot line) in Figure 5(a) and (e).
The computation gives zero velocity at the Lagrangian points; however, the extrapolated
velocity is not zero. The absolute difference between the extrapolated velocity and the
Lagrangian-point value (i.e., the no-slip condition) reduces at second-order rate as the
grid is refined, as shown in Figure 6. Also notice that there is motion inside the cylinder
(since we do not enforce a zero-velocity condition there); the inner flow is, however,
decoupled from the outer one.

We then examined a higher ReD case, to verify that the unsteadiness of the flow is
captured correctly. The domain and the boundary conditions for the higher Reynolds
number case were similar to the low-ReD case. Only two grids were considered, with
∆x = ∆y = 0.01D and 0.005D, respectively, in the region of interest (−0.6D ≤ x ≤ D
and D ≤ y ≤ D).

Figure 7 shows instantaneous vorticity contours and a time series of the drag and lift
coefficients, CD and CL (where CL = 2L/ρU2

∞D2, and L is the lift force on the cylinder)

17

time

C
L
,
C
D

100 120 140 160 180 200
-2

-1

0

1

2

C
L

C
D

Figure 7: Flow around a cylinder at ReD = 185. (a) Time-series of lift and drag coefficients; (b)
instantaneous vorticity contours and streamlines.

obtained using the finer grid. The periodic fluctuations of drag and lift coefficients indi-
cate a stable vortex shedding behind the cylinder. The instantaneous vorticity contours
for this flow are shown in Figure 7(b). The coefficients of drag, lift and Strouhal number
St = Dω/U∞ (where ω is the shedding frequency) are compared with the values reported
in the literature in Table 3. The results obtained with the present method are well within
the range of values obtained by other researchers.

3.2. Flow over a two-dimensional hill

An important property of the current forcing scheme is its applicability to non-uniform
and non-orthogonal grids without loss of accuracy. To demonstrate this property a two
dimensional flow over a small hill in a channel is considered here with a Reynolds number
of Re = 600 based on the channel height H. The domain size is 35H × H. The shape
of the hill is defined by yh = 0.15H sin2[π(x− 2.0)]; thus, the maximum height is 15% of
the channel height, its peak is at x = 2.5. The no-slip boundary condition is enforced on
the top and bottom walls of the channel and a periodic boundary condition is assumed
in the streamwise direction. The domain, however, is long enough that the flow returns
to a fully developed state, with a parabolic profile, before the end of the computational
domain.

Four different grid topologies, shown in Figure 8, are considered. First a non-
orthogonal body-fitted grid is used, which conforms to the hill. In this case hill becomes

18

CD Crms
L St

Present ∆x = 0.005D 1.430 0.423 0.196
Present ∆x = 0.01D 1.509 0.428 0.199
Vanella and Balaras [15] 1.377 0.461 -
Guilmineau and Queutey [37] 1.280 0.443 0.195
Lu and Dalton [38] 1.310 0.422 0.195
Williamson [39] - - 0.193

Table 3: Comparison of coefficients of drag and lift, and Strouhal number for the flow around a cylinder
at ReD = 185.

x

y

2 2.5 3 3.5
0

0.1

0.2
(b)

x

y

2 2.5 3 3.5
0

0.1

0.2
(d)

x

y

2 2.5 3 3.5
0

0.1

0.2
(a)

x

y

2 2.5 3 3.5
0

0.1

0.2
(c)

Figure 8: Grids for two-dimensional hill test. (a) Body-fitted non-orthogonal grid. (b) Non-orthogonal
grid with immersed boundary. (c) Non-uniform orthogonal grid with immersed body. (d) Uniform
orthogonal grid with immersed boundary. Every fourth grid line is shown except in (a), where every line
is shown. Only part of the domain is shown.

19

x

y

2 2.5 3 3.5
0

0.1

0.2
(b)

x

y

2 2.5 3 3.5
0

0.1

0.2
(d)

x

y

2 2.5 3 3.5
0

0.1

0.2
(a)

x

y

2 2.5 3 3.5
0

0.1

0.2
(c)

Figure 9: Spanwise vorticity in the flow over the 2D hill. (a) Body-fitted non-orthogonal grid. (b)
Non-orthogonal grid with immersed boundary. (c) Non-uniform orthogonal grid with immersed body.
(d) Uniform orthogonal grid with immersed boundary. 21 equally spaced contour levels from 2 to -8 are
shown.

an integral part of the domain boundary and direct no-slip boundary condition is ap-
plied. This is considered the reference case, with which the others are compared. The
maximum grid size in the region 2H ≤ x ≤ 4H and 0 ≤ y ≤ 0.25H is 0.01H. This
is the region of interest for this flow, since it covers the hill and the recirculation zone.
The second grid is also a non-orthogonal grid, but the hill does not coincide with a grid
line, and the no-slip conditions on the hill itself are imposed by the immersed-boundary
method. The maximum grid size in the region of interest for this case is also 0.005H.
The third grid is a non-uniform orthogonal grid, clustered in y near the top and bottom
of the hill, and in x near its leading and trailing edges. In the central part of the hill
the grid is stretched in both directions. Here the grid size in the region of interest varies
between 0.0025H and 0.0075H. The fourth grid is a uniform orthogonal grid, also with
a grid size ∆x = ∆y = 0.005H in the region of interest. Except for the first case, the hill
is defined as an immersed boundary with 650 uniformly distributed Lagrangian points
along the geometry, and the no-slip condition on the hill is applied through the forcing
described previously.

The vorticity contours on the hill and in the recirculation region for the four grids are
shown in Figure 9. The non-orthogonality and non-uniformity of the grid has no signifi-
cant effect on the large-scale flow features. The vorticity contours for all the three grids
with the IBM compare well with the body-fitted non-orthogonal grid. A quantitative
comparison of the u and v velocity profiles is shown in Figure 10. The velocity profiles
are compared at three locations, x = 2.5 (the peak), x = 2.75 (50% along the downward
slope) and x = 3.2 (in the recirculation region). The u and v velocity profiles for all the
four grids are in very good agreement with each other. The maximum error appears to
be on the v velocity component, at the hill crest. Even there, the maximum difference
between the velocity calculated using the boundary-fitted grid and the methods with
the immersed boundary and the uniform grid is less than 7%, decreasing to 3% when
non-uniform mesh is used, and the flow gradients are resolved better.

20

u

y

0 1 2 3
0

0.2

0.4

0.6

0.8

1

x=2.5 x=2.75 x=3.2

(a)

v

y

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

x=3.2x=2.5 x=2.75

(b)

Figure 10: Comparison of velocity profiles at x = 2.5, x = 2.75 and x = 3.2 over the hill. (a) u,
(b) v. Body fitted non-orthogonal grid; Non-orthogonal grid with IB; Non-uniform
orthogonal grid with IB; Uniform orthogonal grid with IB.

21

R
e

L
/D

0 50 100

0

0.5

1

1.5

Taneda [35]

Present Calculations

Fadlun et. al. [10]

Zhang and Zheng [37]

Johnson and Patel [38]

Figure 11: Length of the separation bubble at different Reynolds number.

3.3. Flow around a sphere

The examples discussed above show that the current scheme is able to simulate two-
dimensional flows with complex immersed geometries very well. The application of the
scheme to three-dimensional immersed objects is tested next by simulating the flow
around a sphere at low Reynolds numbers. A Cartesian domain [−4D, 10D]×[−4D, 4D]×
[−4D, 4D] is used. The sphere is placed with its center at (0, 0, 0). A uniform grid of
∆x = ∆y = ∆z = 0.05D is used around the sphere; the grid is stretched away from
the sphere. The sphere is defined using 1258 equally spaced Lagrangian points on its
surface. A range of Reynolds numbers ReD from 30 to 100 is considered. The length of
the separation bubble for these Reynolds numbers is compared with the data by Taneda
[40] presented in Batchelor [41] and with two other immersed-boundary techniques (by
Fadlun et al. [10] and Zhang and Zheng [42]) in Figure 11, which shows that the prediction
of the length of the separation bubble compares well with other immersed-boundary
methods. Another important parameter associated with this flow is the coefficient of
pressure Cp = 2(p − p∞)/ρU2

∞, where p is the pressure at the sphere wall and p∞ is
pressure in undisturbed flow field. The Cp from the present simulation is in very good
agreement with the results of Fadlun et al. [10] and Zhang and Zheng [42] at ReD = 100,
as shown in Figure 12.

The flow around a sphere at low Reynolds numbers remains symmetric and no shed-
ding occurs. However, at a slightly higher Reynolds number the flow become asymmetric;
at ReD = 280 vortex shedding is started (Johnson and Patel [43]). We performed a calcu-
lation in the shedding region, at ReD = 300, using a Cartesian domain with dimensions
[−4D, 11D]× [−4.5D, 4.5D]× [−4.5D, 4.5D]. The grid size in the vicinity of the sphere is
∆x = ∆y = ∆z = 0.018D, and is stretched away from the sphere. The sphere is defined
using 10,000 equally spaced Lagrangian points on its surface.

The mean streamwise velocity along the x−axis, Uavg, in the wake region is compared

22

C
p

0 30 60 90 120 150 180

-1

-0.5

0

0.5

1

1.5

Present Calculations

Fadlun et. al [10]

Zhang and Zheng [37]

Figure 12: Coefficient of pressure Cp at Reynolds number ReD = 100.

in Figure 13 with the data obtained by Johnson and Patel [43] using a body-fitted grid.
There is good agreement between the present calculation and the reference results. The
shedding from the sphere results in some unique coherent structures shown in Figure 14.
The vortices are visualized as isosurfaces of the second invariant of the velocity gradient
tensor, Q = (ui,juj,i)/2 and the frames are 20 time units apart. The vortices appear like
hairpin vortices. The heads of the shed vortex form very close to the sphere in the wake
region and its legs stretch as it moves away from the sphere. The legs are attached to
the head of the next vortex. The head of the alternate shedded vortices are inclined in
vertically opposite directions with respect to the x−axis.

3.4. Suddenly accelerated normal flat plate

As a last example, we consider the case of a moving body, an infinitesimally thin
finite flat plate of height h, suddenly accelerated from rest to a constant velocity Uo in
the direction normal to its surface in a fluid at rest. The Reynolds number is Reh =
Uoh/ν = 1000. This value matches two simulations of this case by Mittal et al. [44],
who used of a direct-forcing method, and Koumoutsakos and Shiels [45] who employed a
vortex-particle method. The latter is particularly well suited for this problem, since, at
least at early times, the vorticity is confined to a small subregion of the domain, thereby
easing the computational requirements for the vortex simulations.

In our calculation, the grid is uniform in the direction of the plate motion, while in
the normal direction a stretched grid has been employed (with a stretching ratio of 1.045)
to cluster the nodes near the ends of the plate. The computational domain, 12h × 9h
(in the streamwise and normal direction), has been discretized using 2550 × 260 points,
giving a minimum grid spacing ∆xmin = ∆ymin = 0.0012h. The Lagrangian markers
are clustered according to the local vertical mesh spacing.

23

Figure 13: Mean streamwise velocity in the wake region.

Figure 14: Visualization of the coherent structures shedding from the sphere at ReD = 300. Frames (a),
(b) and (c) are 20D/U∞ time units apart.

24

(a)
(b)

(c)

Figure 15: Spanwise vorticity contours at three dimensionless times tUo/h: (a) 0.5; (b) 1 and (c) 2.
Positive vorticity corresponds to solid lines, negative values to dashed lines.

Figure 15 shows the evolution of the wake behind the plate at three times. Very good
agreement with the results in the literature (see Figure 18 of [44] and Figure 5 of [45]) is
found.

Figure 16 shows the temporal variation of the computed non dimensional bubble
length (i.e., the length of the region of reverse flow s/h measured on the centerline
behind the plate, normalized by plate height) obtained from the current simulations.
Again, an excellent agreement is found with the results of Koumotsakos and Sheils [45].
It is worth noting that this case demonstrates the ability of the forcing algorithm to
handle infinitesimally thin bodies including the singular points at the two extremities,
with no need to handle this configuration through the use of auxiliary ghost-cell.

Figure 16: Dimensionless length of the reversed-flow region behind the plate. Solid line and circles
corresponds to the present results, × are values obtained by Koumotsakos and Shiels [45].

25

4. Conclusions

We have presented a novel interpolation-spreading procedure in the context of immersed-
boundary type methods. The global algorithm follows the ideas originally introduced by
Peskin [1], and lately extended to rigid moving bodies by Uhlmann [14] and Vanella and
Balaras [15], among others. These approaches differ from the direct-forcing methodology
introduced by [10], since the evaluation of the forcing function is done on the Lagrangian
markers distributed on the embedded geometry, rather than on the Eulerian grid points
surrounding it. In principle, the main advantages of this strategy compared to existing
direct-forcing schemes is the ease and versatility of its implementation with almost any
available solver for parabolic equations. This feature allows decoupling the computation
of the required forcing from the computational grid itself. The forcing procedures pro-
posed so far in the literature, however, do not fully exploit the theoretical advantages of
the general methodology. The present contribution aims to develop a numerical method
leading to a genuine plug-and-play module that can be applied to existing solvers based
on any spatial discretization.

The method proposed here draws heavily from ideas developed for meshless methods,
particularly from the Reproducing Kernel Particle Method (RKPM) [19], its application
as an immersed boundary tool in the finite element context [25], and from the partition-
of-unity concept [28], for the design of kernel functions that preserve the order of accuracy
of the underlying spatial scheme. In particular, the main improvements with respect to
other techniques are:

1. It can be applied to codes relying upon any spatial discretization (Cartesian non-
uniform, structured body fitted and unstructured grids).

2. One can preserve the underlying order of the spatial scheme while improving the
sharpness of the immersed boundaries, in principle, by selecting the order of the
reproducing conditions.

3. The spreading and interpolation operators are dual of each other.

4. It can be applied to moving solid objects

5. The computational cost of the forcing procedure is a small fraction of the overall
cost required by the original solver.

6. The forces and moments caused by the fluid are calculated in a straightforward
manner by integrating the forcing field.

These qualities of the proposed algorithm have been demonstrated numerically ap-
plying the proposed forcing method in a curvilinear, finite-volume incompressible Navier-
Stokes solver for steady and unsteady flow over two-dimensional and three-dimensional
objects, both at rest and in motion. Cartesian uniform and non-uniform grids have been
used, as well as curvilinear non-orthogonal meshes. In all cases the numerical results were
in excellent agreement with data in the literature, showing the robustness, accuracy, and
range of applicability of the proposed methodology.

No tests using unstructured grids have been performed in this study. Nevertheless,
the method is inherently general and the only issues that should be faced for this class of
discretizations would concern a strategy to determine the support of the window function
and a quadrature rule consistent with a cell centered or cell vertex approach.

26

Acknowledgements

This research was began while AP was visiting the Department of Mechanical and
Materials Engineering at Queen’s University. The computational support of the High
Performance Computing and Virtual Laboratory, Queen’s University site, is gratefully
acknowledged. AP and JF acknowledge the financial support of the Spanish Ministry
of Innovation and Science through the Consolider grant Supercomputación y e-Ciencia.
UP acknowledges the support of the Natural Science and Engineering Research Council
of Canada (NSERC) under the Discovery Grant program.

References

[1] C. S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (1972)
252–271.

[2] C. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys 25 (3) (1977) 220–252.
[3] M. Lai, C. Peskin, An immersed boundary method with formal second-order accuracy and reduced

numerical viscosity, J. Comput. Phys 160 (2) (2000) 705–719.
[4] R. P. Beyer, R. J. LeVeque, Analysis of a one-dimensional model for the immersed boundary method,

SIAM J. Num. Anal. 29 (2) (1992) 332–364.
[5] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an external force

field, J. Comput. Phys. 105 (1993) 354–366.
[6] K. Höfler, S. Schwarzer, Navier–stokes simulation with constraint forces: finite-difference method

for particle-laden flows and complex geometries, Phys. Rev. E 61 (6) (2000) 7146–7160.
[7] Z. G. Feng, E. E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid-

particles interaction problems, J. Comput. Phys 195 (2) (2004) 602–628.
[8] E. M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow: application of a virtual

boundary method, J. Comput. Phys. 123 (2) (1996) 450–465.
[9] C. Lee, Stability characteristics of the virtual boundary method in three-dimensional applications,

J. Comput. Phys. 184 (2) (2003) 559–591.
[10] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-

difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161 (2000)
35–60.

[11] J. Kim, D. Kim, H. Choi, An immersed-boundary finite-volume method for simulations of flow in
complex geometries, J. Comput. Phys. 171 (2001) 132–150.

[12] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of tur-
bulent flows interacting with moving boundaries, J. Comput. Phys. 215 (2006) 12–40.
doi:10.1016/j.jcp.2005.10.035.

[13] K. Taira, T. Colonius, The immersed boundary method: A projection approach, J. Comput. Phys.
225 (2007) 2118–2137.

[14] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate
flows, J. Comput. Phys. 209 (2) (2005) 448–476.

[15] M. Vanella, E. Balaras, A moving-least-squares reconstruction for embedded-boundary formula-
tions, J. Comput. Phys. 228 (18) (2009) 6617–6628.

[16] P. Moin, Advances in large eddy simulation methodology for complex flows, Int. J. Heat Fluid Flow
23 (2002) 710–720.

[17] F. Roman, E. Napoli, B. Milici, V. Armenio, An improved immersed boundary method for curvi-
linear grids, Comput. Fluids 38 (2009) 1510–1527.

[18] A. M. Roma, C. S. Peskin, M. J. Berger, An adaptive version of the immersed boundary method,
J. Comput. Phys. 153 (1999) 509–534.

[19] W. K. Liu, Y. Chen, R. A. Uras, C. T. Chang, Generalized multiple scale reproducing kernel particle
methods, Comput. Meth. Appl. Mech. Eng. 139 (1-4) (1996) 91–157.

[20] A. J. Chorin, Numerical solution of Navier-Stokes equations, Math. Comput. 22 (104) (1968) 745–
762.

[21] R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des
pas fractionnaires (I), Arch. Rat. Mech. Anal. 32 (2) (1969) 135–153.

27

[22] J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow,
SIAM J. Sci. Stat. Comput. 7 (1986) 870–891.

[23] W. K. Liu, S. Jun, Y. F. Zhang, Reproducing kernel particle methods, Int. J. Num. Meth. Fuids
20 (8) (1995) 1081–1106.

[24] X. Wang, W. K. Liu, Extended immersed boundary method using FEM and RKPM, Comput.
Meth. Appl. Mech. Eng. 193 (12-14) (2004) 1305–1321.

[25] L. Zhang, A. Gerstenberger, X. Wang, W. K. Liu, Immersed finite element method, Comput. Meth.
Appl. Mech. Eng. 193 (21-22) (2004) 2051–2067.

[26] Y. Liu, W. K. Liu, T. Belytschko, N. Patankar, A.C. To, A. Kopacz, J.H. Chung, Immersed
electrokinetic finite element method, International Journal for Numerical Methods in Engineering
71 (4) (2006) 379–405.

[27] W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X. S. Wang, Y. Fukui, N. Patankar, Y. Zhang,
C. Bajaj, J. Lee, J. Hong, X. Chen, H. Hsu, Immersed finite element method and its applications
to biological systems, Comput. Meth. Appl. Mech. Eng. 195 (13-16) (2006) 1722–1749.

[28] I. Babuška, J. Melenk, The partition of unity method, International Journal for Numerical Methods
in Engineering 40 (4) (1997) 727–758.

[29] A. Silva Lopes, J. M. L. M. Palma, Simulations of isotropic turbulence using a non-orthogonal grid
system, J. Comput. Phys. 175 (2) (2002) 713–738.

[30] C. M. Rhie, W. L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge
separation, AIAA J. 21 (1983) 1525–1532.

[31] J. Kim, P. Moin, Application of a fractional step method to incompressible Navier-Stokes equations,
J. Comput. Phys. 59 (1985) 308–323.

[32] A. Silva Lopes, U. Piomelli, J. M. L. M. Palma, Large-eddy simulation of the flow in an S-duct, J.
Turbul. 7 (11) (2006) 1–24.

[33] S. Radhakrishnan, U. Piomelli, A. Keating, A. Silva Lopes, Reynolds-averaged and large-eddy
simulations of turbulent non-equilibrium flows, J. Turbul. 7 (63) (2006) 1–30.

[34] S. Radhakrishnan, U. Piomelli, A. Keating, Wall-modeled large-eddy simulations of flows with
curvature and mild separation, ASME J. Fluids Eng. 130 (101203).

[35] M. Coutanceau, R. Bouard, Experimental determination of the main features of the viscous flow in
the wake of a circular cylinder in uniform translation. Part 1. Steady flow., J. Fluid Mech. 79 (2)
(1977) 231–256.

[36] D. J. Tritton, Experiments on the flow past a circular cylinder at low Reynolds numbers, J. Fluid
Mech. 6 (1959) 547–567.

[37] E. Guilmineau, P. Queutey, A numerical simulation of vortex shedding from an oscillating circular
cylinder, J. Fluids Struct. 16 (6) (2002) 773–794.

[38] X. Y. Lu, C. Dalton, Calculation of the timing of vortex formation from an oscillating cylinder, J.
Fluids Struct. 10 (5) (1996) 527–541.

[39] C. H. K. Williamson, Defining a universal and continuous Strouhal–Reynolds number relationship
for the laminar vortex shedding of a circular cylinder, Phys. Fluids 31 (10) (1988) 2742–2744.

[40] S. Taneda, Experimental investigation of the wake behind a sphere at low Reynolds numbers, J.
Phys. Soc. Japan 1110 (1104–1108).

[41] G. K. Batchelor, An Introduction to Fluid Mechanics, Cambridge Univ. Press, 1967.
[42] N. Zhang, Z. C. Zheng, An improved direct-forcing immersed-boundary method for finite difference

applications, J. Comput. Phys. 221 (2007) 250–268.
[43] T. A. Johnson, V. C. Patel, Flow past a sphere up to a reynolds number of 300, J. Fluid Mech. 378

(1999) 19–70.
[44] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, A. Von Loebbecke, A versatile sharp

interface immersed boundary method for incompressible flows with complex boundaries, J. Comput.
Phys. 227 (10) (2008) 4825–4852.

[45] P. Koumoutsakos, D. Shiels, Simulations of the viscous flow normal to an impulsively started and
uniformly accelerated flat plate, J. Fluid Mech. 328 (177–227).

28

