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non borné (problèmes (5) et (6)). Cette réinterprétation de la méthode CEFRI a été initialement présentée dans [START_REF] Ben Belgacem | On the Schwarz algorithms for the elliptic exterior boundary value problems[END_REF]. Dans le cas d'une géométrie sphérique, elle nous permet d'établir le taux de convergence de la méthode itérative inhérente au problème (2) : la méthode de Schwarz avec recouvrement total converge si le bord Γ de l'obstacle est assez éloigné de la frontière artificielle Σ. Ce résultat est confirmé par des tests numériques réalisés avec des épaisseurs différentes entre Γ et Σ (voir Fig. 2). Cette relecture de la méthode CEFRI offre également une technique de préconditionnement.

Pour des raisons pratiques de mise en oeuvre numérique, la prise en compte de la condition essentielle imposée sur le bord Γ, se fait par une stratégie de pénalisation qui consiste à remplacer la condition au bord E × n γ = 0 du problème (2) par ε p (n γ × curlE) + E × n γ = 0 où ε p > 0 est choisi petit. Après discrétisation, cette méthode nous amène à résoudre un système linéaire impliquant une matrice éléments finis classique A ainsi qu'un bloc plein C dû à la représentation intégrale. La matrice du système linéaire à résoudre A + C est mal conditionnée. En appliquant le préconditionneur suggéré par la méthode de Schwarz sur l'équation induite de la discrétisation du problème de diffraction (3), le système devient alors

(I + A -1 C)E = A -1 F, (1) 

Introduction

We are interested in the resolution of the 3D exterior time-harmonic Maxwell equations. To this aim, we focus on a combination of finite elements and integral representation ( [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]). This strategy leads to an equivalent problem on a reduced bounded domain delimited by the surface of the scatterer and an artificial boundary with exact artificial boundary condition. No a priori condition is required on the distance between the scatterer and the artificial boundary but a difficult issue consists in the elaboration of a resolution strategy. A relevant idea was suggested in [START_REF] Jin | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF]. We propose the interpretation of this idea as an application of the Schwarz method, following the work done in [START_REF] Ben Belgacem | On the Schwarz algorithms for the elliptic exterior boundary value problems[END_REF] for Helmholtz equation. Hence, the theory on the Schwarz method justifies the use of Krylov solvers and the choice of a preconditioner.

In the next section, we derive the formulation of the system to be solved. Section 2 is devoted to the Schwarz interpretation of the resolution strategy suggested in [START_REF] Jin | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF]. In Section 3, the speed of convergence is estimated in the case of a spherical scatterer. Finally, some numerical results illustrate the theoretical properties. boundary Σ (see Fig. 1), the exterior problem reduces to a problem on a bounded domain Ω delimited by Γ and Σ (see [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]): Find E such that

         curl curlE -t -1 ∇(divE) -k 2 s E = 0 in Ω, E × n γ = 0, divE = 0 on Γ, T ν1 (E) = T ν1 (E inc -I Γ (E)) and N ν2 (E) = N ν2 (E inc -I Γ (E)) on Σ, (2) 
where n γ is the exterior unit normal of the domain Ω i on Γ; the regularization term t -1 ∇(divE) allows the use of a Galerkin finite-elements method (see [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]) and the regularization parameter t -1 depends on the permittivity and the permeability of the air; k s is the wave number; ν 1 and ν 2 are complex numbers which have a negative imaginary part. The two operators T ν1 and N ν2 are defined by

T ν1 E = curlE × n σ + ν 1 n σ × (E × n σ ) and N ν2 E = divE + ν 2 E
• n σ with n σ the exterior unit normal of the domain Ω on Σ. The boundary conditions on Σ are derived from the integral representations satisfied by the scattered field and identified by the following expression ( [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF]): for x ∈ Ω e ,

I Γ (E)(x) = -k 2 s Ω RG t (x, .)E + Ω curlRG t (x, .)curlE +t -1 Ω divRG t (x, .) T divE -t -1 Γ divG t (x, .) T (E •n γ )dγ,
where

G t = G ks I + 1 k 2 s
Hess(G ks -G kp ) is the outgoing Green tensor associated with the differential operator curl curl -t -1 ∇(div) -k 2 s I of the regularized Maxwell equation; I is the identity matrix in R 3 ; Hess stands for Hessian operator; k p = √ tk s and G k is the fundamental solution of Helmholtz equation; R is a linear operator that maps every regular function ϕ defined on Γ into a regular function Rϕ defined on Ω which satisfies Rϕ = ϕ on Γ and Rϕ = 0 on Σ. The consideration of the Hilbert space

H t = E ∈ H(curl, Ω) / divE ∈ L 2 (Ω), E × n γ = 0 on Γ, E × n σ ∈ L 2 (Σ) 3 , E • n σ ∈ L 2 (Σ) ,
enables one to write a variational formulation of the problem (2): Find E ∈ H t such that

(A t + C t )E = F t , (3) 
where the operators A t and C t : H t → H t are defined as follows

(A t E, E ′ ) t = Ω (curlE•curlE ′ +t -1 divEdivE ′ -k 2 s E•E ′ )+ Σ (ν 1 (n σ ∧E)•(n σ ∧E ′ )+t -1 ν 2 (n σ •E)(n σ •E ′ ))dσ, (C t E, E ′ ) t = Σ T ν1 (I Γ (E)) • E ′ dσ + t -1 Σ N ν2 (I Γ (E))(n σ • E ′ )dσ,
and

F t is given by (F t , E ′ ) t = Σ (T ν1 (E inc ) • E ′ + t -1 N ν2 (E inc )(n σ • E ′ ))dσ, where (•, •) t is the scalar product on H t .
The problem (3) is well posed as explained in [START_REF] Hazard | On the solution of time-harmonic scattering problems for Maxwell's equations[END_REF] and the operator A t is invertible.

Schwarz method interpretation

In order to solve the system (3), Jin and Liu [START_REF] Jin | A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation Problems[END_REF] suggested to consider C t in the right hand side. An application of the fixed point algorithm leads to finding E n+1 such that

         curl curlE n+1 -t -1 ∇(divE n+1 ) -k 2 s E n+1 = 0 in Ω, E n+1 × n γ = 0, divE n+1 = 0 on Γ, T ν1 (E n+1 ) = T ν1 (E inc -I Γ (E n )) and N ν2 (E n+1 ) = N ν2 (E inc -I Γ (E n )) on Σ. (4)
In this paper, we focus on an original mathematical justification of convergence of the algorithm expressed by Jin and Liu. We interprete the algorithm defined by (4) as a Schwarz method. This interpretation has been initially proposed for the case of Helmholtz equation in [START_REF] Ben Belgacem | On the Schwarz algorithms for the elliptic exterior boundary value problems[END_REF]. The strategy is designed by the Total Overlapping Schwarz Method. Indeed the overlapping area is the total domain Ω. We hereby extend their work to the case of Maxwell equations: it consists in replacing equivalently the problem (4) by the two following subproblems. The first one is a transmission problem:

                         curl curlE 2n+1 -t -1 ∇(divE 2n+1 ) -k 2 s E 2n+1 = 0 in Ω i ∪ Ω e , n γ × [E 2n+1 ] = 0, n γ × [curlE 2n+1 ] = -n γ × curlE 2n on Γ, [divE 2n+1 ] = 0, n γ • [E 2n+1 ] = -n γ • E 2n on Γ, lim ρ→∞ ||x||=ρ ||curlE s 2n+1 × n γ -ik s n γ × (E s 2n+1 × n γ )|| 2 dγ = 0, lim ρ→∞ ||x||=ρ | √ t -1 divE s 2n+1 -ik s E s 2n+1 • n γ | 2 dγ = 0. ( 5 
)
The second one consists in finding E 2n+2 such that

         curl curlE 2n+2 -t -1 ∇(divE 2n+2 ) -k 2 s E 2n+2 = 0 in Ω, E 2n+2 × n γ = 0, divE 2n+2 = 0 on Γ, T ν1 (E 2n+2 ) = T ν1 (E 2n+1 ) and N ν2 (E 2n+2 ) = N ν2 (E 2n+1 ) on Σ. (6)
The solution E 2n+1 of (5) has an explicit solution given by an integral representation. By inserting this representation in the second condition of (6) we effectively obtain the solution of (4). At the iteration n, the Schwarz algorithm is defined by A t E n+1 = -C t E n + F t . Numerically, we use the scheme suggested by Jin and Liu and do not use the subproblems ( 5) and (6). The intermediate problems ( 5) and (6) are used for theoretical justifications. This enables one to derive convergence estimations that cannot be obtained directly from the system (4). In Section 3, we investigate an analytical calculation of the rate of convergence of the Schwarz method in a spherical configuration.

Analytical estimation of the convergence for a spherical scatterer

In the case where Ω i is a perfectly conducting ball, we investigate the rate of convergence of the Total Overlapping Schwarz method. Let us consider the scatterer to be a ball of radius R * . We suppose that the artificial boundary Σ is a sphere concentric to Γ with radius R > R * . We first introduce some notations: We denote by j l the spherical Bessel function of degree l, by h l the spherical Hankel function of the first kind of degree l and H l (r) = h l (r) + rh ′ l (r), J l (r) = j l (r) + rj ′ l (r). We introduce the tangential vector spherical harmonics on the unit sphere S 1 , U lm = (1/ l(l + 1))∇Y m l and V lm = n γ × U lm , where Y m l , l > 0, m = -l, ..., l are the orthonormal scalar spherical harmonics (complete basis of L 2 (S 1 )). The sets of U lm and V lm form a complete orthonormal basis for T 2 (S 1 ) := a :

S 1 → C 3 / a ∈ (L 2 (S 1 )) 3 , a • n γ = 0 .
We define the error (w n ) n on the field E at each iteration by:

w 2n+1 = E 2n+1 -E in Ω e , w 2n+1 = E 2n+1 in Ω i , w 2n+2 = E 2n+2 -E in Ω.
For all n, we define Λ n = T ν1 (w 2n ) and δ n = N ν2 (w 2n ). In order to prove that the error (w n ) n converges to zero, we first show that Λ n+1 = KΛ n and δ n+1 = Lδ n with K : T 2 (S 1 ) → T 2 (S 1 ) and L : L 2 (S 1 ) → L 2 (S 1 ) two linear maps. K (resp. L) has a diagonal representation in the basis (U lm , V lm ) lm of T 2 (S 1 ) (resp. Y m l of L 2 (S 1 )). Let us denote by τ 1,lm , τ 2,lm (resp. τ 3,lm ) the eigenvalues of K (resp. L). These eigenvalues define the rate of convergence of the Total Overlapping Schwarz method. Taking into account the boundary and transmission conditions, we obtain:

τ 1,lm = 1 - H l (k s R * ) J l (k s R * ) J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1 , τ 2,lm = 1 - h l (k s R * ) j l (k s R * ) J l (k s R) -ik s Rj l (k s R) H l (k s R) -ik s Rh l (k s R) -1 , τ 3,lm = 1 - H l (k s R * ) J l (k s R * ) j l (k s R) h l (k s R) -1
.

The convergence of the Total Overlapping Schwarz method is ensured if |τ i,lm | < 1, ∀i = 1, ..., 3, ∀l. The reader can see that these eigenvalues are independent of the parameter m. For R * = 1, the asymptotic behavior of the spherical Bessel functions for large l leads to the asymptotic estimation τ i,lm ∼ (1-R 2l ) -1 , i = 1, ..., 3. As a consequence, for small values of R, there exists a finite number of coefficients τ i,lm outside of the unit disk, and for sufficiently large values of R, all the coefficients τ i,lm are in the interior to the unit disk. We conclude that the Schwarz method has a linear convergence for R large enough. The numerical tests illustrate this theoretical result. In Fig. 2, we consider R * = 1 and R = R * + e with different values of e: λ/100, λ/10 or λ/5. The cases e = λ/100 and e = λ/10 exhibit some coefficients larger than 1 while the maximum value of |τ 2,lm | is strictly lower than 1 at the considered wavenumbers for the thickness e = λ/5 but the results are strongly dependent on the wavenumber. Similar asymptotic observations can be done on |τ 1,lm | and |τ 3,lm |. As a consequence, a Krylov method is a relevant alternative to the algorithm defined by (4): due to the properties of Krylov solvers demonstrated in [START_REF] Gmati | Comments on the GMRES Convergence for Preconditioned Systems[END_REF], the convergence of a Krylov method is ensured for the resolution of the problem (3) using A t as a preconditioner. 

Preconditioner for a Krylov solver

The previous work suggests the use of A t as a preconditioner to solve the problem (3) using a Krylov solver. We hereby consider the resolution of problem (3) using the biconjugate gradient stabilized method. After a finite-elements discretization, the linear system is written under the form (A + C)E = F and the preconditioned system becomes (I + A -1 C)E = A -1 F where the matrix C involves the integral operators and the matrix A related to the differential operators involves a term resulting from the essential condition considered by a penalization strategy: ε p (n γ × curlE) + E × n γ = 0 on Γ, with ε p > 0.

The numerical implementation were done using and developing new integrands in the library Mélina++ [5]. In this section, we validate the efficiency of the preconditioning strategy by the consideration of an intermediate problem the solution of which is known:

                   curl curlE -∇(divE) -k 2 s E = 0 in Ω e , E × n γ = G 1 1 × n γ , divE = divG 1 1 on Γ, lim ρ→∞ ||x||=ρ ||curlE s × n γ -ik s n γ × (E s × n γ )|| 2 dγ = 0, lim ρ→∞ ||x||=ρ |divE s -ik s E s • n γ | 2 dγ = 0, (7) 
where G 1 1 is the first vector component of G 1 . The scatterer is the unit sphere and the artificial boundary Σ is the sphere concentric to Γ with radius R = 1.5. Fig. 3-left shows the convergence of the relative error with respect to the finite-elements discretization: the relative error is plotted with respect to the average size of the mesh elements, for different values of the penalization parameter ε p , with k s = 3. Fig. 3-right illustrates a superlinear convergence of the biconjugate gradient stabilized solver applied to the preconditioned system for different values of the wavenumber with ε p = 10 -4 .
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 1 Figure 1. Left: exterior unbounded domain Ωe, right: bounded domain Ω.
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 2 Figure 2. Modulus of τ 2,lm for thickness e = λ/100 (left), λ/10 (center) and λ/5 (right). Cases ks = 1, 10 or 30.

Figure 3 .

 3 Figure 3. Relative l 2 -error with respect to the discretization (left), behavior of the residuals, case ksh = 2π/10 (right)

Scattering by a perfect conductorLet us consider Ω i a bounded scatterer in R 3 with a regular boundary Γ and Ω e its unbounded complementary. We are concerned with the scattering of a time-harmonic electromagnetic wave by the perfect conductor Ω i . Our purpose is to determine the total field E = E s + E inc where E inc is the incident wave and E s is the scattered field, solution to the regularized Maxwell equations with essential boundary