Decay of correlations for normally hyperbolic trapping - Archive ouverte HAL
Article Dans Une Revue Inventiones Mathematicae Année : 2015

Decay of correlations for normally hyperbolic trapping

Décroissance des corrélations pour un ensemble capté normalement hyperbolique

Résumé

We prove that for evolution problems with normally hyperbolic trapping in phase space, correlations decay exponentially in time. Normal hyperbolic trapping means that the trapped set is smooth and symplectic and that the flow is hyperbolic in directions transversal to it. Flows with this structure include contact Anosov flows, classical flows in molecular dynamics, and null geodesic flows for black holes metrics. The decay of correlations is a consequence of the existence of resonance free strips for Green's functions (cut-off resolvents) and polynomial bounds on the growth sof those functions in the semiclassical parameter.

Dates et versions

hal-00951495 , version 1 (16-09-2014)

Identifiants

Citer

Stéphane Nonnenmacher, Maciej Zworski. Decay of correlations for normally hyperbolic trapping. Inventiones Mathematicae, 2015, Inventiones Mathematicae, 200, pp.345-438. ⟨10.1007/s00222-014-0527-y⟩. ⟨hal-00951495⟩
205 Consultations
0 Téléchargements

Altmetric

Partager

More