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A necessary and sufficient condition for the non-trivial limit

of the derivative martingale in a branching random walk

Xinxin Chen

LPMA, Université Paris VI

Summary. We consider a branching random walk on the line. Biggins and
Kyprianou [6] proved that, in the boundary case, the associated derivative
martingale converges almost surly to a finite nonnegative limit, whose law
serves as a fixed point of a smoothing transformation (Mandelbrot’s cas-
cade). In the present paper, we give a necessary and sufficient condition for
the non-triviality of this limit and establish a Kesten-Stigum-like result.

Keywords. Branching random walk; derivative martingale; Mandelbrot’s
cascade; random walk conditioned to stay positive.

1 Introduction

We consider a discrete-time branching random walk (BRW) on the real line, which can

be described in the following way. An initial ancestor, called the root and denoted by ∅,

is created at the origin. It gives birth to some children which form the first generation

and whose positions are given by a point process L on R. For any integer n ≥ 1, each

individual in the nth generation gives birth independently of all others to its own children in

the (n+1)th generation, and the displacements of its children from this individual’s position

is given by an independent copy of L. The system goes on if there is no extinction. We thus

obtain a genealogical tree, denoted by T. For each vertex (individual) u ∈ T, we denote its

generation by |u| and its position by V (u). In particular, V (∅) = 0 and (V (u); |u| = 1) = L.

Note that the point process L plays the same role in the BRW as the offspring distribution

in a Galton-Watson process. We introduce the Laplace-Stieltjes transform of L as follows:

(1.1) Φ(t) := E
[ ∫

R

e−txL( dx)
]
= E

[ ∑

|u|=1

e−tV (u)
]
, for ∀t ∈ R.
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Let Ψ(t) := logΦ(t). We always assume in this paper Ψ(0) > 0 so that E
[∑

|u|=1 1
]
>

1. This yields that with strictly positive probability, the system survives. Let q be the

probability of extinction. Clearly, q < 1.

Let (Fn;n ≥ 0) be the natural filtration of this branching random walk, i.e. let Fn :=

σ{(u, V (u)); |u| ≤ n}. We introduce the additive martingale for any t ∈ R,

(1.2) Wn(t) :=
∑

|u|=n

e−tV (u)−nΨ(t).

It is a nonnegative martingale with respect to (Fn;n ≥ 0), which converges almost surely to

a finite nonnegative limit. Biggins [3] established a necessary and sufficient condition for the

mean convergence of Wn(t), and generalized Kesten-Stigum theorem for the Galton-Watson

processes. A simpler proof based on a change of measures was given later by Lyons [14].

More generally, Biggins and Kyprianou [6] studied the martingales produced by the so-

called mean-harmonic functions. Given suitable conditions on the offspring distribution L

of the branching random walk, like the X logX condition of the Kesten-Stigum theorem,

they gave a general treatment to obtain the mean convergence of these martingales. In this

paper, following their ideas, we work on one special example and give a Kesten-Stigum-like

theorem.

Throughout this paper, we consider the boundary case (in the sense of [7]) where Ψ(1) =

Ψ′(1) = 0, i.e.,

(1.3) E
[ ∑

|u|=1

e−V (u)
]
= 1, E

[ ∑

|u|=1

V (u)e−V (u)
]
= 0.

In addition, we assume that

(1.4) σ2 := E
[ ∑

|u|=1

V (u)2e−V (u)
]
∈ (0,∞).

We are interested in the derivative martingale, which is defined as follows:

(1.5) Dn :=
∑

|u|=n

V (u)e−V (u), ∀n ≥ 0.

It is a signed martingale with respect to (Fn), of mean zero. By Theorem 5.1 of [6], under

(1.3) and (1.4), Dn converges almost surely to a finite nonnegative limit, denoted by D∞.

Moreover, D∞ satisfies the following equation (Mandelbrot’s cascade):

(1.6) D∞ =
∑

|u|=1

e−V (u)D(u)
∞ ,
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where D
(u)
∞ are copies of D∞ independent of each other and of F1. Note that D∞ serves

as a nonnegative fixed point of a smoothing transformation. From this point of view, the

questions concerning the existence, uniqueness and asymptotic behavior of such fixed points

have been much studied in the literature ([5, 7, 12, 13]). We are interested in the existence

of a non-trivial fixed point, and we are going to determine when P(D∞ > 0) > 0.

It is known that P(D∞ = 0) is equal to either the extinction probability q or 1 (see [1],

for example). We say that the limit D∞ is non-trivial if P(D∞ > 0) > 0, which means

that P(D∞ = 0) = q. Otherwise, it is trivially zero. In this paper, we give a sufficient and

necessary condition for the non-triviality of D∞. The main result is stated as follows.

For any y ∈ R, let y+ := max{y, 0} and let log+ y := log(max{y, 1}). We introduce the

following random variables:

(1.7) Y :=
∑

|u|=1

e−V (u), Z :=
∑

|u|=1

V (u)+e
−V (u).

Theorem 1.1. The limit of the derivative martingale Dn is non-trivial, namely P(D∞ >

0) > 0, if and only if the following condition holds:

(1.8) E
(
Z log+ Z + Y (log+ Y )2

)
<∞.

Remark 1.2. In [6], the authors studied the optimal condition for the non-triviality of D∞.

However, there is a small gap between the necessary condition and the sufficient condition

for P(D∞ > 0) > 0 in their Theorem 5.2. Our result fills this gap and gives the analogue of

the result of [15] in the case of branching Brownian motion.

Remark 1.3. Aı̈dékon proved that the condition (1.8) is sufficient for P(D∞ > 0) > 0 (see

Proposition A.3 in the Appendix of [1]).

The paper is organized as follows. Section 2 introduces a change of measures based on

a truncated martingale which is closely related to the derivative martingale. We also prove

a proposition concerning certain behaviors of a centered random walk conditioned to stay

positive at the end of Section 2. Then, by using this proposition, we prove Theorem 1.1 in

Section 3.

Throughout the paper, (ci)i≥0 denote positive constants. We write E[f ; A] for E[f1A]

and set
∑

∅ := 0.
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2 Lyons’ change of measures via truncated martingales

2.1 Truncated martingales

We begin with the well-known many-to-one lemma. For any a ∈ R, let Pa be the probability

measure such that Pa

((
V (u), u ∈ T

)
∈ ·

)
= P

((
V (u)+a, u ∈ T

)
∈ ·

)
. The corresponding

expectation is denoted by Ea. We write P, E instead of P0, E0 for brevity. For any particle

u ∈ T, we denote by ui its ancestor at the ith generation, for 0 ≤ i < |u|. In addition, we

write u|u| := u. We thus denote its ancestral line by [[∅, u]] := {u0, u1, · · · , u|u|}.

Lemma 2.1 (Many-to-one). There exists a sequence of i.i.d centered random variables

(Sk+1 − Sk), k ≥ 0 such that for any n ≥ 1 and any measurable function g : Rn → R+,

we have

(2.1) Ea

[ ∑

|u|=n

g
(
V (u1), · · · , V (un)

)]
= Ea

[
eSn−ag(S1, · · · , Sn)

]
,

with Pa[S0 = a] = 1.

In view of (1.4), S1 − S0 has a finite variance σ2 = E[S2
1 ] = E[

∑
|u|=1 V (u)2e−V (u)].

Let U−( dy) be the renewal measure associated with the weak descending ladder height

process of (Sn, n ≥ 0). Following the arguments in Section 2 of [4], we obtain that for any

measurable function f : R→ R+,

(2.2) E
[ τ−1∑

j=0

f(−Sj)
]
=

∫ ∞

0

f(y)U−( dy),

where τ be the first time that (Sn) enters (0,∞), namely τ := inf{k > 0, Sk ∈ (0,∞)}

which is proper here. We define R(x) := U−([0, x)) for all x > 0 and define R(0) := 1.

Note that R(x) equals the renewal function U−([0, x]) at points of continuity. We collect the

following properties of this function R(x) which are consequences of the renewal theorem

(see [4, 2, 17]).

Fact 2.2. (i) There exists a positive constant c0 > 0 such that

(2.3) lim
x→∞

R(x)

x
= c0.

(ii) There exist two constants 0 < c1 < c2 <∞ such that

(2.4) c1(1 + x) ≤ R(x) ≤ c2(1 + x), ∀x ≥ 0.
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(iii) For any x ≥ 0, we have E[R(S1 + x)1(S1+x>0)] = R(x).

Let β ≥ 0. Started from V (∅) = a, we add a barrier at −β to the branching random

walk. Now, we define the following truncated random variables:

(2.5) D(β)
n :=

∑

|x|=n

R(V (x) + β)e−V (x)1(min1≤k≤n V (xk)>−β), ∀n ≥ 1,

and D
(β)
0 := R(a+ β)e−a1(a≥−β).

Lemma 2.3. For any a ≥ 0 and β ≥ 0, under Pa, the process (D
(β)
n , n ≥ 0) is a nonnegative

martingale with respect to (Fn, n ≥ 0).

This lemma follows immediately from (iii) of Fact 2.2 and the branching property. We

feel free to omit its proof and call (D
(β)
n ) the truncated martingale. It also tells us that under

Pa, (D
(β)
n , n ≥ 0) converges almost surely to a finite nonnegative limit, which we denote by

D
(β)
∞ .

The connection between the limits of the derivative martingale and truncated martingales

is recorded in the following Lemma, the proof of which can be referred to [6] and [1].

Lemma 2.4. (1) If D∞ is trivial, i.e., P(D∞ = 0) = 1, then for any β ≥ 0, D
(β)
∞ is

trivially zero under P.

(2) Under P, if there exists some β ≥ 0 such that D
(β)
∞ is trivially zero, so is D∞.

Thanks to Lemma 2.4, we only need to investigate the truncated martingale (D
(0)
n ;n ≥ 0)

and determine when its limit is non-trivial.

2.2 Lyons’ change of probabilities and spinal decomposition

Let β = 0. With this nonnegative martingale (D
(0)
n , n ≥ 0), we define for any a ≥ 0 a new

probability measure Qa such that for any n ≥ 1,

(2.6)
dQa

dPa

∣∣∣
Fn

=
D

(0)
n

R(a)e−a
.

Qa is defined on F∞ := ∨n≥0Fn. Let us give an intuitive description of the branching

random walk under Qa, which is known as the spinal decomposition. We start from one

single particle ω0, located at the position V (ω0) = a. At time 1, it dies and produces a point

process distributed as (V (u); |u| = 1) under Qa. Among the children of ω0, ω1 is chosen
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to be u with probability proportional to R(V (u))e−V (u)1(V (u)>0). At each time n + 1, each

particle v in the nth generation dies and produces independently a point process distributed

as (V (u); |u| = 1) under PV (v) except ωn, which dies and generates independently a point

process distributed as (V (u); |u| = 1) under QV (ωn). And then ωn+1 is chosen to be u among

the children of ωn, with probability proportional to R(V (u))e−V (u)1(min1≤k≤n+1 V (uk)>0). We

still use T to denote the genealogical tree. Then (ωn; n ≥ 0) is an infinite ray in T, which

is called the spine. The rigorous proof was given in Appendix A of [1]. Indeed, this type of

measures’ change and the establishment of a spinal decomposition have been developed in

various cases of the branching framework; see, for example [14, 11, 8, 10].

We state the following fact about the distribution of the spine process (V (ωn); n ≥ 0)

under Qa.

Fact 2.5. Let a ≥ 0. For any n ≥ 0 and any measurable function g : Rn+1 → R+, we have

(2.7) EQa

[
g(V (ω0), · · · , V (ωn))

]
=

1

R(a)
Ea

[
g(S0, · · · , Sn)R(Sn); min

1≤k≤n
Si > 0

]
,

where (Sn) is the same as that in Lemma 2.1.

For convenience, let (ζn; n ≥ 0) be a stochastic process under Pa such that

(2.8) Pa[
(
ζn; n ≥ 0

)
∈ ·] = Qa[

(
V (ωn); n ≥ 0

)
∈ ·].

Obviously, under Pa, (ζn; n ≥ 0) is a Markov chain with transition probabilities P so that,

for any x ≥ 0, P (x, dy) = R(y)
R(x)

1(y>0)Px(S1 ∈ dy). This process (ζn) is usually called a

random walk conditioned to stay positive. It has been arisen and studied in, for instance,

[17, 2, 4, 18]. In what follows, we state some results about (ζn), which will be useful later in

Section 3.

2.3 Random walk conditioned to stay positive

Recall that (Sn) is a centered random walk on R with finite variance σ2. Let τ− be the first

time that (Sn) hits (−∞, 0], namely, τ− := inf{k ≥ 1 : Sk ≤ 0}. Let (Tk, Hk; k ≥ 0) be the

strict ascending ladder epochs and heights of (Sn; n ≥ 0), i.e., T0 = 0, H0 := S0 and for any

k ≥ 1, Tk := inf{j > Tk−1 : Sj > Hk−1}, Hk := STk
. We denote by U( dx) the corresponding

renewal measure (see Chapter XII in [9], for example). Then, similarly to (2.2), for any

measurable function f : R→ R+,

(2.9) E
[ τ−−1∑

n=0

f(Sn)
]
= E

[∑

k≥0

f(Hk)
]
=

∫ ∞

0

f(x)U( dx).
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We deduce from (2.7) and (2.9) that

E
[∑

n≥0

f(ζn)
]
= EQ0

[∑

n≥0

f(V (ωn))
]
=

∑

n≥0

E
[
f(Sn)R(Sn)1(min1≤k≤n Sk>0)

]

= E
[ τ−−1∑

n=0

f(Sn)R(Sn)
]
=

∫ ∞

0

f(x)R(x)U( dx).(2.10)

Recall also that U−( dx) is the renewal measure associated with the weak descending

ladder height process of (Sn). By the renewal theorem (see P.360 in [9]), there exist two

constants c3, c4 > 0 such that for ∀x, y ≥ 0,

c3(1 + x) ≤ U([0, x]) ≤ c4(1 + x), 0 ≤ U([x, x+ y]) ≤ c4(1 + y);(2.11)

c3(1 + x) ≤ U−([0, x]) ≤ c4(1 + x), 0 ≤ U−([x, x+ y]) ≤ c4(1 + y).(2.12)

Given a non-increasing function F ≥ 0, we present the following proposition, which gives

a necessary and sufficient condition for the infinity of the series
∑

n F (ζn).

Proposition 2.6. Let F : [0,∞)→ [0,∞) be non-increasing. Then

(2.13)

∫ ∞

0

F (y)y dy =∞⇐⇒
∑

n≥0

F (ζn) =∞, P-a.s.

Note that (ζn) can be viewed as a discrete-time counterpart of the 3-dimensional Bessel

process, for which a similar result holds (see, for instance, Ex 2.5, Chapter XI of [16]). And

we will prove (2.13) in a similar way as for the Bessel process.

Proof. Observe that 0 ≤ F (x) ≤ F (0) <∞ for any x ≥ 0. So there is no difference between

the two events {
∑

n≥0 F (ζn) =∞} and {
∑

n≥1 F (ζn) =∞}.

We first prove “⇐=” in (2.13). It follows from (2.4) and (2.11) that

(2.14)

∫ ∞

0

F (y)y dy =∞⇐⇒

∫ ∞

0

F (y)R(y)U( dy) =∞.

Actually, by (2.10),

E
[∑

n≥0

F (ζn)
]
=

∫ ∞

0

F (y)R(y)U( dy).

Clearly, P
[∑

n≥0 F (ζn) = ∞
]
= 1 yields

∫∞

0
F (y)R(y)U( dy) = ∞. The “⇐=” in (2.13) is

hence proved.
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To prove “=⇒” in (2.13), we only need to show that if P
[∑

n≥0 F (ζn) = ∞
]
< 1, then

∫∞

0
F (y)y dy < ∞. From now on, we suppose that P

[∑
n≥0 F (ζn) = ∞

]
< 1, which is

equivalent to say that,

(2.15) P

[∑

n≥1

F (ζn) <∞

]
> 0.

We draw support from Tanaka’s construction for the random walk conditioned to stay

positive ([17, 4]). Recall that τ = inf{k ≥ 1 : Sk ∈ (0,∞)}. We hence obtain an excursion

(Sj; 0 ≤ j ≤ τ), which is denoted by ξ = (ξ(j), 0 ≤ j ≤ τ). Let {ξk = (ξk(j), 0 ≤ j ≤

τk); k ≥ 1} be a sequence of independent copies of ξ. For any k ≥ 1, let

(2.16) νk(j) := ξk(τk)− ξk(τk − j), ∀0 ≤ j ≤ τk.

This brings out another sequence of i.i.d. excursions {νk = (νk(j), 0 ≤ j ≤ τk); k ≥ 1},

based on which we reconstruct the random walk conditioned to stay position (ζn) in the

following way. Define for any k ≥ 1,

T+
k := τ1 + ...+ τk;(2.17)

H+
k := ν1(τ1) + ... + νk(τk) = ξ1(τ1) + ... + ξk(τk),(2.18)

and let T+
0 = H+

0 = 0. Then the process

(2.19) ζn = H+
k + νk+1(n− T+

k ), for T+
k < n ≤ T+

k+1,

with ζ0 = 0, is what we need.

We actually establish un process distributed as (ζn). For brevity, we still denote it by

(ζn) without changing any conclusion in this proof. For any k ≥ 1, let

(2.20) χk(F ) :=

T+
k∑

n=T+
k−1+1

F (ζn) =

τk∑

j=1

F
(
H+

k−1 + νk(j)
)
,

so that
∑

n≥1 F (ζn) =
∑

k≥1 χk(F ).

By (2.16), we get that

χk(F ) =

τk∑

j=1

F
(
H+

k−1 + ξk(τk)− ξk(τk − j)
)

=

τk−1∑

j=0

F
(
H+

k − ξk(j)
)
.
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(2.15) hence becomes that

(2.21) P

[∑

k≥1

χk(F ) <∞

]
= P

[∑

k≥1

τk−1∑

j=0

F
(
H+

k − ξk(j)
)
<∞

]
> 0.

By Theorem 1 in Chapter XVIII.5 of [9], as (Sn) is of finite variance, we have b
+ := E[H+

1 ] =

E[Sτ ] <∞. It follows from Strong Law of Large Numbers that P-a.s.,

(2.22) lim
k→∞

H+
k

k
= b+.

Let A > max{1, b+}. This tells us that P-a.s., for all large k, H+
k ≤ Ak. As F is non-

increasing, one sees that

(2.23) P

[∑

k≥1

τk−1∑

j=0

F
(
Ak − ξk(j)

)
<∞

]
≥ P

[∑

k≥1

τk−1∑

j=0

F
(
H+

k − ξk(j)
)
<∞

]
> 0.

For any k ≥ 1 let

(2.24) χ̃k :=

τk−1∑

j=0

F
(
Ak − ξk(j)

)
.

So, P
[∑

k≥1 χ̃k < ∞
]
> 0. Recall that {ξk, k ≥ 1} is a sequence of independent copies of

(Sj; 0 ≤ j ≤ τ). This yields the independence of the sequence {χ̃k, k ≥ 1}. It follows from

Kolmogorov’s 0-1 law that

(2.25) P

[∑

k≥1

τk−1∑

j=0

F (Ak − ξk(j)) <∞

]
= P

[∑

k≥1

χ̃k <∞

]
= 1.

Moreover, let EM :=
{∑

k≥1 χ̃k < M
}
for any M > 0. Either there exists some M0 <∞

such that P[EM0] = 1, or P[EM ] < 1 for all M ∈ (0,∞). On the one hand, if P[EM0 ] = 1

for some M0 <∞, then

M0 ≥ E

[∑

k≥1

χ̃k

]
= E

[∑

k≥1

τk−1∑

j=0

F
(
Ak − ξk(j)

)]

=
∑

k≥1

E

[ τ−1∑

j=0

F (Ak − Sj)

]

=
∑

k≥1

∫ ∞

0

F (Ak + y)U−(dy),
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where the last equality follows from (2.9). One sees that
∑

k≥1

∫∞

0
F (Ak+y)U−( dy) <∞. It

follows from the renewal theorem that there exists B > 0 such that U−([jB, jB+B)) > δ > 0

for any j ≥ 0. As F is non-increasing,

(2.26)
∑

k≥1

∑

j≥1

F (Ak +Bj)δ ≤
∑

k≥1

∫ ∞

0

F (Ak + y)U−( dy) <∞.

We hence observe that
∫∞

A
dz

∫∞

B
F (y + z) dy ≤

∑
k≥1

∑
j≥1 F (Ak + Bj)AB < ∞. This

implies that
∫ ∞

0

F (x)x dx =

∫ ∞

0

dz

∫ ∞

0

F (z + y) dy ≤ F (0)AB +

∫ ∞

A

dz

∫ ∞

B

F (y + z) dy <∞,

which is what we need.

On the other hand, if P[EM ] < 1 for all M ∈ (0,∞), we have limM↑∞ P[EM ] = 1 because

of (2.25). For any k ≥ 1 and any ℓ ≥ 1, define:

(2.27) Λ
(k)
ℓ :=

τk−1∑

j=0

1{A(ℓ−1)≤−ξk(j)<Aℓ}.

As
∑

ℓ≥1 1{A(ℓ−1)≤−ξk(j)<Aℓ} = 1, we get that for any k ≥ 1,

χ̃k =

τk−1∑

j=0

F
(
Ak − ξk(j)

)∑

ℓ≥1

1{A(ℓ−1)≤−ξk(j)<Aℓ}

=
∑

ℓ≥1

τk−1∑

j=0

F
(
Ak − ξk(j)

)
1{A(ℓ−1)≤−ξk(j)<Aℓ}

≥
∑

ℓ≥1

F (Ak + Aℓ)Λ
(k)
ℓ ,

where the last inequality holds because F is non-increasing. It follows that

∑

k≥1

χ̃k ≥
∑

k≥1

∑

ℓ≥1

F (Ak + Aℓ)Λ
(k)
ℓ =

∞∑

n=2

F (An)

n−1∑

k=1

Λ
(k)
n−k

=

∞∑

m=1

F (Am+ A)mYm,(2.28)

where

(2.29) Ym :=

∑m
k=1Λ

(k)
m+1−k

m
, ∀m ≥ 1.
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We claim that there exists a M1 > 0 sufficiently large such that for any m ≥ 1,

(2.30) c6 ≥ E
[
Ym1EM1

]
≥ c5 > 0,

where c5, c6 are positive constants. We postpone the proof of (2.30) and go back to (2.28).

It follows that

M1 ≥ E

[
1EM1

∑

k≥1

χ̃k

]
≥ E

[
1EM1

∞∑

m=1

F (Am+ A)mYm

]

≥
∑

m≥1

F (Am+ A)mE
[
Ym1EM1

]
.(2.31)

By (2.30), we obtain that

(2.32)
∑

m≥1

F (Am+ A)m ≤M1/c5 <∞.

This implies that
∫∞

0
F (y)y dy <∞ thus completes the proof of Proposition 2.6.

It remains to prove (2.30).

We begin with the first and second moments of Ym. Since {ωk; k ≥ 1} are i.i.d. copies of

(Sj, 0 ≤ j ≤ τ), (Λ
(k)
ℓ ; ℓ ≥ 1), k ≥ 1 are i.i.d. This yields that

E[Ym] =
1

m

m∑

k=1

E[Λ
(k)
m+1−k] =

1

m

m∑

k=1

E[Λ
(1)
m+1−k]

=
1

m
E

[ m∑

k=1

Λ
(1)
k

]
=

1

m
E

[ τ−1∑

j=0

1{−Sj<Am}

]

=
R(Am)

m
.(2.33)

where the last equality comes from (2.2). By (2.4), for any m ≥ 1,

(2.34) c1A ≤ E[Ym] ≤ c2(A+ 1) =: c6.

Obviously, we have E[Ym1EM
] ≤ c6 for any m ≥ 1 and any M > 0. The fact that Λ

(k)
· , k ≥ 1,

are i.i.d. yields also that

(2.35) Var(Ym) =
1

m2

m∑

k=1

Var(Λ
(1)
k ) ≤

1

m2

m∑

k=1

E[(Λ
(1)
k )2].
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Note that Λ
(1)
1 is distributed as

∑τ−1
j=0 1{−Sj<A} with τ = inf{k > 0 : Sk > 0}. We see

that

E
[(

Λ
(1)
1

)2]
= E

[( τ−1∑

j=0

1{−Sj<A}

)2]

≤ 2E
[ τ−1∑

j=0

1{−Sj<A}

τ−1∑

k=j

1{−Sk<A}

]
.

By Markov property, we obtain that

(2.36) E
[(

Λ
(1)
1

)2]
≤ 2E

[ τ−1∑

j=0

1{−Sj<A}R(A,−Sj)
]
,

where

(2.37) R(x, y) := E
[ τy−1∑

i=0

1{Si>y−x}

]
with τy := inf{k > 0 : Sk > y} for x, y ≥ 0.

It follows from (2.2) that

(2.38) E
[(

Λ
(1)
1

)2]
≤ 2

∫ A

0

R(A, y)U−( dy).

Consider now the strict ascending ladder epochs and heights (Tk, Hk) of (Sn). We get that

R(x, y) = E
[ ∞∑

k=0

1{y≥Hk>y−x}

Tk+1−1∑

n=Tk

1{Sn>y−x}

]
.

By applying the Markov property at the times (Tk; k ≥ 1) and (2.2), we have for x, y ≥ 0,

R(x, y) = E
[∑

k≥0

R(Hk + x− y)1{y≥Hk>y−x}

]
=

∫ y

(y−x)+

R(x− y + z)U( dz).(2.39)

Plugging it into (2.38) then using (2.4), (2.12) and (2.11) implies that

(2.40) E
[(

Λ
(1)
1

)2]
≤ c7(1 + A)3 ≤ c8A

3,

(see also Lemma 2 in [4]).

Moreover, for any ℓ ≥ 2, Λ
(1)
ℓ has the same law as

∑τ−1
j=0 1{ℓA−A≤−Sj<ℓA}. Similarly, we

get that

E
[(

Λ
(1)
ℓ

)2]
= E

[( τ−1∑

j=0

1{ℓA−A≤−Sj<ℓA}

)2]

≤ 2E
[ τ−1∑

j=0

1{ℓA−A≤−Sj<ℓA}

τ−1∑

k=j

1{ℓA−A≤−Sk<ℓA}

]
.
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Once again, by Markov property then by (2.2),

E
[(

Λ
(1)
ℓ

)2]
≤ 2E

[ τ−1∑

j=0

1{ℓA−A≤−Sj<ℓA}

(
R(ℓA,−Sj)−R(ℓA−A,−Sj)

)]

= 2

∫ ℓA

ℓA−A

(
R(ℓA, y)−R(ℓA− A, y)

)
U−( dy).

Plugging (2.39) into it yields that for ℓ ≥ 2,

E
[(

Λ
(1)
ℓ

)2]
≤ 2

∫ ℓA

ℓA−A

(∫ y

0

R(ℓA− y + z)U( dz) −

∫ y

y−ℓA+A

R(ℓA− A− y + z)U( dz)
)
U−( dy)

= 2

∫ ℓA

ℓA−A

(∫ y−ℓA+A

0

R(ℓA− y + z)U( dz)

+

∫ y

y−ℓA+A

U−([ℓA−A− y + z, ℓA− y + z))U( dz)
)
U−( dy),

where the last equality holds because R(x) = U−([0, x)). Observe that R(ℓA−y+z) ≤ R(A)

for 0 ≤ z ≤ y − ℓA + A and ℓA − A ≤ y ≤ ℓA. Recall that A ≥ 1. By (2.4), (2.11) and

(2.12),

E
[(

Λ
(1)
ℓ

)2]
≤ c9

∫ ℓA

ℓA−A

(∫ y−ℓA+A

0

(A+ 1)U( dz) +

∫ y

y−ℓA+A

(1 + A)U( dz)
)
U−( dy)

≤ c10(A+ 1)

∫ ℓA

ℓA−A

(
y + 1

)
U−( dy)

≤ c11ℓA
3,

with c11 ≥ c8. Going back to (2.35), for any m ≥ 1,

(2.41) Var(Ym) ≤

∑m
ℓ=1 c11ℓA

3

m2
≤ c12A

3.

Combining this with (2.34) implies that E[Y 2
m] = Var(Ym) + E[Ym]

2 ≤ c22(1 + A)2 + c12A
3.

We then use Paley-Zygmund inequality to obtain that

(2.42) P
[
Ym >

1

2
E[Ym]

]
≥

E[Ym]
2

4E[Y 2
m]
≥

c21A
2

4(c22(1 + A)2 + c12A3)
:= c13 > 0.

So for any 0 ≤ u ≤ c1A/2 ≤ E[Ym]/2, we have

(2.43) P
(
Ym ≤ u

)
≤ P

(
Ym ≤ E[Ym]/2

)
≤ 1− c13.
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There exists M1 > 0 such that P(EM1) ≥ 1 − c13/2, since limM↑∞P[EM ] = 1. For such

M1 > 0,

(2.44) E[Ym1EM1
] = E

[ ∫ Ym

0

1EM1
du

]
=

∫ ∞

0

P[{Ym > u} ∩ EM1 ]du.

Notice that P[{Ym > u}∩EM1] ≥
(
P[EM1]−P[Ym ≤ u]

)
+
, which is larger than c13/2 when

0 ≤ u ≤ c1A/2. As a consequence,

(2.45) E[Ym1EM1
] =

∫ ∞

0

P[{Ym > u} ∩ EM1 ]du ≥

∫ c1A/2

0

c13
2
du =

c1c13A

4
=: c5 > 0.

This completes the proof of (2.30), hence completes the proof of “=⇒” in (2.13). Proposition

2.6 is proved.

3 Proof of the main theorem

Recall that we are in the regime that

(3.1) E
[ ∑

|u|=1

e−V (u)
]
= 1, E

[ ∑

|u|=1

V (u)e−V (u)
]
= 0, σ2 = E

[ ∑

|u|=1

V (u)2e−V (u)
]
<∞.

Recall also that equivalence in Theorem 1.1 is as follows:

(3.2) E
[
Y
(
log+ Y

)2]
+ E

[
Z log+ Z

]
<∞⇐⇒ P[D∞ > 0] > 0.

with Y =
∑

|u|=1 e
−V (u) and Z =

∑
|u|=1 V (u)+e

−V (u).

This section is devoted to proving that the condition on the left-hand side of (3.2) (i.e.

(1.8)) is necessary and sufficient for mean convergence of the truncated martingale
{
D

(0)
n =

∑
|u|=nR(V (u))e−V (u)1{V (uk)>0,∀1≤k≤n};n ≥ 0

}
. In view of Lemma 2.4, this follows the non-

triviality of D∞, hence proves Theorem 1.1.

In what follows, we state a result about the mean convergence of the truncated martingale{
D

(0)
n ;n ≥ 0

}
, which is one special case of Theorem 2.1 in Biggins and Kyprianou [6].

Define

(3.3) X :=
D

(0)
1

D
(0)
0

1
(D

(0)
0 >0)

+ 1
(D

(0)
0 =0)

.

Then for any a ≥ 0, under Pa, X =
∑

|u|=1 R(V (u))e−V (u)1(V (u)>0)

R(a)e−a .
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Theorem 3.1 (Biggins and Kyprianou [6]). (ζn) is a random walk conditioned to stay pos-

itive, whose law was given in (2.8).

(i) If

(3.4) P-a.s.
∑

n≥1

Eζn

[
X
(
R(ζn)e

−ζnX ∧ 1
)]

<∞,

then E[D
(0)
∞ ] = R(0).

(ii) If for all y > 0,

(3.5) P-a.s.
∞∑

n=1

Eζn

[
X ; R(ζn)e

−ζnX ≥ y
]
=∞,

then E[D
(0)
∞ ] = 0.

Our proof relies on this theorem. First, in Subsection 3.1, we give a short proof for the

sufficient part to accomplish our arguments even though it has already been proved in [1].

In Subsection 3.2, we prove that (1.8) is also the necessary condition by using Proposition

2.6.

3.1 (1.8) is a sufficient condition

This subsection is devoted to proving that

(3.6) E
[
Y
(
log+ Y

)2]
+ E

[
Z log+ Z

]
<∞ =⇒ E[D(0)

∞ ] = R(0) = 1.

Proof of (3.6). According to (i) of Theorem 3.1, it suffices to show that

(3.7) E
[
Y
(
log+ Y

)2]
+E

[
Z log+ Z

]
<∞ =⇒ P-a.s.

∑

n≥0

Eζn

[
X
(
R(ζn)e

−ζnX∧1
)]

<∞.

For any particle x ∈ T \ {∅}, we denote its parent by ←−u and define its relative displace-

ment by

(3.8) ∆V (u) := V (u)− V (←−u ).

Then for any a ∈ R, under Pa, (∆V (u); |u| = 1) is distributed as L. Let Ỹ :=
∑

|u|=1 e
−∆V (u)

and Z̃ :=
∑

|u|=1

(
∆V (u)

)
+
e−∆V (u) so that Pa

[(
Ỹ , Z̃

)
∈ ·

]
= P[(Y, Z) ∈ ·].
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Note that under Pζn,

X =

∑
|u|=1R(V (u))e−V (u)1(V (u)>0)

R(ζn)e−ζn

=

∑
|u|=1R(ζn +∆V (u))e−∆V (u)1(∆V (u)>−ζn)

R(ζn)
,(3.9)

where (∆V (u); |u| = 1) is independent of ζn. By (2.4), it follows that

X ≤

∑
|u|=1 c2(ζn + 1)e−∆V (u)1(∆V (u)>−ζn)

R(ζn)
+

∑
|u|=1 c2∆V (u)e−∆V (u)1(∆V (u)>−ζn)

R(ζn)

≤
c2
c1

∑

|u|=1

e−∆V (u) + c2

∑
|u|=1∆V (u)+e

−∆V (u)

R(ζn)

≤ c14

(
Ỹ +

Z̃

R(ζn)

)
≤ 2c14max

{
Ỹ ,

Z̃

R(ζn)

}
,

where
(
Ỹ , Z̃

)
is independent of ζn. This implies that

∑

n≥1

Eζn

[
X
(
R(ζn)e

−ζnX ∧ 1
)]

≤ c15

(∑

n≥0

E
[
Ỹ
(
R(ζn)e

−ζnỸ ∧ 1
)∣∣∣ζn

]
+
∑

n≥0

1

R(ζn)
E
[
Z̃
(
e−ζnZ̃ ∧ 1

)∣∣∣ζn
])

=: c15

(
Σ1 + Σ2

)
.(3.10)

Hence we only need to prove that

(3.11) E
[
Y
(
log+ Y

)2]
+ E

[
Z log+ Z

]
<∞ =⇒ E

[
Σ1

]
+ E

[
Σ2

]
<∞,

which leads to (3.7). On the one hand, as (2.4) gives that R(x) ≤ c16e
x/2 for all x ≥ 0, we

see that

E
[
Σ1

]
≤ c17E

[∑

n≥0

E
[
Ỹ
(
e−ζn/2Ỹ ∧ 1

)∣∣∣ζn
]]

= c17
∑

n≥0

E

[(
Ỹ
)2

e−ζn1{Ỹ≤eζn/2} + Ỹ 1{Ỹ >eζn/2}

]

= c17E

{(
Ỹ
)2

E
[∑

n≥0

e−ζn1{ζn≥2 log Ỹ }

∣∣∣Ỹ
]
+ Ỹ E

[∑

n≥0

1{ζn<2 log Ỹ }

∣∣∣Ỹ
]}

,
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where Ỹ and (ζn) are independent. By (2.10),

E
[
Σ1

]
≤ c17E

[(
Ỹ
)2

∫ ∞

2 log+ Ỹ

e−xR(x)U( dx) + Ỹ

∫ 2 log+ Ỹ

0

R(x)U( dx)

]
,(3.12)

which by (2.4) and (2.11) implies that

E
[
Σ1

]
≤ c17c2E

[(
Ỹ
)2

∫ ∞

2 log+ Ỹ

e−x(x+ 1)U( dx) + Ỹ

∫ 2 log+ Ỹ

0

(x+ 1)U( dx)

]
(3.13)

≤ c18E
[
Ỹ
(
1 + log+ Ỹ

)2]
= c18E

[
Y
(
1 + log+ Y

)2]
(3.14)

On the other hand, in the same way, we obtain that

(3.15) E
[
Σ2

]
≤ c19E

[
Z
(
1 + log+ Z

)]
.

Consequently,

(3.16) E
[
Σ1

]
+ E

[
Σ2

]
≤ c20

(
E
[
Y + Z

]
+ E

[
Y
(
log+ Y

)2]
+ E

[
Z log+ Z

])
.

Note that (3.1) ensures that E
[
Y + Z

]
< ∞. The (3.11) is thus proved and we completes

the proof of (3.6).

3.2 (1.8) is a necessary condition

This subsection is devoted to proving that

(3.17) max
{
E
[
Z log+ Z

]
, E

[
Y
(
log+ Y

)2]}
=∞ =⇒ E[D(0)

∞ ] = 0.

Proof of (3.17). According to (ii) of Theorem 3.1, we only need to show that

(3.18) ∀y > 0, P-a.s.

∞∑

n=1

Eζn

[
X ; R(ζn)e

−ζnX ≥ y
]
=∞.

We break the assumption on the left-hand side of (3.17) up into three cases. In each case,

we find out a different lower bound for X to establish (3.18). It hence follows that D
(0)
∞ is

trivial as E[D
(0)
∞ ] = 0. The three cases are stated as follows:

E[Y (log+ Y )2] =∞, E[Y (log+ Y )] <∞;(3.19a)

E[Y (log+ Y )] =∞;(3.19b)

E[Z(log+ Z)] =∞.(3.19c)
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Proof of (3.18) under (3.19a) Recall that for any particle x ∈ T \ {∅}, ∆V (u) = V (u)−

V (←−u ), and that under Pa, (∆V (u); |u| = 1) is distributed as L. For any s ∈ R, we define a

pair of random variables:

(3.20) Y+(s) :=
∑

|u|=1

e−∆V (u)1(∆V (u)>−s), Y−(s) :=
∑

|u|=1

e−∆V (u)1(∆V (u)≤−s).

Clearly, Ỹ = Y+(s) + Y−(s).

It follows from (3.9) and (2.4) that under Pζn,

X ≥

∑
|u|=1 c1(1 + ζn +∆V (u))e−∆V (u)1(∆V (u)>−ζn/2)

c2(1 + ζn)
,

≥

∑
|u|=1 c1(1/2 + ζn/2)e

−∆V (u)1(∆V (u)>−ζn/2)

c2(1 + ζn)
≥ c21Y+(ζn/2),

where
{(

Y+(s), Y−(s)
)
; s ∈ R

}
is independent of ζn and c21 := c1

2c2
> 0. We thus see that

the assertion that for any y > 0,

(3.21)

∞∑

n=1

E
[
Y+(ζn/2); R(ζn/2)e

−ζnY+(ζn/2) ≥ y
∣∣∣ζn

]
=∞, P-a.s.,

yields (3.18). It is known that ζn →∞ as n goes to infinity (see, for example, [4]). It suffices

that

(3.22)

∞∑

n=1

F (ζn/2, ζn) =∞, P-a.s.

where

(3.23) F (s, z) := E
[
Y+(s); log Y+(s) ≥ z

]
, s, z ∈ R.

Let F1(z) := E[Y ; log Y ≥ z] which is positive and non-increasing. It follows from

Lemma 2.1 and (3.1) that E[Y ] = 1. Therefore, for any s, z ∈ R,

(3.24) 0 ≤ F (s, z) ≤ F1(z) ≤ E[Y ] = 1.

On the one hand, we deduce from (3.19a) that

∫ ∞

0

F1(y)y dy =

∫ ∞

0

E
[
Y 1(log Y≥y)

]
y dy = E

[
Y

∫ (log+ Y )

0

y dy; Y ≥ 1

]

= E
[
Y (log+ Y )2

]
/2 =∞.
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According to Proposition 2.6, P-almost surely,

(3.25)
∞∑

n=1

F1(ζn) =∞.

On the other hand, we can prove that
∑∞

n=1

[
F1(ζn)− F (ζn/2, ζn)

]
<∞, P-a.s. In fact,

as Y = Y+(s) + Y−(s) under P, for any s, y ∈ R,

F1(y)− F (s, y) = E
[
Y 1(log Y≥y) − Y+(s)1(log Y+(s)≥y)

]

= E
[
Y 1(log Y≥y>log Y+(s)) + Y 1(log Y+(s)≥y) − Y+(s)1(log Y+(s)≥y)

]

= E
[
Y 1(log Y≥y>log Y+(s)) + Y−(s)1(log Y+(s)≥y)

]
.

Note that Y ≤ 2max{Y+(s), Y−(s)} under P. It follows that

F1(y)− F (s, y) ≤ E
[
2Y−(s)1(log Y≥y>log Y+(s), Y+(s)≤Y−(s)) + Y 1(log Y≥y>log Y+(s), Y+(s)>Y−(s))

]

+E
[
Y−(s)1(log Y−(s)≥y)

]

≤ 3E
[
Y−(s)

]
+ E

[
Y 1(log Y≥y>log Y+(s), Y+(s)>Y−(s))

]

≤ 3E
[
Y−(s)

]
+ E

[
Y 1(log Y≥y>log(Y/2)

]
=: d1(s) + d2(y).

As a consequence,

(3.26)
∞∑

n=1

[
F1(ζn)− F (ζn/2, ζn)

]
≤

∑

n≥0

d1(ζn/2) +
∑

n≥0

d2(ζn).

Taking expectation on both sides yields that

E
[ ∞∑

n=1

(
F1(ζn)− F (ζn/2, ζn)

)]
≤ E

[∑

n≥0

d1(ζn/2)
]
+ E

[∑

n≥0

d2(ζn)
]

=

∫ ∞

0

d1(x/2)R(x)U( dx) +

∫ ∞

0

d2(x)R(x)U( dx),(3.27)

where the last equality comes from (2.10).

For the first integration, we deduce from Lemma 2.1 that

(3.28) d1(s) = 3E
[
Y−(s)

]
= 3E

[ ∑

|x|=1

e−V (x)1(V (x)≤−s)

]
= 3P(−S1 ≥ s).
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By (2.4), (2.11) and (3.1),
∫ ∞

0

d1(x/2)R(x)U( dx) = 3

∫ ∞

0

P(−2S1 ≥ x)R(x)U( dx)

= 3E
[ ∫ −2S1

0

R(x)U( dx);−2S1 ≥ 0
]

≤ ≤ c22E
[(

1 + (−2S1)+

)2]
<∞.

For the second integration on the right-hand side of (3.27), as d2(y) = E
[
Y 1(log Y≥y>log(Y/2)

]
,

we use (2.4), (2.11) and (3.19a) to obtain that
∫ ∞

0

d2(x)R(x)U( dx) =

∫ ∞

0

E
[
Y 1(log Y≥x>log(Y/2)

]
R(x)U( dx)

= E
[
Y

∫ log+ Y

(log Y−log 2)+

R(x)U( dx)
]

≤ c23E
[
Y (1 + log+ Y )

]
<∞.

Going back to (3.27), we conclude that

(3.29) E
[ ∞∑

n=1

(
F1(ζn)− F (ζn/2, ζn)

)]
≤ E

[∑

n≥0

d1(ζn/2)
]
+ E

[∑

n≥0

d2(ζn)
]
<∞.

Therefore, P-a.s.,

(3.30)
∞∑

n=1

[
F1(ζn)− F (ζn/2, ζn)

]
<∞,

which, combined with (3.25), implies (3.22). Thus (3.18) is proved under (3.19a).

Proof of (3.18) under (3.19b) Now we suppose that E[Y log+ Y ] = ∞. By (2.4), we

observe that under Pζn,

X =

∑
|u|=1R(∆V (u) + ζn)e

−∆V (u)1(∆V (u)>−ζn)

R(ζn)

≥ c1
Y+(ζn)

R(ζn)
,(3.31)

where {Y+(s); s ∈ R} and ζn are independent.

To establish (3.18), we only need to show that for any y ≥ 1,

(3.32)
∑

n≥1

E
[Y+(ζn)

R(ζn)
; Y+(ζn) ≥ yeζn

∣∣∣ζn
]
=

∑

n≥1

F (ζn, log y + ζn)

R(ζn)
=∞, P-a.s.
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For any y ≥ 1 fixed, let

(3.33) F2(x) :=
F1(log y + x)

R(x)
, ∀x ≥ 0,

which is non-increasing as R(x) = U−([0, x)) is non-decreasing and F1 is non-increasing.

One sees that

(3.34)
∑

n≥1

F2(ζn) =
∑

n≥1

F (ζn, log y + ζn)

R(ζn)
+
∑

n≥1

F1(log y + ζn)− F (ζn, log y + ζn)

R(ζn)
.

By (2.4), F1(log y+x)
c2(1+x)

≤ F2(x) ≤
1
c1
. It then follows from (3.19b) that

∫ ∞

0

F2(x)x dx ≥

∫ ∞

0

F1(log y + x)
x

c2(1 + x)
dx

≥

∫ ∞

1

c24E
[
Y 1(log Y≥log y+x)

]
dx

≥ c24E[Y (log Y − log y − 1)+] =∞.

By Proposition 2.6,

(3.35)
∑

n≥0

F2(ζn) =
∑

n≥0

F1(log y + ζn)

R(ζn)
=∞, P-a.s.

In view of (3.34) and (3.35), it suffices to show that P-a.s.,

(3.36)
∑

n≥0

F1(log y + ζn)− F (ζn, log y + ζn)

R(ζn)
<∞.

Recall that F1(z)− F (s, z) ≤ d1(s) + d2(z). By (2.10),

E
[∑

n≥0

F1(log y + ζn)− F (ζn, log y + ζn)

R(ζn)

]
(3.37)

≤ E
[∑

n≥0

d1(ζn) + d2(log y + ζn)

R(ζn)

]
=

∫ ∞

0

[
d1(x) + d2(log y + x)

]
U( dx).

On the one hand, recalling that d1(x) = 3P(−S1 ≥ x), we deduce from (2.11) that
∫ ∞

0

d1(x)U(dx) =

∫ ∞

0

3P(−S1 ≥ x)U(dx)(3.38)

= 3E
[ ∫ (−S1)+

0

U(dx)
]

≤ 3c4E
[
1 + (−S1)+

]
<∞.
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On the other hand, recalling that d2(x) = E[Y ; log Y ≥ x > log Y − log 2], by (2.11) again,

we obtain that
∫ ∞

0

d2(log y + x)U(dx) =

∫ ∞

0

E[Y 1(log Y≥log y+x>logY−log 2)]U(dx)(3.39)

= E
[
Y

∫ (log Y−log y)+

(log Y−log y−log 2)+

U(dx)
]

≤ c4(1 + log 2)E[Y ] <∞.

Combined with (3.38) and (3.39), (3.37) becomes that

(3.40) E
[∑

n≥1

F1(log y + ζn)− F (ζn, log y + ζn)

R(ζn)

]
<∞.

We thus get (3.36), and completes the proof of (3.18) given (3.19b).

Proof of (3.18) under (3.19c) In this part we assume that E[Z log+ Z] = ∞ with Z =
∑

|u|=1 V (u)+e
−V (x) ≥ 0. We observe that under Pζn,

X ≥

∑
|u|=1R(∆V (u) + ζn)e

−∆V (u)1(∆V (u)>0)

R(ζn)

≥
c1

R(ζn)
Z̃,(3.41)

where Z̃ =
∑

|x|=1

(
∆V (x)

)

+
e−∆V (x) is independent of ζn. As a consequence, for any y > 0,

(3.42)
∑

n≥1

Eζn

[
X ; R(ζn)e

−ζnX ≥ y
]
≥

∑

n≥1

c1
R(ζn)

E
[
Z̃; c1Z̃ ≥ yeζn

∣∣∣ζn
]
.

Recall that Z̃ is distributed as Z under P. Therefore, it is sufficient to prove that for any

y > 0,

(3.43)
∑

n≥1

1

R(ζn)
E
[
Z̃; Z̃ ≥ yeζn

∣∣∣ζn
]
=

∑

n≥1

F3(ζn) =∞, P-a.s.

where

(3.44) F3(z) :=
E[Z; logZ ≥ z + log y]

R(z)
, ∀z ≥ 0.

Since R is non-decreasing, the function F3 is non-increasing. By Lemma 2.1 and (2.4),

(3.45) 0 ≤ F3(z) ≤
E[Z]

R(z)
≤

E[(S1)+]

c1
<∞.
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Moreover, by (2.11) and (3.19c),
∫ ∞

0

F3(x)x dx ≥

∫ ∞

1

c25E
[
Z; logZ − log y ≥ x

]
dx(3.46)

≥ c25E
[
Z(logZ − log y − 1)+

]
=∞.

Because of Proposition 2.6, we obtain that for any y > 0,

(3.47)
∑

n≥1

1

R(ζn)
E
[
Z̃; Z̃ ≥ yeζn

∣∣∣ζn
]
=

∑

n≥1

F3(ζn) =∞, P-a.s.

which completes the proof of (3.18) under (3.19c).
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