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The El Niño–Southern Oscillation (ENSO) is driven by ocean–atmosphere
interactions in the equatorial Pacific, and this variability is often attributed to
coupled modes that are evidenced by the temporal stability analysis of anomaly
models. Here, the further diagnostic of absolute/convective instability is considered,
which assesses whether small perturbations localized in space and time (e.g. random
wind disturbances) lead to instabilities that develop in-place or propagate away
from the perturbed region. It is shown that boundary conditions play a secondary
role for this approach and that the development of large-scale wave packets in
the equatorial Pacific basin is possible, as in the case of an infinite domain. As an
illustration, two simple coupled models are diagnosed that rely either on thermocline
processes or zonal advective processes. The model with thermocline processes is
‘absolutely unstable’ and therefore develops intrinsic oscillations, while the model
with zonal advective processes is ‘convectively unstable’ and therefore acts as a
noise amplifier. The identification of the two instability regimes may characterize
different ENSO formation mechanisms as a response to random wind disturbances.
For the absolutely unstable regime, a standing ENSO-like oscillation can develop
in the equatorial Pacific without involving boundary reflections, while for the
convectively unstable regime boundary reflections are essential. Copyright c© 2012
Royal Meteorological Society
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1. Introduction

A hierarchy of models of increasing complexity simulate
the interannual variability of the equatorial Pacific with
a particular focus on the forecast of El Niño/La Niña
events and, more generally, explain the main features of the
El Niño–Southern Oscillation (hereafter ENSO). In those
models, the development of anomalies is mainly attributed
to interactions between the ocean and the atmosphere.
The studies of temporal instabilities exhibited by those
models have led to the emergence of the theory of coupled

modes (Neelin et al., 1998). It also provides a fruitful view
for the interpretation of observations and coupled general
circulation models.

The temporal stability analysis of models has allowed
the identification of various types of coupled modes of
the equatorial Pacific. They are usually classified depending
on the physical processes involved. A large number of
studies distinguish two families of coupled modes either
based on thermocline processes or zonal advective processes
in the ocean (Hirst, 1986; Bejarano and Jin, 2008; Thual
et al., 2011). An and Jin (2001) and Fedorov and Philander
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(2001) further suggest that the relative strength of those two
processes can lead to different regimes of the ENSO in terms
of amplitude, frequency and propagation. Other relevant
coupled modes have been evidenced that rely solely on the
interaction between the atmosphere and the oceanic mixed
layer (Wang and Xie, 1998; Dommenget, 2010). Asymptotic
limits for the adjustment time of each of the coupled system
components are also important. Neelin (1991) distinguishes
the coupled modes where the adjustment time of sea-surface
temperature (SST) is fast compared to the adjustment time
of the ocean dynamics (the fast-SST regime) and inversely
(the fast-wave regime). Furthermore, within this line of
studies, it is usually assumed that a ‘fast atmosphere’
adjusts immediately to SST. Although the reflections at
the eastern and western boundaries are usually considered
in coupled models, some noticeable studies identify coupled
modes without boundary conditions (Hirst, 1986; Wang
and Weisberg, 1996; Weisberg and Wang, 1997; Wang and
Xie, 1998; Pontaud and Thual, 1995, 1998).

A further approach to temporal stability analysis is the
diagnostic of absolute/convective instability. So far, this
approach has not been considered for the identification
of coupled modes in the equatorial Pacific. The diagnostic
of absolute/convective instability originates from plasma
physics (Briggs, 1964) and has been further developed
in fluid mechanics. A review of the method is given
in Huerre and Monkewitz (1990), a discussion on its
practical implementation in Suslov (2006), and a few
applications in geophysical fluid dynamics stability problems
are listed in Pedlosky (2012). The diagnostic assesses whether
small perturbations localized in space and time lead to
instabilities that develop in-place or propagate away from
the perturbed region. Absolutely unstable systems develop
intrinsic oscillations in the perturbed region: they act as
‘oscillators’ with intrinsic dynamics. Convectively unstable
systems amplify but disperse the external perturbations: they
act as ‘noise amplifiers’ with extrinsic dynamics.

In most ENSO theories, boundary reflections are essential
for the system to oscillate, as they provide the necessary
negative feedback for the transition from a warm (El Niño)
phase to a cold (La Niña) phase and inversely (Suarez and
Schopf, 1988; Jin, 1997; Picaut et al., 1997). Those theories
consider coupled modes that are solutions of a system with
prescribed boundary conditions. Absolute or convective
instabilities are of a different nature, although they are not
incompatible with the presence of boundary conditions.
They are described in terms of wave packets, which result
from the superposition of a continuum of modes that are
solutions of a linear system in an infinite domain. When
further considering boundary conditions, the reflected
components simply superpose in a linear framework. The
diagnostic of absolute/convective instability depicts whether
the stationary component decays or develops into a standing
oscillation, independently of the reflected components.

The diagnostic may characterize different ENSO forma-
tion mechanisms as a response to random disturbances, e.g.
westerly winds bursts (Harrison and Vecchi, 1997). Differ-
ent scenarios can be expected depending on the stability of
the equatorial Pacific system (Philander and Fedorov, 2003;
Kleeman, 2008; Kessler, 2002). If the system is strongly
damped, the ENSO has to be only a direct response to
random wind disturbances, but this hypothesis is unlikely.
If the system is unstable enough, it may be self-regulated

by internal nonlinear processes, such as overlapping reso-
nance with the seasonal cycle (Jin et al., 1994) or mean state
rectification by the heat budget asymmetry (Timmermann
et al., 2003). The diagnostic presented here applies in the
intermediate case of a slightly unstable system. As stressed
by Neelin et al. (1998), for such a system the ENSO is weakly
nonlinear, in the sense that dominant spatial and temporal
scales of variability are determined by the leading coupled
mode(s) issued from linear stability. Random wind distur-
bances are not necessary to maintain the variability but still
act as a trigger of specific events, through small perturba-
tions that are amplified by the coupled system in the form of
wave packets. As a response to random wind disturbances,
in the absolutely unstable regime an ENSO cycle can develop
as a standing oscillation, while in the convectively unstable
regime an ENSO cycle may still develop but only if boundary
reflections are involved.

In this article, the approach is illustrated by diagnosing
two simple coupled models of the equatorial Pacific that
differ in the thermodynamic processes considered. We aim
at evaluating, among those processes, those that lead either
to an absolute or to a convective regime. The models are
presented in section 2. Section 3 is dedicated to a temporal
stability analysis of the models as a consistency check with
previous studies. In section 4 we diagnose the models
in terms of absolute/convective instability. Section 5 is a
discussion, followed by concluding remarks.

2. Coupled system

We consider a shallow-water model for the ocean in the
long-wave approximation and in an infinite domain. This
system is projected on the meridional basis of ‘oceanic’
Hermite functions (with oceanic Rossby radius

√
co/β)

and truncated at the Kelvin and first Rossby equatorial wave
components, K(x, t) and R(x, t). Those depend on longitude
and time through

(∂t + εo)K + co∂x K = PK (τx),

(∂t + εo)R − co

3
∂x R = PR(τx), (1)

where εo is the dynamical damping, co is the phase speed
of the oceanic Kelvin waves, τx(x, y, t) is the field of zonal
wind stress anomalies (N m−2) and PK and PR are projection
operators on the oceanic Hermite functions. The parameter
values are those from Thual et al. (2011) when considering
only the contribution from the first baroclinic mode of
the ocean. The approach is similar for the atmosphere. We
consider a Gill-type shallow-water model in the long-wave
approximation (Gill, 1980). The system is projected on the
meridional basis of ‘atmospheric’ Hermite functions (with
atmospheric Rossby radius

√
ca/β) and truncated at the

Kelvin and first Rossby equatorial wave components, k(x, t)
and r(x, t). Those depend on longitude and time through

εak + ca ∂xk = Pk( T),

εar − ca

3
∂xr = Pr( T), (2)

where εa is the atmospheric dynamical damping, ca is the
phase speed of the atmospheric Kelvin waves, T(x, y, t) is the
field of SST anomalies and Pk and Pr are projection operators
on the atmospheric Hermite functions. The parameter values

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 600–606 (2013)



602 S. Thual et al.

are those from Hirst (1986). The adjustment time of the
atmosphere (a few days) is neglected compared to the one of
the ocean (a few months). Finally, we consider a linearized
mixed-layer thermodynamic model for SST anomalies T
and retain only the dominant thermodynamic processes,
namely the feedbacks due to damping, zonal advection and
thermocline depth anomalies:

(∂t + εT)T = fHH + fU U , (3)

where εT is the thermodynamic damping and fH and fU are
constant coefficients. Model parameters are derived from
Thual et al. (2011), where further considering constant
and representative values of the thermocline feedback
efficiency factor (γ = 0.1◦C m−1) and the mean SST zonal
gradient (∂xT = −10◦C/L, where L is the basin length of
17 000 km). H(x, y, t) and U(x, y, t) are fields of thermocline
depth anomalies (m) and zonal current anomalies (m s−1)
respectively, which can be reconstructed from K and R
using the oceanic Hermite functions. Similarly, τx(x, y, t)
can be reconstructed from k and r using the atmospheric
Hermite functions if assuming, as in Hirst (1986), that wind
stress is proportional to wind speed. In order to eliminate
the variables τx, T, H and U we project and combine the
oceanic, atmospheric and thermodynamic equations. We
obtain a linear system of four variables K, R, k, r that depend
on longitude and time:

(∂t + εo)K + co∂x K = MKkk + MKrr,

(∂t + εo)R − co

3
∂x R = MRkk + MRrr,

(∂t + εT)

(
k + ca

εa
∂xk

)
= MkK K + MkRR,

(∂t + εT)

(
r − ca

3 εa
∂xr

)
= MrK K + MrRR, (4)

where MKk, MKr, MRk, MRr, MkK , MkR, MrK and MrR are
constant coefficients. Interestingly, the phase speed resulting
from the combined atmosphere and thermodynamics
εTca/εa ∼ 2 m s−1 is close to the phase speed of the
ocean model co ∼ 3 m s−1. The resulting damping εT ∼
(35 day)−1 is, however, much stronger than for the ocean
model εo = (2.5 year)−1.

We consider two variants of this coupled system,
which differ by the thermodynamic processes involved.
The distinction between thermocline and zonal advective
processes has already been adopted in various studies of
the equatorial Pacific coupled modes, as it leads to two
families of coupled modes that have different properties
and that are both relevant for interpreting the interannual
variability. We consider a first model (hereafter H-model)
where only thermocline processes are considered (fU = 0),
and a second model (hereafter U-model) where only zonal
advective processes are considered (fH = 0). Note that we
also implemented a third model where both processes
are considered, which is not documented here since the
main conclusions are similar to those of the H-model. For
numerical applications, εo = (30 month)−1, co = 2.8 m s−1,
εa = (2.3 day)−1, ca = 30 m s−1, and εT = (35.7day)−1.
In both models, MKk = −6.0, MKr = 8.4, MRk = 2.3, and
MRr = −3.9 (numerical values are given in year−1). In the
H-model MkK = 32.1, MkR = 45.3, MrK = 12.5, and MrR =
21.1. In the U-model MkK = 16.8, MkR = −9.9, MrK = 6.6
and MrR = −2.1.

3. Temporal stability analysis

We search for one-dimensional vector fields X(x, t) =
[K, R, k, r] that are solutions of the coupled system of the
previous section. Since the system is real, linear and homo-
geneous in an infinite domain, one can consider complex
solutions of the form X = X0 exp[i(kx − ωt)], where
k = kr + iki and ω = ωr + iωi are respectively the complex
wave number and frequency (i is the imaginary number).
Non-trivial solutions are obtained when a couple (k, ω)
satisfies the generalized dispersion relation D(k, ω) = 0,
which is obtained through the transformations ∂x = ik
and ∂t = −iω followed by a kernel analysis of the resulting
algebraic system. The temporal stability consists, for a deter-
mined real wave number kr, in evaluating the complex roots
ω of the dispersion relation D(kr, ω) = 0. As a preliminary
step to the diagnostic of absolute/convective instability, we
comment here on the temporal stability analysis of each
model as a consistency check with previous studies.

The temporal stability of the H-model is shown in
Figure 1. At large wave number, the modes are identical
to the uncoupled case, with an ‘oceanic Kelvin coupled
mode’ (yellow) and an ‘oceanic Rossby coupled mode’
(green) that propagate at speed co and −co/3 respectively
(co ∼ 3 m s−1) and that are slightly damped (ωi ∼ −1
year−1), as well as two ‘atmospheric coupled modes’ (cyan
and blue) that do not propagate and that are strongly damped
(ωi ∼ −10 year−1). For a decreasing wave number, one of
the atmospheric coupled modes (blue) eventually becomes
unstable. Neelin (1991) named this type of unstable mode
the ‘slow SST mode’, where the ocean dynamics adjustment
is fast compared to the SST adjustment. This slow SST mode
propagates eastward for kr ∼ 0.2 (1000 km)−1 and westward
for kr < 0.1 (1000 km)−1, and has maximal amplitude on
the atmospheric Kelvin wave (not shown). The temporal
stability of the U-model is shown in Figure 2. In this
model the oceanic Kelvin coupled mode (yellow) and the
second atmospheric coupled mode (cyan) are similar to
those of the H-model. However, the slow SST mode (blue)
remains damped and the oceanic Rossby coupled mode
(green) is slightly unstable. This oceanic Rossby coupled
mode propagates westward as in the uncoupled case, and

Figure 1. Temporal stability of the H-model. Results are shown for the four
mode solution of the dispersion relation, which are identified by colours
(yellow, green, cyan, blue). (a) Phase speed cr =ωr/kr (m s−1) as a function
of the real wave number kr (unit is (1000 km)−1). For comparison, the
equatorial Pacific length is 17 000 km, which corresponds to a wave number
around 0.4 (1000 km)−1. (b) Growth rate ωi (year−1) as a function of kr .
This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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Figure 2. Same as Figure 1 but for the U-model. This figure is available in
colour online at wileyonlinelibrary.com/journal/qj

has maximal amplitude on the oceanic Rossby wave (not
shown). As in Hirst (1986), we have tested the case with
an opposite mean SST gradient (fU < 0), which leads to
an opposite direction of propagation, i.e. a slightly unstable
oceanic Kelvin coupled mode (not shown). The results agree
overall with Hirst (1986, their Figures 7 and 13), Wang and
Weisberg (1996, their Figure 1) and Wang and Xie (1998,
their Figure 9).

The results from Hirst (1986, their Figure 20), however,
exhibit great sensitivity to the number of Hermite functions
retained for the meridional truncation. As a further test,
we recomputed the temporal stability of the H-model
and U-model when increasing the number of meridional
components in both the ocean and atmosphere (only odd,
i.e. symmetrical Rossby components, were considered). We
find that this only slightly modifies the behaviour of the
most unstable modes (not shown). We believe that this
interesting property of our system is due to the use of an
adapted Hermite basis for the atmosphere (with atmospheric
Rossby radius), different from the Hermite basis used for
the ocean (with oceanic Rossby radius). In Hirst (1986),
the Hermite basis of the ocean is used to project the entire
system, therefore a large number of meridional modes are
necessary to represent the larger meridional scale of the
atmosphere.

In the infinite domain considered here, the above
temporal stability analysis can be used to describe wave
packets made of the superposition of a continuum of
modes with wave numbers close to a given real value kr.
Such wave packets propagate at group velocity ∂ωr/∂kr.
One can compute the growth rate ωi of the wave packets
propagating at zero group velocity and document their
temporal growth or decay at a given location. However,
such a consideration must be extended with the study
of ‘generalized wave packets’ built with a continuum
of complex wave numbers, i.e. waves with both a wave
number kr and a spatial growth rate −ki. Indeed, the most
unstable of the generalized wave packets with zero group
velocity will provide the local response of the system to a
localized perturbation. This analysis is formalized through
the diagnostic of absolute/convective instability described
and applied to our models in the next section.

4. Absolute or convective instability

We introduce the diagnostic of absolute/convective insta-
bility following Huerre and Monkewitz (1990) and apply

it to the models described in the previous sections. Such
a diagnostic is relevant only for systems that are linearly
unstable. This is the case for the H-model and the U-model,
where the temporal analysis evidences the unstable slow
SST mode and the slightly unstable oceanic Rossby coupled
mode respectively (see section 3). For such a system, we aim
at evaluating the system response G(x, t) to a pulse in space
and time, which is a solution of

D(−i∂x, i∂t)G(x, t) = δ(x)δ(t),

where D(k, ω) is the dispersion relation of the system, i is
the complex number and δ is the Dirac function. For this
problem, G is the Green function, which can be computed
through integration in the complex space as

G(x, t) = 1

(2π)2

∫∫
exp(i(kx − ωt))

D(ω, k)
dω dk,

where ω and k are complex. We suppose for simplicity
that the dispersion relation admits a single root ω(k) (the
demonstration can be extended to the case of multiple
roots), and we use the residual method to integrate over the
path ω(k):

G(x, t) = −i

2π

∫ +∞

−∞

exp(i(kx − ωt))

∂ωD(ω, k)
dk,

where t ≥ 0. We consider solutions over a ray path at
constant (and real) velocity V (m s−1), verifying x = Vt.
For large t, we can approximate asymptotically the integral
with the steepest-descent method, provided we find a saddle
point of the complex function ρ(k) = i[kV − ω(k)], i.e. a
complex root k0 of (dρ/dk)(k0) = 0. If such a root exists,
the asymptotic expansion for large t reads

G(Vt, t) ∼ − exp(iπ/4)( 2π t d2
kω)− 1/2 exp(ρ)

∂ωD
,

where the right member is taken at k0 = k0r + i k0i and
at the corresponding ω0 = ω0r + i ω0i. This shows that
the response is a ‘generalized wave packet’ of wavelength
2π/k0r and spatial growth rate −k0i that travels at speed
V = (dω/dk)(k0) with a temporal growth rate equal to
Re[ρ(k0)]. If multiple roots exist, the behaviour is dominated
by the most unstable root.

Such behaviour is overlooked in particular for V = 0, to
distinguish between the absolutely unstable and convectively
unstable regimes. If for V = 0 the temporal growth rate
Re[ρ(k0)] is positive (which reads ω0i > 0), then the system
is said to be absolutely unstable, meaning that an unstable
generalized wave packet develops in the perturbed region.
If for V = 0 the temporal growth rate is negative, it is
said to be convectively unstable. Such a system has to
be at least unstable for one non-null value of V , because
it is nevertheless linearly unstable according to temporal
stability. Supposing that such an unstable generalized wave
packet develops, then, in the meantime, it propagates away
at non-null speed V from the perturbed region and is
evacuated at a large time-scale. Therefore, in the perturbed
region the signal is dispersed and decays, similarly to the
linearly stable regime.

In general, searching the saddle points of the system can
require an important practical implementation, especially if
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Figure 3. Saddle point detection for the H-model. (a) Imaginary frequency
ωi (year−1) as a function of the real wave number kr (X-axis, unit
is (1000 km)−1) and the imaginary wave number ki (Y-axis, unit is
(1000 km)−1). The saddle point is found at the intersection of the
isocontours for ω0i ∼ 3.1 year−1. (b) Imaginary wave number–ki (unit is
(1000 km)−1) as a function of the real frequency ωr (year−1) and for ωi =
ω0i. The saddle point is found at the intersection of two roots k(ω). This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

automation is required (Suslov, 2006). The coupled system
considered here, with four variables, is, however, rather
simple thanks to the system truncation at the first meridional
Hermite functions. We use a graphical method for the
detection of saddle points, which is illustrated in Figure 3
for the H-model. At first, the saddle points for V = 0 are
detected in the wave number complex space (kr, ki) at the
intersections of the isocontours of the imaginary frequency
ωi (Figure 3(a)). At least one saddle point must be detected.
The system is absolutely unstable provided that the most
unstable saddle point verifies ω0i > 0 (ω0i is the absolute
growth rate). Also one can easily show that ω0i is always
inferior or equal to the maximal growth rate from the
temporal stability. As stressed by Huerre and Monkewitz
(1990), for the absolute instability to be assessed the most
unstable saddle point must also satisfy the Briggs (1964)
criterion: such a saddle point must be at the intersection
(ω = ω0) of two roots k(ω) that originate from the upper and
lower parts of the k-plan (ki > 0 and ki < 0) when increasing
ωi. We have checked that this was the case (Figure 3(b)).

We have found that the H-model is absolutely unstable,
while the U-model is convectively unstable. For the H-
model the absolute growth rate is ω0i = 3.1 year−1 and
the absolute frequency is ω0r = 2.8 year−1 (period is
2π /ω0r ∼ 2.2 years). This is consistent with contemporary

ENSO characteristics (i.e. a maintained oscillation with a
period of 2 to 7 years). The associated saddle point is found
at k0i ∼ −0.1 (1000 km)−1 and k0r ∼ 0.2 (1000 km)−1

(i.e. a wavelength 2π/k0r ∼ 30 000km, which is about
twice the equatorial Pacific basin length). The oscillation
therefore occurs at a basin scale. For the U-model there
are no unstable (ω0i > 0) roots, therefore the system is
convectively unstable.

As a consistency test, we simulated numerically the
impulse response of both models, and the results are
illustrated in Figure 4. In good agreement with the diagnostic
of absolute/convective instability, for the H-model, which
is absolutely unstable, the amplitude of the response grows
in-place of the initial perturbation, while for the U-model,
which is convectively unstable, the amplitude decays.

We also investigated results as a function of the
intensity of the thermodynamic feedback considered (either
thermocline or zonal advective feedback). In both models,
we found a first transition from the linearly stable regime
to the convectively unstable regime when increasing the
intensity from zero, followed by a second transition from
the convectively unstable regime to the absolutely unstable
regime. In the H-model, the first transition occurs at around
14% of the reference value of fH and the second transition
at around 16%. It is therefore unlikely that the H-model
sustains a convective regime within such a narrow range
of parameter values. In the U-model the first transition
occurs at around 50% of the reference value of fU and the
second transition at around 130%. Therefore the U-model
is preferentially in the convective regime. When the U-
model is in the absolute regime (fU ∼ 130% to 200% of
its reference value), however, it sustains a high-frequency
oscillation (2π /ω0r ∼ 0.9 year) that is only slightly unstable
(ω0i < 1.3 year−1).

5. Discussion

In this article we have considered a simple coupled system
of the equatorial Pacific in an infinite domain, using
shallow-water dynamics for both the ocean and atmosphere
in the long-wave approximation and truncating at the
Kelvin and first-meridional Rossby waves. Two variants
of the coupled system were considered, which differ by
the thermodynamic processes controlling the variations
in SST. At first, the models were diagnosed in terms of
temporal stability. In agreement with previous studies,

Figure 4. Response to an initial and localized perturbation. The atmospheric Kelvin profile is initialized with a Gaussian shape of 1000 km root mean
square centred at x = 0. The amplitude of the atmospheric Rossby profile r(x, t) is represented as a function of x (unit is 1000 km) as t increases by
steps of 20 days. For comparison, the equatorial Pacific basin length is about 17 000 km. (a) Absolute instability for the H-model: the amplitude grows
in-place of the initial perturbation (time increases up to 200 days). (b) Convective instability for the U-model: the amplitude decays in-place of the initial
perturbation (time increases up to 500 days). This figure is available in colour online at wileyonlinelibrary.com/journal/qj
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the model with thermocline processes (H-model) shows
an unstable slow SST mode, while the model with zonal
advective processes (U-model) shows a slightly unstable
oceanic Rossby coupled mode. Then, the models were
diagnosed in terms of absolute/convective instability. Within
a representative range of parameters values, the H-model
is absolutely unstable and the U-model is convectively
unstable.

In the H-model, spatial and temporal scales of the
absolute instability are consistent with contemporary ENSO
characteristics, namely a basin-scale interannual oscillation.
This suggests that a standing ENSO-like oscillation can
develop in the equatorial Pacific without involving boundary
reflections. Here, the ENSO develops on a continuum of
coupled modes that can be viewed as ‘generalized wave
packets’, which are considered in an infinite domain and that
are not inhibited by the addition of boundary conditions. In
most ENSO theories, the dynamics are rather described by
coupled modes that are temporal ‘basin modes’, which are
quantified as they satisfy boundary conditions (e.g. as the
harmonics of a vibrating string). Temporal basin modes were
not considered here, but they can coexist with the generalized
wave packets in a linear framework. However, generalized
wave packets cannot be constructed as a continuum of
temporal basin modes because their asymptotic behaviour
for large time is in exp(ρ t)/

√
t . In the case of an absolutely

unstable system, generalized wave packets may be at least as
important for ENSO formation as temporal basin modes.
In the case of a convectively unstable system, only temporal
basin modes may develop an ENSO oscillation, therefore
basin parameters (its geometry and reflection coefficients)
should be important.

There is an ongoing discussion on whether ENSO
is a series of events triggered by random wind distur-
bances or a self-sustained natural mode of the coupled
ocean–atmosphere. The diagnostic presented here, within
the assumed hypothesis, may eventually provide material
for this discussion. It is assumed here that the interannual
variability results from the linear amplification of random
wind disturbances, which leads to different ENSO forma-
tion mechanisms depending on the regime of the equatorial
Pacific system. The regime (absolutely unstable, convectively
unstable or linearly stable) may change depending on the
mean state, and therefore it would be fundamental to map
transitions as a function of the many mean state parameters.

So far, we have considered local modes where the
mean state is constant or varies very slowly in space as
compared to the wavelength of the problem. The diagnostic
of absolute/convective instability may, however, be different
when considering various regions as a whole, with different
properties. Such a diagnostic for inhomogeneous systems
in space requires the concept of global modes (Huerre
and Monkewitz, 1990). Since the equatorial Pacific shows
an important zonal contrast in its mean state parameters,
it would be interesting to consider global modes where
this contrast is taken into account. The equatorial Pacific
can be schematically divided into the Eastern Pacific
(Niño3 region: 150◦W–90◦W, 5◦S–5◦N) dominated by
thermocline processes and the Central Pacific (Niño4 region:
150◦E–150◦W, 5◦S–5◦N) dominated by zonal advective
processes (An and Jin, 2001). According to our results
(where only the thermocline process leads to the absolute
regime) an intrinsic oscillation should develop preferentially
in the Eastern Pacific, while in the Central Pacific the flow

should be in large part controlled by the features of the
random wind disturbances. This, however, assumes that the
Eastern and Central Pacific are independent.

There is also the possibility that changes in the leading
processes over the equatorial Pacific modify the areas of
convective/absolute instability from one El Niño event
to another and, consequently, the location of peak SST
anomalies. For example, focus has been given recently to
a new type of El Niño with peak SST anomalies in the
Central Pacific, called ‘Modoki’ El Niño, ‘Warm Pool’ or
‘Central Pacific’ El Niño (Ashok et al., 2007; Kao and Yu,
2009; Yeh et al., 2009; Dewitte et al., 2011). Kug et al. (2009)
noted that this type of event is related to stronger zonal
advective and atmospheric damping processes, while the
conventional ‘Cold Tongue’ event with peak anomalies in
the Eastern Pacific is more related to thermocline processes.
For this type of event, the discharge process of the equatorial
heat content is not efficient enough to trigger the reversal
from the warm to the cold phase, which suggests a secondary
role of boundary reflections. This questions to what extent
the ‘Central Pacific’ El Niño may be accounted for by the
absolute regime documented in this study.

Acknowledgements

S. Thual has been supported by CNRS and Conseil Régional
Midi-Pyrénées under contract No. 022009. The authors
would like to thank Professors Nick Hall, Soon-Il An and
Sang-Wook Yeh for fruitful discussions, as well as the two
anonymous reviewers.

References

An S-I, Jin F-F. 2001. Collective role of thermocline and zonal advective
feedbacks in the ENSO Mode. J. Climate 14: 3421–3432.

Ashok K, Behera SK, Rao SA, Weng H, Yamagata T. 2007. El Niño
Modoki and its possible teleconnection. J. Geophys. Res. 112: C11007,
DOI: 10.1029/2006JC003798.

Bejarano L, Jin F-F. 2008. Coexistence of equatorial coupled modes of
ENSO. J. Climate 21: 3051–3067.

Briggs R. 1964. Electron–Stream Interaction with Plasmas. MIT Press:
Cambridge, MA.

Dewitte B, Choi J, An S-I, Thual S. 2011. Vertical structure variability and
equatorial waves during central Pacific and eastern Pacific El Niños in
a coupled general circulation model. Clim. Dynam. 38: 2275–2289.

Dommenget D. 2010. The slab ocean El Niño. Geophys. Res. Lett. 37:
L20701, DOI: 10.1029/2010GL044888.

Fedorov AV, Philander SG. 2001. A stability analysis of tropical
ocean–atmosphere interactions: bridging measurements and theory
for El Niño. J. Climate 14: 3086–3101.

Gill AE. 1980. Some simple solutions for heat-induced tropical
circulation. Q. J. R. Meteorol. Soc. 106: 447–462.

Harrison DE, Vecchi GA. 1997. Westerly wind events in the tropical
Pacific, 1986–95. J. Climate 10: 3131–3156.

Hirst AC. 1986. Unstable and damped equatorial modes in simple
coupled ocean–atmosphere models. J. Atmos. Sci. 43: 606–632.

Huerre P, Monkewitz PA. 1990. Local and global instabilities in spatially
developing flows. Annu. Rev. Fluid Mech. 22: 473–537.

Jin F-F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I:
Conceptual model. J. Atmos. Sci. 54: 811–829.

Jin F-F, Neelin JD, Ghil M. 1994. El Nino on the Devil’s Staircase: annual
subharmonic steps to chaos. Science 264: 70–72.

Kao H-Y, Yu J-Y. 2009. Contrasting Eastern-Pacific and Central-Pacific
types of ENSO. J. Climate 22: 615–632.

Kessler WS. 2002. Is ENSO a cycle or a series of events? Geophys. Res.
Lett. 29: 2125, DOI: 10.1029/2002GL015924.

Kleeman R. 2008. Stochastic theories for the irregularity of ENSO. Phil.
Trans. R. Soc. A 366: 2509–2524.

Kug J-S, Jin F-F, An S-I. 2009. Two types of El Niño events: Cold Tongue
El Niño and Warm Pool El Niño. J. Climate 22: 1499–1515.

Neelin JD. 1991. The slow sea surface temperature mode and the fast-
wave limit: analytic theory for tropical interannual oscillations and
experiments in a hybrid coupled model. J. Atmos. Sci. 48: 584–606.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 600–606 (2013)



606 S. Thual et al.

Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T,
Zebiak SE. 1998. ENSO theory. J. Geophys. Res. 103(C7): 14261–14290.

Pedlosky J. 2012. Instability theory for the oceans and atmosphere.
http://www.whoi.edu/profile.do?id=jpedlosky

Philander SG, Fedorov A. 2003. Is El Niño sporadic or cyclic? Annu. Rev.
Earth Planet. Sci. 31: 579–594.

Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual
model for the oscillatory nature of the ENSO. Science 277:
663–666.

Pontaud M, Thual O. 1995. Some effects of a mean zonal thermocline
gradient on planetary equatorial waves. Ann. Geophys. 13:
1223–1228.

Pontaud M, Thual O. 1998. Coupled process for equatorial Pacific
interannual variability. Q. J. R. Meteorol. Soc. 124: 527–555.

Suarez MJ, Schopf PS. 1988. A delayed action oscillator for ENSO. J.
Atmos. Sci. 45: 3283–3287.

Suslov SA. 2006. Numerical aspects of searching convective/absolute
instability transition. J. Comput. Phys. 212: 188–217.

Thual S, Dewitte B, An S-I, Ayoub N. 2011. Sensitivity of ENSO to
stratification in a recharge–discharge conceptual model. J. Climate
24: 4332–4349.

Timmermann A, Jin F-F, Abshagen J. 2003. A nonlinear theory for El
Niño bursting. J. Atmos. Sci. 60: 152–165.

Wang B, Xie X. 1998. Coupled modes of the warm pool climate system.
Part I: The role of air–sea interaction in maintaining Madden–Julian
oscillation. J. Climate 11: 2116–2135.

Wang C, Weisberg RH. 1996. Stability of equatorial modes in a simplified
coupled ocean–atmosphere model. J. Climate 9: 3132–3148.

Weisberg RH, Wang C. 1997. A western Pacific oscillator paradigm for
the El Niño–Southern Oscillation. Geophys. Res. Lett. 24: 779–782.

Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F. 2009. El
Nino in a changing climate. Nature 461: 511–514.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 600–606 (2013)


