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High Dynamic Range (HDR) signals capture much higher contrasts as compared to the traditional 8-bit low dynamic range (LDR) signals. This is achieved by representing the visual signal via values that are related to the real-world luminance, instead of gamma encoded pixel values which is the case with LDR. Therefore, HDR signals cover a larger luminance range and tend to have more visual appeal. However, due to the higher luminance conditions, the existing methods cannot be directly employed for objective quality assessment of HDR signals. For that reason, the HDR Visual Difference Predictor (HDR-VDP-2) has been proposed. HDR-VDP-2 is primarily a visibility prediction metric i.e. whether the signal distortion is visible to the eye and to what extent. Nevertheless, it also employs a pooling function to compute an overall quality score. This paper focuses on the pooling aspect in HDR-VDP-2 and employs a comprehensive database of HDR images (with their corresponding subjective ratings) to improve the prediction accuracy of HDR-VDP-2. We also discuss and evaluate the existing objective methods and provide a perspective towards better HDR quality assessment.

INTRODUCTION

High Dynamic Range (HDR) has been gaining popularity in academia and industry in recent times [START_REF] Banterle | Advanced High Dynamic Range Imaging: Theory and Practice[END_REF] . The reason is that with HDR we can represent the real physical luminance of a natural scene. As opposed to this, traditional low dynamic range (LDR) content allows limited range due to the limitations of capture and display devices. Therefore, LDR usually defines a white point or the maximum reachable luminance. For example, typical 8-bit representation assumes 255 as the maximum level. This has the consequence of shrinking the actual scene intensities within the defined limits obviously leading to loss of visual details and in turn the perceptual quality. On the other hand, HDR values are related to the scene intensities. Thus, there is a unique white point for each scene and HDR content is often described as scenereferred. Such scene-referred visual signals tend to be visually more appealing as they can represent the dynamic range of the visual stimuli present in the real world. Not surprisingly, the emergence of HDR is seen as an important step towards improving the visual quality of experience (QoE) of the end users.

While HDR imaging offers obvious advantages over the traditional LDR contents in terms of better visual quality of experience (QoE), it comes with the price of much larger storage space requirements as compared to an LDR file. For instance, an HDR image may occupy 4 times the space needed by an LDR version of the same image [START_REF] Banterle | Advanced High Dynamic Range Imaging: Theory and Practice[END_REF] . So there is need for research into effective HDR compression schemes and this therefore has been an important research area. A crucial and related issue is that the existing coding architectures have become widely adopted standards supported by almost all software and hardware equipment dealing with digital imaging. As a result, it will be of great interest to design HDR compression schemes that are compatible with existing coding architectures. Not surprisingly, substantial research effort has been put into designing HDR compression systems that are backward compatible [START_REF] Ward | JPEG-HDR: A Backwards-Compatible High Dynamic Range Extension to JPEG[END_REF][START_REF] Sugiyama | HDR Compression Using Optimized Tone Mapping Model[END_REF][START_REF] Mantiuk | Backward Compatible High Dynamic Range MPEG Video Compression[END_REF] with the standard image (e.g. JPEG and JPEG 2000) and video coders (e.g. H.264/AVC).

Due to the requirement of backwards-compatibility, HDR compression typically introduces artifacts due to three reasons. First, tone mapping is often exploited to reduce the dynamic range of HDR in a typical backward-compatible HDR compression pipeline. This causes loss of visual details. Second, the compression algorithm (eg. JPEG, MPEG) itself leads to loss of visual quality (eg. JPEG can introduce blockiness). Lastly, the inverse tone mapping is employed to rescale the dynamic range of the compressed bit-stream data. Again, inverse tone mapping being a lossy process can damage the perceptual quality. Thus, the decompressed HDR signal undergoes several processes all of which potentially decrease visual quality. This gives rise to the need of proper validation of perceptual quality in order to provide the endusers with minimum acceptable quality HDR content.

BACKROUND

Even though subjective assessment of visual quality remains the 'gold' standard, its deployment is difficult in some situations (eg. real-time HDR compression). Thus, there is obviously a strong need to develop objective computational models that can predict the perceptual quality of HDR signals in an objective manner. Such models will be extremely useful in an HDR processing pipeline for predicting the visual quality of processed HDR images/videos. Unfortunately, the conventional objective visual quality prediction methods do not take into account the luminance range and typically assume that the input pixel values are perceptually uniform. As a result, these cannot be used in case of higher luminance conditions as is usually the case with HDR visual signals. Recently, the HDR-VDP-2 algorithm 5 has been proposed. It is an extension of the Visible Differences Predictor (VDP) algorithm. The HDR-VDP-2 uses an approximate model of the human visual system (HVS) derived from new contrast sensitivity measurements. Specifically, a customized contrast sensitivity function (CSF) was employed to cover large luminance range as compared to the conventional CSFs. HDR-VDP-2 is essentially a visibility prediction metric. That is, it provides a 2D map with probabilities of detection at each pixel point and this is obviously related to the perceived quality because a higher detection probability implies a higher distortion level at the specific point. Nevertheless, in many cases, it is crucial to know an overall quality score (rather than just the local distortion visibility probability). Pooling is a crucial aspect in converting local error distribution into a single score that denotes the perceptual quality and the human visual system (HVS) can very easily do that accurately. But it is much more difficult to realize that in an objective quality prediction model given the underlying complexities and lack of knowledge of the HVS's pooling mechanisms. It is believed that multiple features jointly affect the HVS's perception of visual quality, and their relationship with the overall quality is possibly nonlinear and difficult to be determined apriori. Therefore, the approach that HDR-VDP-takes is that finding the pooling parameters via optimization of correlation with subjective scores.

In its original implementation, the authors of HDR-VDP-2 tried over 20 different combinations of aggregating (or pooling) functions. These included maximum value, percentiles (50, 75, 95) and a range of power means (normalized Minkowski summation) with the exponent ranging from 0.5 to 16. The aim was to maximize the value of Spearman's correlation coefficient in order to find the best pooling function and its parameters. While HDR-VDP-2 is fairly comprehensive method for HDR quality assessment, there is an issue with regards to pooling in HDR-VDP-2. This is related to parameter optimization. That is, the parameters of the pooling function in HDR-VDP-2 were found by maximizing (optimizing) correlation using existing LDR image databases. Therefore, its effectiveness in predicting the visual quality of HDR images is questionable given the different characteristics LDR and HDR images especially in terms of distortion visibility and overall visual appeal. To address that, we propose to compute the pooling parameters via optimization using HDR content. In the following, we first describe the development of a comprehensive HDR database and use it for parameter optimization.

SUBJECTIVE DATABASE FOR HDR VISUAL QUALITY

In this section, we will give a brief description of how we developed the HDR quality database. This will be used important for parameter optimization in HDR-VDP-2 as explained in the next section. Further, the HDR database will be the test bed for evaluating and comparing the performances of objective quality prediction methods. For developing the HDR database, we considered a total of 10 reference HDR scenes and two types of distortions: JPEG and JPEG 2000 compression artifacts. To our knowledge, our efforts are amongst the first ones to introduce a comprehensive HDR image database with subjective scores. This will be of immense value to the research community given the lack of publicly available databases for HDR content quality evaluation.

Test Material Preparation

First, we generated the HDR stimuli with JPEG distortions. For that we chose 10 reference (i.e. undistorted) HDR scenes, 7 compression bit rates so that the resulting visual quality covers the entire range i.e. from excellent (rating 5) to bad (rating 1). Since HDR compression involves tone mapping operator (TMO), we employed the image color appearance model iCAM06 algorithm [START_REF] Kuang | iCAM06: A refined image appearance model for HDR image rendering[END_REF] . Also, two optimization criteria were used. As a result, we obtained a total of 140 compressed HDR images (10 reference images × 1 TMO × 2 optimization criterion × 7 bit rates). With the inclusion of 10 reference scenes, we have a total of 150 images, i.e. 150 conditions = 10 reference images × 15 conditions per reference image, to be evaluated by subjects. The keen reader is also referred to our previous work [START_REF] Narwaria | Tone mapping Based High Dynamic Range Image Compression: Study of Optimization Criterion and Perceptual Quality[END_REF] for further details.

For JPEG 2000 distorted content, we chose 6 reference HDR scenes. In this case, we selected 5 TMOs: 3 local and 2 global ones. The local TMOs include the ones proposed by Ashikmin 9 , Reinhard 10 and Durand [START_REF] Durand | Fast bilateral filtering for the display of high-dynamic range images[END_REF] . For global TMOs, we chose the logarithmic TMO and the global version of the TMO proposed by Reinhard. Seven bit rates were chosen such that the resulting visual quality covers the entire range i.e. from excellent (rating 5) to bad (rating 1). As a result, we obtained a total of 210 decompressed HDR images (6 reference scenes × 5 TMOs × 7 bit rates). With the inclusion of the 6 reference scenes, we obtained a total of 216 still HDR images, i.e. 216 conditions = 6 reference scenes × 36 conditions per reference image, to be evaluated by subjects.

Subjective Testing

Observers were seated in a standardized room conforming to the International Telecommunication Union Recommendation (ITU-R) BT500-13 recommendations 12 . For displaying the HDR images, SIM2 HDR47E S 4K display 13 was used. The HDR47E S 4K is a 47-inch, 1080p LCD TV with maximum displayable luminance of 4000 cd/m². The viewing distance was set to three times the height of the screen (active part), that is approximately 178 cm and the room illumination was set to 130cd/m².

For rating the decompressed HDR images, we adopted the absolute category rating with hidden reference (ACR-HR) which is one of the rating methods recommended by the International Telecommunication Union (ITU) in Rec. ITU-T P.910 [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF] . For rating overall quality, a five-level scale is used: 5 (Excellent), 4 (Good), 3 (Fair), 2 (Poor) and 1 (Bad). A total of 27 observers (16 males and 11 females) were employed for JPEG while 29 observers (14 males and 15 females) subjectively evaluated the visual quality for the case of JPEG 2000. All observers naive (not expert in image or video processing) for the purpose of the study. We also employed post-experiment screening of the subjects in order to reject any outliers in accordance with the Video Quality Experts Group (VQEG) multimedia test plan [START_REF] Hands | Video Quality Experts Group (VQEG) Multimedia Group Test Plan[END_REF] . Analysis per processed image and per source (i.e. reference) image was performed and in our case, none of the observers was rejected. The mean opinion score (MOS) for each stimuli was obtained by averaging the scores for that stimuli from all the observers. The keen reader is also referred to our previous works 18, [START_REF] Narwaria | Impact of Tone Mapping in High Dynamic Range Image Compression[END_REF] for further details on the test material preparation and the subjective experiments.

IMPROVING QUALITY PREDICTION WITH HDR-VDP-2

In this section, we first give brief and relevant details of HDR-VDP-2. Then, we will outline the method to improve prediction performance based on optimization with HDR content.

Brief review of HDR-VDP-2

The HDR Visual Difference Predictor (HDR-VDP-2) algorithm is primarily designed for predicting the visibility of distortions in HDR images. To that end, HDR-VDP-2 provides a 2D map with probabilities of detection at each point and this is obviously related to the perceived quality because a higher detection probability suggests a higher distortion level at the specific point. Nevertheless, as an extension to provide an overall quality score, HDR-VDP-2 also employs pooling strategy so that the detected features can be pooled (fused) into a single number that denotes the overall quality scores for the image. Towards that end, the authors of HDR-VDP-2 tried over 20 different combinations of aggregating (or pooling) functions [START_REF] Mantiuk | HDR-VDP-2: A Calibrated Visual Metric for Visibility and Quality Predictions in All Luminance Conditions[END_REF] . These included maximum value, percentiles (50, 75, 95) and a range of power means (normalized Minkowski summation) with the exponent ranging from 0.5 to 16. The aim was to maximize the value of the Spearman's correlation coefficient in order to find the best pooling function and its parameters. The resulting expression to predict quality score Q was defined as:
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where i is the pixel index,  = 10 -5 is a constant to avoid singularities when D is close to 0, and f, o are respectively the spatial frequency band and orientation indices of the steerable pyramid. I is the total number of pixels and the per-band weighting f w was found by maximizing the correlation with an LDR image quality database.

Improved Optimization of Pooling in HDR-VDP-2

As mentioned, the per-band weighing f w was obtained by optimizing with an LDR database. This is problematic because the characteristics of LDR content are different from those of HDR especially with regards to perceptual quality. More specifically, the influence of spatial frequencies on the perceptual quality can be different in HDR and LDR.

Consequently, it is necessary to find the per-band weighting using HDR content. To that end, we employed JPEG compressed HDR images and their corresponding ratings. Because the subjective ratings and the HDR-VDP-2 predictions are not in the same range, a logistic mapping function of the following form was employed before computing the RMSE:
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where Q denotes the objective score and l Q represents the logistically transformed value and 
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To solve for f w by minimizing the above function, we employed the Nelder-Mead simplex algorithm 6 which is widely used for minimizing real-valued functions. The Nelder-Mead method attempts to minimize a scalar-valued nonlinear function of n real variables using only function values, without any derivative information (explicit or implicit). It maintains at each step a nondegenerate simplex, a geometric figure in n dimensions of nonzero volume that is the convex hull of n + 1 vertices. Each iteration of a simplex-based direct search method begins with a simplex, specified by its n + 1 vertices and the associated function values [START_REF] Lagarias | Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions[END_REF] . One or more test points are computed, along with their function values, and the iteration terminates with bounded level sets. The optimized weights f w obtained were then used to predict the quality scores for JPEG 2000 compressed images. Therefore, the content employed for optimization is different from the testing set. Note that there are a total of 216 HDR images for this condition. Another reason for using these sets of images for performance evaluation is related to their processing. Recall that the database for JPEG 2000 compressed HDR images the perceptual quality is not only affected by the compression rate but also depends on five tone mapping operators.

PERFORMANCE EVALUATION ON HDR DATABASE

Even though HDR-VDP-2 employs the pooling function in (1) to predict quality, to our knowledge, it has not been evaluated on a comprehensive set of distorted HDR images with MOSs since the original HDR-VDP-2 paper was more focused on visibility predictions rather than overall quality assessment. In fact, the quality prediction performance was tested only on a set of LDR images (from TID2008 database [START_REF] Ponomarenko | TID2008 -A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics[END_REF] ). Hence, it will be interesting to assess the performance of HDR-VDP-2 for quality prediction of HDR images and examine its effectiveness for the task of prediction (which is not entirely the same as detection). As mentioned, currently there is no publicly available HDR database with subjective quality ratings. Thus, the performance of HDR-VDP-2 and even conventional LDR metrics has not been evaluated with HDR content except our previous study [START_REF] Narwaria | Tone mapping Based High Dynamic Range Image Compression: Study of Optimization Criterion and Perceptual Quality[END_REF] in which we evaluated the performance for JPEG compressed HDR images. In this paper, we further validate the performance of objective methods on HDR images affected by JPEG 2000 compression errors as well as distortions due to tone mapping.

Qualitative analysis

The experimental results are reported in terms of four criteria commonly used for performance comparison, namely: the Pearson linear correlation coefficient C P (for prediction accuracy), the Spearman rank order correlation coefficient C S (for monotonicity), the Kendall rank correlation coefficient C K and the Root Mean Squared Error (RMSE) between the MOS and the objective predictions. For a perfect match between the objective and subjective scores, C P = C S = C K = 1 and RMSE=0.We not only evaluate the overall prediction accuracies but also report the results for two cases: (a) percontent prediction accuracy, (b) accuracy based on tone mapping operator (TMO). The former provides more information on how different objective methods perform for different content while the latter gives insights into method performance for predicting quality affected by TMO. In this paper, we considered 3 LDR objective methods namely Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] and the scalable image quality measure (SIQM) [START_REF] Narwaria | Fourier Transform Based Scalable Image Quality Measure[END_REF] . For HDR methods, we evaluated the HDR-VDP-2 with original parameter values and the modified values based on optimization with HDR content via (3). These cases are respectively denoted as HDR-VDP-2 (original) and HDR-VDP-2 (modified). The results for the per-content evaluation are given in Tables 1-5 from which we can make the following observations:

1. The overall prediction performance of the three LDR methods is very poor as compared to the two version of HDR-VDP-2 with SIQM performing the best. Such poor performance of LDR methods is however not entirely unexpected. This is because these methods typically assume perceptually scaled pixel value representation of the image signal. But with HDR, the pixels values are represented in terms of physical luminance values. Another possible reason for such poor performance is related to the high luminance conditions with HDR. Consequently, more distortions might be visible on an HDR display as compared to conventional LDR displays. This in effect can reduce the effectiveness of contrast sensitivity models that LDR methods in general might directly or indirectly employ (of course MSE does not use such models).

2. While the LDR methods perform quite poorly, their best performance occurs for 'Forest_path' content. As explained in our previous work [START_REF] Narwaria | Impact of Tone Mapping in High Dynamic Range Image Compression[END_REF] , the subjective ratings for this scene processed by the five TMOs were quite close. That is, despite the scene being processed by different TMOs, the resultant HDR qualities were judged by subjects as being quite close. We attributed this to the fact that the scene 'Forest_path' has mainly bright regions and so the TMOs yield very similar visual qualities. This can also be used to explain why LDR methods perform the best for this scene. Because of the absence of very dark regions, the overall luminance is spread in a more uniform manner. Therefore, this is more similar to an LDR content but with brighter luminance leading to better quality prediction by LDR methods.

3. The two versions of HDR-VDP-2 perform much better than all the three LDR methods. The proposed optimization indeed improves the overall performance of HDR-VDP-2. However, the improvement is not statistically significant as verified in the next section. We suspect that the performance can be further improved by calibration of other HDR-VDP-2 parameters (other than pooling ones like the peak sensitivity parameter [START_REF] Mantiuk | HDR-VDP-2: A Calibrated Visual Metric for Visibility and Quality Predictions in All Luminance Conditions[END_REF] ).

Further evaluation results for each TMO are reported in Tables 5678910. One can notice improvement in the prediction performance for each TMO. The biggest improvement is for SIQM which in some cases performs closer to HDR-VDP-2. On the other hand, the performance of HDR-VDP-2 (both versions) is similar to the per-content case. However, HDR-VDP-2 (modified) is still overall better although the performance is degraded for Reinhard_local TMO. The marked improvement in case of LDR methods indicates that within the same distortion (we can assume that each TMO is a source of distortion), LDR methods can predict quality more reliably. But with a more complex scenario (images processed by different TMOs), the performance of LDR methods starts to degrade rapidly. Overall, HDR-VDP-2 and its modified version clearly outperform the LDR methods.

Statistical analysis

In this section, we evaluate the statistical significance of the overall prediction performance of different objective methods. To that end, an F-test [START_REF] Montgomery | Applied Statistics and Probability for Engineers[END_REF] was performed on the prediction residuals between the objective predictions (after applying the logistic mapping) and the subjective scores. The test is based on an assumption of Gaussianity of the residual differences. Therefore, we first need to check if the residuals can be assumed to be Gaussian or not. For that, we used the Kolmogorov-Smirnov (KS) test [START_REF] Massey | The Kolmogorov-Smirnov Test for Goodness of Fit[END_REF][START_REF] Marsaglia | Evaluating Kolmogorov's Distribution[END_REF] and Table 11 lists the results and the corresponding test statistics. The critical value which is computed based on the number of residuals (in this case 216) was 0.0916. For determining normality, the KS test compares the test statistic with the critical value and a smaller test statistic value (as compared to the critical value ) implies normality. In Table 11, 0 for the KS test implies that the null hypothesis cannot be rejected at 5% significance level and therefore implies normality. One finds the residuals SIQM and the two HDR-VDP-2 versions are normally distributed. However, the test statistic of the remaining residuals is also not too large as compared to the critical value. This means that those residuals (from MSE and SSIM) can be taken to be approximately Gaussian. This was further confirmed by the skewness and kurtosis values which are also reported in Table 11. Since the Gaussian distribution has K value of 3, commonly, K values between 2 -4 can be deemed Gaussian approximately. Further given that S = 0 for normal distribution, we could assume approximate normality if S values are close to 0. We therefore find that the assumption of Gaussianity of residuals of all the five objective methods holds (or nearly holds). Assuming that
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denote the variances of the residuals from the respective objective quality assessment algorithms, a measure known as the F-value can be defined as 
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In Table 13, we present the F-values when comparing two objective methods. In this table, the (refer to Table 12), we can see from Table 13 that HDR-VDP-2 (original) and HDR-VDP-2 (modified) are statistically better than the LDR methods. Moreover, the three LDR methods lead to statistically indistinguishable performances. This once again confirms with statistical evidence that LDR methods cannot be used for HDR visual quality measurement. The statistical results also reveal that the wo HDR-VDP-2 versions are statically indistinguishable but HDR-VDP-2 (modified) performs better overall (F > 1). This has been highlighted in Table VII by bold-face F values for the corresponding cases. On the other hand, all the LDR based methods SIQM, SSIM and MSE are statistically indistinguishable from each other.

CONCLUSIONS

This paper has dealt with HDR visual quality assessment evaluation both from subjective and objective viewpoints. To that end, we first introduced an HDR database with JPEG and JPEG 2000 compression distortion as well as TMO induced distortions. We then used the HDR database for improving the prediction performance of HDR-VDP-2 by finding better pooling parameters. This was done by minimizing the error between the logistically transformed predicted values and the subjective ratings. The performance of three LDR methods namely MSE, SSIM and SIQM and the two versions of HDR-VDP-2 was evaluated on a set of 216 HDR images. The use of HDR images for parameter optimization lead to an overall better performance. We also expect that calibration of several other parameters in HDR-VDP-2 (eg. parameters controlling the peak sensitivity, visual contrast masking) with the HDR database will improve the prediction accuracy of HDR-VDP-2 further.
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  of the residuals from the two objective methods which need to be compared. The F value is then compared with a critical value denoted as critical F to establish statistical difference between the two methods.

criticalF

  is computed based on the number of residuals and the desired confidence level.

F

  the method indicated in each row is Method1 while the one in the column is Method2. With 216 residuals and 95% confidence level we have critical 8000. Keeping in mind the implications of the F values as compared to critical F

Table 1 .

 1 Per-content prediction performance of MSE

	Measure/	C P	C S	C K	RMSE
	HDR content				
	Office_ivc	0.2466	0.0115	0.0734	1.0451
	Carpark_ivc	0.4875	0.2261	0.8022	0.2016
	Bausch_lot	0.1734	0.2325	0.2424	0.9010
	Forest_path	0.5537	0.5927	0.4637	0.8903
	Lake	0.5452	0.5636	0.4427	1.0353
	Moto	0.5145	0.5174	0.3725	0.9374
	Overall results	0.1356	0.1482	0.1098	1.1238
		Table 2. Per-content prediction performance of SSIM	
	Measure/	C P	C S	C K	RMSE
	HDR content				
	Office_ivc	0.1479	0.0095	0.0797	1.0665
	Carpark_ivc	0.5062	0.2187	0.1984	1.0392
	Bausch_lot	0.1330	0.2325	0.2424	0.9068
	Forest_path	0.6314	0.6597	0.5147	0.8291
	Lake	0.4734	0.5387	0.4172	1.0879
	Moto	0.4871	0.5219	0.3725	0.9548
	Overall results	0.1053	0.1466	0.1070	1.1280
		Table 3. Per-content prediction performance of SIQM	
	Measure/	C P	C S	C K	RMSE
	HDR content				
	Office_ivc	0.1851	0.1269	0.1467	1.0597
	Carpark_ivc	0.8328	0.8699	0.6944	0.6671
	Bausch_lot	0.4008	0.4384	0.3445	0.8382
	Forest_path	0.5470	0.5947	0.4861	0.8951
	Lake	0.5011	0.4700	0.3535	1.0687
	Moto	0.4934	0.5260	0.3725	0.9508
	Overall results	0.3720	0.3034	0.2145	1.0529
		Table 4. Per-content prediction performance of HDR-VDP-2 (original)	
	Measure/	C P	C S	C K	RMSE
	HDR content				
	Office_ivc	0.5818	0.6030	0.4556	0.8771
	Carpark_ivc	0.8797	0.8909	0.7296	0.5731
	Bausch_lot	0.4852	0.5487	0.4358	0.8019
	Forest_path	0.6464	0.7234	0.5721	0.8157
	Lake	0.9600	0.9650	0.8567	0.3459
	Moto	0.9183	0.9657	0.8649	0.4328
	Overall results	0.7009	0.7389	0.5616	0.8090

Table 5 .

 5 Per-content prediction performance of HDR-VDP-2 (modified)

	Measure/	C P	C S	C K	RMSE
	HDR content				
	Office_ivc	0.7433	0.7240	0.5901	0.7214
	Carpark_ivc	0.7610	0.7556	0.5792	0.7817
	Bausch_lot	0.6735	0.6303	0.4944	0.6801
	Forest_path	0.7460	0.7647	0.6040	0.7120
	Lake	0.9420	0.9434	0.7962	0.4145
	Moto	0.9123	0.9260	0.7818	0.4476
	Overall results	0.7201	0.7499	0.5620	0.7871

Table 9 .

 9 Prediction performance of HDR-VDP-2 (original) for each TMO

	Measure/	C P	C S	C K	RMSE
	TMO				
	Ashikmin	0.7677	0.7777	0.6104	0.7460
	Durand	0.6192	0.7025	0.5519	0.7479
	Log	0.7624	0.7919	0.6157	0.6187
	Reinhard_global	0.8112	0.8197	0.6655	0.6716
	Reinhard_local	0.7635	0.7835	0.6240	0.5384

Table 10 .

 10 Prediction performance of HDR-VDP-2 (modified) for each TMO

	Measure/	C P	C S	C K	RMSE
	TMO				
	Ashikmin	0.8029	0.7832	0.6174	0.6940
	Durand	0.5805	0.6414	0.4726	0.7755
	Log	0.8390	0.8543	0.6717	0.5202
	Reinhard_global	0.7905	0.8105	0.6515	0.7034
	Reinhard_local	0.6665	0.6339	0.4704	0.6215

  Table 12 summarizes the implications of different ranges of F values.

Table 11 .

 11 Test of normality for the residuals (difference between logistically transformed objective predictions and MOSs) from the 5 methods namely MSE, SSIM, SIQM, HDR-VDP-2 (original) and HDR-VDP-2 (modified). '0' implies that the null hypothesis cannot be rejected at 5% significance level and implies normality while '1' denotes the opposite case.

		MSE	SSIM	SIQM	HDR-VDP-2	HDR-VDP-2
					(original)	(modified)
	KS test (0/1)	1	1	0	0	0
	Test statistic	0.1226	0.1301	0.0881	0.0893	0.0811
	Skewness	-0.4676	-0.4783	-0.5728	-0.4811	-0.3090
	Kurtosis	2.0666	2.0585	2.3360	2.9551	2.8186
		Table 12. Interpretation of F-values			

Table 13 .

 13 F-test result for the four objective methods. The F values Method1' while the method in each column denotes 'Method2'. The boldface values imply statistically significant difference between the two objective methods.

	significantly	Since F > 1 Method1 performs	Since F < 1 Method2 performs	Method2 has significantly
	larger residuals than		better than Method2 but both	better than Method1 but both	smaller residuals than
	Method1, so Method1 is		are statistically	are statistically	Method1, so Method1 is
	statistically better than		indistinguishable because	indistinguishable because	statistically worse than
	Method1.		F 	critical F	.	F		critical F 1	.	Method2.
						     2 2 Method 1 2 Method F  	   	are computed such that the method in each row
	is 'MSE	SSIM	SIQM			HDR-VDP-2	HDR-VDP-2
	MSE SSIM SIQM HDR-VDP-2 (original)	 0.9926 1.1392 1.9295	1.0074  1.1477 1.9439	0.8778 0.8713  1.6937			(original) 0.5183 0.5144 0.5904 	(modified) 0.4905 0.4869 0.5588 0.9465
	HDR-VDP-2	2.0386	2.0538	1.7895			1.0565
	(modified)								
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