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Abstract: The study analyzes noise in X-ray in-line phase tomography
in a biomedical context. The impact of noise on detection of iron oxide
nanoparticles in mouse brain is assessed. The part of the noise due to the
imaging system and the part due to biology are quantitatively expressed
in a Neyman Pearson detection strategy with two models of noise. This
represents a practical extension of previous work on noise in phase-contrast
X-ray imaging which focused on the theoretical expression of the signal-to-
noise ratio in mono-dimensional phantoms, taking account of the statistical
noise of the imaging system only. We also report the impact of the phase
retrieval step on detection performance. Taken together, this constitutes
a general methodology of practical interest for quantitative extraction of
information from X-ray in-line phase tomography, and is also relevant to
assessment of contrast agents with a blob-like signature in high resolution
imaging.
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1. Introduction

X-ray phase contrast imaging is a field of coherent imaging which is receiving growing interest
due to its greater sensitivity over conventional attenuation-based techniques (see [1] for an intro-
duction to this field). In X-ray phase-contrast imaging, refraction of a partially coherent X-ray
beam by the object of interest slightly modifies the original wavefront profile. These variations
result in changes in the locally transmitted intensity of the wave which contains quantitative
information on the phase shift induced by the object. X-ray phase contrast imaging has been
shown to be particularly relevant for application in soft biological tissues composed of elements
with low atomic numbers (see [2, 3] for an overview on biomedical applications). X-ray phase
contrast imaging in biomedical applications is currently mainly used for image rendering tak-
ing advantage of the edge-enhanced contrast at the interface between distinct tissues. Over the
last two decades, a number of acquisition techniques coupled with phase retrieval algorithms
have been developed. The performances of such acquisitions and reconstruction techniques are
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usually assessed for methodological purposes in terms of linear fidelity of 3D reconstruction
with respect to calibrated phantoms [4].

Investigations of X-ray phase contrast imaging are progressively moving beyond simple lin-
ear reconstruction and visualization to consider this imaging technique from an informational
point of view. Quantities such as contrast and signal-to-noise ratio (SNR) in various phase con-
trast imaging techniques have for instance only recently been investigated analytically [5–8]
with the aim of achieving analytical expressions and experimental comparison with calibrated
phantoms. In [6] and [5], theoretical analytical expressions were derived for the signal-to-noise
ratio, resolution and contrast, as a function of the physical experimental parameters involved in
X-ray in-line phase contrast imaging for a generic unidimensional phase edge. In [8] and [7], a
theoretical and experimental study compare three different X-ray phase contrast imaging tech-
niques in terms of signal-to-noise ratio also on a mono-dimensional phase edge. The noise
model used in these works was assumed to be Gaussian or modeled as Poisson noise to account
for the statistical nature of the photons. Other sources of perturbations, not included in [5–8],
have been reported in phase contrast imaging. Because of the coherent nature of the X-ray
source, speckle noise, controlling the second order statistics of the noise, can be recorded [12].
Such second order statistics of the noise for detection tasks with in-line X-ray phase-contrast
imaging have been studied in [9–11] by simulations with homogeneous materials. In addition,
when phase contrast imaging is coupled to computed tomography, it is well-known that spuri-
ous inhomogeneities in the sensitivity of the scintillator converting X-ray to photons produce
so-called “ring artifacts” in the phase-contrast reconstruction (see for instance [13–15]). These
sources of noise are combined with the electronic noise of the CCD camera placed at the end
of the optical setup. It could therefore be possible to extend the realism of the noise model
from [5–11]. Such considerations, common in other fields of coherent imaging [16], are very
important in the perspective of nonlinear informational tasks such as detection.

For a specific pattern to be detected, however, signal-to-noise ratio has to be defined and
detection performance has to be assessed. In [5–8] a simple mono-dimensional phase edge is
considered. With such a mono-dimensional phantom, the detection scheme is only sensitive to
the first order statistics of the noise. However, this does not take into account the possible cor-
relation of the noise included in the second order statistics. In this article, we address this issue
in a practical context with the detection problem of bidimensional heterogeneous objects with
one phase contrast imaging technique, namely in-line phase tomography (IPT) in a biomedi-
cal application framework: the detection of iron oxide nanoparticles in excised mouse brain.
The use of ultrasmall superparamagnetic particles of iron oxide as contrast agent in biomedical
imaging in general [17] and in the study of stroke in particular [18] is a field of current inter-
est, and was recently shown to be feasible and effective in a preclinical study of stroke [19].
The present study sought to go beyond simple visualization as in [19] and to undertake the
automatic detection of these microstructures included in the lesion. We use this application of
practical biomedical interest to study the influence of the noise and phase reconstruction pa-
rameter on the performance of the detection task. The paper is organized as follows. The first
section, is a material and method section, which describes the experimental setup and the al-
gorithmic pipeline for the phase reconstruction and the noise analysis and modeling. Then, in
the results section, these noise models are used to assess the performance of detection of the
nanoparticles in terms of probability at various signal-to-noise ratios and we explore the influ-
ence of the reconstruction parameter of the phase-contrast on the signal-to-noise ratios and on
the detection performance of our algorithm.
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2. Material and method

2.1. Image acquisition

The experimental image acquisition setup is the one described in detail in [19]. Briefly, IPT
acquisitions in the propagation based imaging mode are performed on the synchrotron radiation
beamline ID19 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. As
shown in Fig. 1(a), the samples are 8 post-mortem mouse brains with permanent middle cerebral
artery occlusion [20], which had received an intravenous injection of iron oxide nanoparticles.
Iron oxide nanoparticles are engulfed by macrophages in vivo and thus used as imaging markers
in inflammatory disorders associated with elevated phagocytic activity such as ischemic stroke.
The cerebral artery occlusion causes a lesion in the cortex of the brain, colorized in purple in
Fig. 1(c). As demonstrated in [19] and visible in Fig. 1(d) the nanoparticles accumulate in the
lesion where they are detected as hyperintense small areas. These areas correspond to spherical
microstructures of about 40 μm, compatible with macrophages which have engulfed iron oxide
nanoparticles.

detectionA B C D
Fig. 1. Image processing pipeline used in this study. Imaging is performed with 17.6 keV
selected from undulator radiation using Al filters. The X-ray beam transmitted through the
specimen is acquired on a detector using a LuAg scintillator screen, visible light optics,
and a 2048×2048 CCD detector. The detector is positioned at 1 meter from the sample for
in-line phase-contrast imaging. The 3D volume is a stack of 1,000 slices of 2048× 2048
voxels and slice thickness is equal to pixel size (isotropic voxels) 8μm.

2.2. Image reconstruction

Phase retrieval is performed from a single phase-contrast image at each projection angle, using
Paganin’s method [21]. With this phase retrieval method, the complex refractive index n

n = 1−δ + iβ , (1)

is used to describe attenuation and phase shift caused by the imaged object, where β is respon-
sible for attenuation and δ for beam phase shift. The complex amplitude U of an attenuated
plane wave of wavelength λ , propagating along direction x, in a homogeneous medium with
complex refractive index n, can be described as
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The refractive index of a homogeneous sample of thickness d thus causes a phase shift
Φ = −2πδd/λ on the X-ray wave. The phase retrieval method chosen in this report assumes
proportionality between the phase term δ and absorption term β of the complex refractive in-
dex. The proportionality coefficient is the δ/β coefficient. This δ/β coefficient is a tunable
parameter either selected based on the prior knowledge of the type of tissue imaged by using
tables like in [24,25] or adjusted empirically. As visible in Fig. 2, this influences the contrast of
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the iron oxide nanoparticles over the lesion seen as the background. The choice of δ/β in [25]
is given for linearity between grey level and phase, assuming the imaged object as homoge-
neous. However, it is not easy to determine the optimal choice of a single δ/β for biological
samples which are highly heterogeneous. In [19], the δ/β was set at 321 to correspond to the
highest nanoparticle concentration in stereotaxically injected animals. In our case, the final in-
formational task is not to produce grey levels proportional to a physical quantity but to produce
a nonlinear binary decision between pixels containing iron oxide nanoparticles and pixels in the
background lesion. In the results section, we therefore propose to adjust the δ/β taking into
account our detection task.

321100 1000

δ
600

/β

Fig. 2. Visual inspection of the evolution of the contrasts for various values of the δ/β
coefficient in the phase retrieval.The arrow points to δ/β = 321 the best value for linearity
between grey level and phase.

After phase retrieval, the phase maps are used as input to a 3D parallel-beam tomographic
reconstruction algorithm based on the filtered back projection algorithm described in [22]. For
each scan, this procedure provides a reconstructed 3D volume. As depicted in Fig. 1(a), the
reconstructed 3D volume suffers from spatially circular noise typical of reconstruction artifacts
in tomography caused by differences in the individual pixel response of the detector. These
ring artifacts are removed with a nonlinear median-based filter algorithm of [14] to produce
Fig. 1(b). A 3D segmentation of the ischemic lesion is then performed. Since the mice in the
stroke model systematically undergo right middle cerebral artery occlusion, lesion location is
known, and could be used to create a lesion atlas, by aligning the 8 scans of mice brain, enabling
the 3D average mask of the lesion presented in Fig. 1(c) to be created. The macrophages con-
taining the iron oxide nanoparticles appear in the lesion in the form of blobs of sizes between 16
μm to 48 μm. For the detection of these microstructures, we use the multiscale blob detection
algorithm introduced in [23] and described in Fig. 3. Using prior information concerning the
search for spherical structures, the two-stage algorithm first convolves the reconstructed images
with Laplacian of a Gaussian filters at multiple scales, r representing the standard deviation of
the filters. Circular blobs of size equals to r produce local minima in the map resulting from
this convolution. The second stage of the algorithm keeps local minima in these maps across
the scales to produce the estimated positions (x̃c, ỹc) and estimated radius r̃ of detected circular
blobs.

The image processing pipeline presented in this section is an association of standard image
processing tools and other choices of algorithm could be made. In what follows, the focus is
on the impact of the noise and the reconstruction parameter δ/β on the performance of such a
detection scheme.
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Fig. 3. Proposed scheme for the detection of iron oxide nanoparticles in IPT. The scale
range is the typical size expected for the iron oxide nanoparticles when absorbed by
macrophages i.e. [rmin = 16μm;rmax = 48μm]. A blob is detected for each local minimum
in the detection maps. Restriction is made on the amplitude down to a given percentage of
the amplitude of the smallest minimum. This percentage is arbitrarily set here as 60%. The
process is applied slice by slice.

2.3. Noise analysis

We propose to analyze the noise remaining after the tomographic reconstruction and the de-
noising of the ring artifacts as in Fig. 1(b). To this end, as depicted in Fig. 4, a region of interest
is cropped in the background of the image, identified as background noise N1.

For statistical analysis, the region of interest in the background noise N1 is 3685 pixels and
is applied on all the slices of the 8 scans of the mouse brains. As illustrated in Fig. 5, the his-
tograms for the background noise showed a wide variety of shape including mono- and bimodal
distributions, symmetric and non-symmetric distributions. It is therefore not easy to propose a
simple statistical model for this distribution. The Shapiro-Wilk test for normal distribution is
negative with a p-value of the order of 10−13 (whereas it would have to be larger than 0.05 for
the test to be positive) for all the slices tested for the background noise N1. Figure 6 shows the
empirical standard deviation σN1 and average MN1 . The average value MN1 is displaying non-
monotonic evolutions reproducible from one mouse brain to another. The standard deviation
σN1 is restricted to a 1 to 8 interval.

From these observations, we propose the following “empirical” model to simulate noisy IPT
images S1(x,y)

S1(x,y) = B(x,y)×MB +σN1 ×N1(x,y) , (3)
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binary signal B(x,y,i:i+j) 

Ring corrected data

noise stack N1(x,y,i:i+k)

noise stack N2(x,y,i:i+k)

MB

Fig. 4. Regions defined as noise and signal: background noise N1 is taken in a region located
outside the mouse brain. Lesion noise N2 is taken in a part of the lesion visibly free of iron
oxide nanoparticles. Signal regions B are binary masks where structures judged as iron
oxide nanoparticles are set at 1, with 0 elsewhere.

where (x,y) are the spatial coordinates. In Eq. (3), B(x,y) are simulated binary blobs. MB is the
average value recorded in the iron oxide nanoparticles areas. We assume in Eq. (3) an additive
signal noise coupling and propose to simulate the background noise N1(x,y) by randomly pick-
ing centered and normalized instances of this noise from the 8 scans containing 1,000 slices
each. However, the background noise N1 does not take into account the biological spatial fluc-
tuations due to the microstructures of the lesion distinct from the targeted iron oxide nanopar-
ticles. To take account of this biological noise, we cropped a region of interest called lesion
noise N2 in Fig. 4 located in a part of the lesion that is visibly free of iron oxide nanoparticles.
The distribution of the lesion noise N2 are found similar to those presented for the background
noise N1 in Fig. 4, i.e. a large variety of distribution shapes and similar fluctuations for average
MN2 and standard deviation σN2. The same kind of empirical model is therefore constructed for
lesion noise N2 using stacks of images of this noise and assuming additive coupling between
the blobs with an equation similar to Eq. (3). The lesion noise N2 shows some spatial correla-
tion due to biological microstructures while background noise N1 visually appears closer to a
spatially uncorrelated white noise. The comparison of the performance of our detection scheme
shown in Fig. 3 with background noise N1 and lesion noise N2 will therefore be useful to quan-
tify the impact of the second order statistics introduced by biological tissues. For comparison
with a statistical process of reference, we will also consider, in the results section, with the same
additive coupling as in Eq. (3), a purely white noise N3 with Gaussian distribution centered on
the same average value MN2 as the lesion noise N2 and with standard deviation σN2 .

2.4. Detection performance

We propose to simulate the nanoparticles with B(x,y) in Eq. (3) taken as binary images with
black background including white disks with center randomly positioned at (xctrue,yctrue) in
B(x,y) and radius rtrue uniformly drawn from the interval [16,48] μm, the expected scale range
for iron oxide nanoparticles. The evaluation of the detection performance based on these sim-
ulated binary blobs are expressed in terms of accuracy of the estimated center position (x̃c, ỹc)
and radius r̃ of the blobs as well as in terms of the probability of good detection and false
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Fig. 5. Illustration of the diversity of grey level distributions in the background noise N1
on four different slices of the same scan of mouse brain. The histogram corresponds to the
distribution in the region of interest delineated by the solid line.

IPT

A B

IPT

Fig. 6. Statistical properties measured in the background noise N1. The different curves
in the plots correspond to the 8 different mouse brains. (A) mean MN1 and (B) standard
deviation σN1 .

alarms. The accuracy of the estimation is computed with the average error

Erradius = 〈| rtrue − r̃ |〉 , (4)

and

Ercenter =

〈√
(xtrue − x̃c)2 +(ytrue − ỹc)2

〉
, (5)

where 〈·〉 stands for the empirical average. For the probability of good detection and false
alarms, we call H0 the hypothesis that there is no blob to be detected and H1 the hypothesis
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that there is one blob to be detected. Let us call D0 the decision to detect no blob and D1

the decision to detect one blob. The probability of good detection is defined as Pr(D1 | H1)
and the probability of false alarm is defined as Pr(D1 | H0). These probabilities are estimated
empirically over some 10,000 trials.

3. Results

We are now ready to assess the detection scheme shown in Fig. 3 with the noise models of
the previous section, i.e. background noise N1, lesion noise N2 and white Gaussian noise N3.
Figure 7 shows how the detection performances, Erradius, Ercenter, Pr(D1 | H1) and Pr(D1 | H0)
degrade as the noise level is raised in the range of noise standard deviations observed exper-
imentally. In the range of noise standard deviations σ ∈ [1,8], the detection scheme performs
better with the Gaussian white noise model N3 than with the background noise N1. This con-
firms that the background noise N1 in IPT is not a white Gaussian noise. Also, in Fig. 7 we
observe that the detection scheme performs better with the background noise than with the le-
sion noise N2 for all the observed noise standard deviations larger than σ = 2. For small noise
regimes the effect of the background noise N1 due to the apparatus has the same impact as the
lesion noise N2 incorporating the biological microstructures distinct from nanoparticles. But for
greater noise (σ > 2), in contrast, the microstructures in the lesion noise N2, when appearing
in the spatial range [16,48]μm, bias the estimation of correctly detected blob or/and constitute
false positive detection. The distance between the curve for the background noise N1 and the
lesion noise N2 in Fig. 7 quantifies this effect.

A B

C D

Fig. 7. Performance for iron oxide nanoparticle detection as a function of noise amplitude
with solid line for the lesion noise N2, dashed line for the background noise N1, and dotted
line for the Gaussian white noise N3. (A) displays the average error Ercenter of the dis-
tance between the center of the true disk and the center of the detected one, (B) average
error Erradius between the radius of the true disk and the radius of the detected one, (C)
probability of good detection Pr(D1 | H1) and (D) probability of false alarm Pr(D1 | H0).

In IPT, the signal-to-noise ratio controlling the detection performance is impacted not only
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by noise but also, as shown in Fig. 2, by the phase-retrieval algorithm. The impact of the choice
of the δ/β coefficient on the detection scheme shown in Fig. 3 is quantitatively assessed using
a the Fisher contrast-to-noise ratio (FR), defined as

FR =
(μsignal −μnoise)

2

σ2
signal +σ2

noise

, (6)

where μ is the mean and σ the standard deviation. The signal regions are manually segmented
in areas considered as compatible with iron oxide nanoparticles. The noise regions are areas
surrounding the signal region. The Fisher ratio FR of Eq. (6) therefore constitutes a local
contrast to noise measure quantifying the detectability of iron oxide nanoparticles. Figure 8
presents the evolution of the local contrast to noise measure FR as a function of the δ/β co-
efficient: the smaller the δ/β the higher the detectability of the iron oxide nanoparticles. This
detectability estimation from the deflection is confirmed in Fig. 9(a) in terms of receiver oper-
ator characteristic (ROC) curves which give the probability of good detection of nanoparticles
Pr(D1 | H1) as a function of the probability of false detection of nanoparticles Pr(D1 | H0).
ROC curves plotted for various δ/β coefficients were closer to the upper left corner for smaller
δ/β values. The ROC curves obtained with the smallest δ/β values were significantly distant
from the ROC curve obtained for δ/β = 321, which would be the recommended coefficient
for linear measurement of the tissue. This enables quantification of the gain in detection of the
information-based approach for tuning δ/β . In such an approach, it is important to understand
that the tuning of δ/β is problem-dependent. To illustrate this, we have plotted in Fig. 8 the
evolution of the deflection between the lesion and the healthy surrounding tissue. In this case,
the larger the δ/β the better is the detectability. This is also confirmed in Fig. 9(b) in terms of
ROC curve which are closer to the upper left corner for the largest δ/β . As visible in Fig. 8,
the best contrast FR between the lesion and the healthy tissue (obtained for large δ/β ) is larger
than the best contrast between nanoparticles and lesion (obtained for low δ/β ). This explains
the fact that for high δ/β in Fig. 9(b), the ROC curves for large δ/β are very close to the upper
left corner and almost superimposed. These findings demonstrate that the optimal value for the
phase-retrieval parameter δ/β in IPT depends on the final informational task.

Following this observation, various scenarios of informational-based reconstruction schemes
can be imagined. If detection of multiple classes is targeted, it would be interesting to perform
multiple reconstructions. For instance here, it would be interesting to perform one reconstruc-
tion at δ/β = 1250 for the detection of the lesion area and then another reconstruction with
δ/β = 50 for the detection of nanoparticles within the lesion. This is a proposal similar to the
one formulated in [26] in terms of signal-to-noise ratio and applied to multi-material phantoms.
The study [26] proposes a numerically efficient phase retrieval algorithm to reconstruct the
complex refractive index distribution of known homogeneous materials embedded in a second
homogeneous medium from a single X-ray phase contrast image per projection. This algorithm
makes use of a single propagation-based-imaging image per projection, separately and selec-
tively reconstructing each interface between any given pair of distinct homogeneous materials.
But this is not the case in the present study, where we are not working with known homoge-
neous materials. The biological tissues in the brain are heterogeneous and we therefore have
no prior knowledge of the δ/β values corresponding to each feature (lesion, nanoparticles,
etc.) and local background. The present study thus extends to heterogeneous material with un-
known exact composition the idea introduced in [26], that, when multiple structures are to be
detected, it is useful to optimize phase retrieval separately at each interface between the struc-
tures. Also, if only one reconstruction is computationally feasible, it could be interesting to
optimize reconstruction in terms of detection for both regions. One criterion could be to choose
a reconstruction δ/β value of 600, where the two contrast curves intersect and are equal in
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Fig. 8. It is again important to note that this optimal reconstruction parameter value for de-
tection is different from the one (δ/β = 321) that was optimal for visualization in the present
case.
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Fig. 8. Fisher ratio FR of Eq. (6) as a function of the δ/β coefficient in the phase retrieval.
Statistics computed on 18 lesions representing a total of 1,080 pixels for the signal and
272,700 pixels for the noise. The solid line stands for FR between nanoparticles and lesion
and the dashed line represents FR between mouse brain lesion and surrounding healthy
tissue.

Nanoparticles/lesion Lesion/healthy tissue

Fig. 9. Receiver operator curve (ROC) giving the probability of good detection of nanopar-
ticles Pr(D1 | H1) as a function of the probability of false detection of nanoparticles
Pr(D1 | H0) for various δ/β values in the IPT reconstruction algorithm. In panel A, the
region corresponding to hypothesis H1 is segmented manually in a region displaying blob
microstructures of size compatible with nanoparticles and the background corresponding
to hypothesis H0 is the surrounding lesion free of nanoparticles. Likewise in panel B, but
H1 is lesion and H0 is the surrounding healthy tissue. The ROC curves are superimposed in
Panel B for δ/β = 321,700 and 1250.

4. Conclusion and discussion

The present study assessed the impact of noise in IPT applied to a detection problem in a
biomedical context. The method quantified the part due to the statistical noise of the IPT sys-
tem and the part due to the biological tissue. Tuning the phase-retrieval reconstruction pa-
rameter was shown to benefit to the detection task in comparison to the conventional tuning
implemented for metrological or visualization purposes only. This used a very common phase-
retrieval method in IPT [21]. The theoretical derivation of this Paganin method [21] is based on
a number of assumptions: the X-ray beam is assumed to be partially coherent and monochro-
matic; the distance between the object and the detector should be close enough to fulfill the
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near-field condition; and the object is assumed to be composed of a single homogeneous ma-
terial [27]. Knowing the energy of the beam and the composition of the sample enables the
ideal reconstruction parameter δ/β to be selected [28]. However, in biomedical applications,
the object is in general inhomogeneous and it is difficult to know its exact composition. Thus
the question of how to select the δ/β value arises. This is generally done by selecting a range
of δ/β values and heuristically choosing the best image from a visual point of view. One orig-
inality of the present study was to provide objective criteria for selecting the δ/β parameter
based on the detection task.

In this informational approach, there is a range of open possibilities. From a biomedical point
of view, the present detection scheme could be applied in semi-automatic segmentation of iron-
labeled macrophages in the ischemic lesion area, a task that would be too time-consuming to
perform manually. The detection scheme was applied in 2D images for purposes of illustra-
tion but could easily be extended to 3D by considering the 3D Laplacian of Gaussian filters.
Also, the approach could easily be extended to multi-class detection by using multiple phase-
retrieval reconstruction parameter values with a different δ/β value for each class. Assess-
ment of nanoparticle detection performance in all the lesion tissue would require comparison
with a global ground truth providing the total amount of nanoparticles fixed in the brain in
comparison to the volume of nanoparticles injected. This would require having nanoparticles
which very specifically target the inflammatory part of the lesion. Alternatively, further ap-
plications include the assessment of the ability of new contrast agents to specifically target a
cerebral ischemic lesion, and the detection of iron oxide nanoparticles in other pathologies,
such as atherosclerosis. From a statistical point of view, the present results showed that the
first-order statistics of the background noise in IPT were not Gaussian. It would be interesting
to further investigate this statistical characterization and seek to construct first-order statistical
models of background noise. The noise in biological tissue and in the background appeared
as non-white (i.e., correlated). This is in agreement with the simulation performed in [9–11]
with homogeneous materials. It would therefore also be interesting to investigate the modeling
of the second-order statistics and their dependence on the phase-retrieval parameters, but with
heterogeneous material. However, X-ray Compton scattering caused by the observed samples
may constitute a source of correlation, making the noise sample-dependent. Simulations of X-
ray in-line phase tomography including Compton scattering from a raw reconstruction of the
sample could constitute another direction for noise modeling. The information-based approach
for phase retrieval optimization was illustrated here with one specific technique: X-ray in-line
phase tomography. Other X-ray phase-contrast imaging techniques, involving interference with
a reference or the use of gratings, may also benefit from an informational approach where the
phase reconstruction algorithm is optimized in terms of the final extracted information.
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