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ABSTRACT

The dynamics of El Ni~no–Southern Oscillation (ENSO) in the equatorial Pacific Ocean are largely asso-

ciated with the slow thermocline adjustment at interannual and basin scales. This adjustment involves, among

other things, the fast propagation and reflection of equatorial waves by wind stress forcing. A simple and

straightforward asymptotic expansion of the long-wave equations is proposed using the low-frequency ap-

proximation. The asymptotic expansion is performed in Fourier space, retaining only the gravest equatorial

long waves and baroclinic modes with the largest scale, and considering small dissipation by friction and

boundary reflections. This leads to an asymptotic model for the thermocline response to wind stress forcing,

which is in essence the ocean component of the recharge–discharge model of ENSO. The asymptotic model is

nonheuristic and in broad agreement with some essential results scattered in previous studies. Thermocline

variability is divided into a sloping ‘‘Tilt mode’’ that adjusts instantly to wind stress forcing and a zonal-mean

‘‘WarmWater Volume mode’’ that adjusts as a time integrator to wind stress curl. The model has a plausible

energy budget and its solutions are in good agreement with observations. Results suggest that the net ad-

justment rather than the explicit delays of equatorial waves is essential for the slow thermocline adjustment,

and this is best described by the recharge–discharge model.

1. Introduction

The El Ni~no–Southern Oscillation (ENSO) is, after

the seasonal cycle, the most energetic climate fluctua-

tion known on Earth in today’s climate, with dramatic

ecological and social impacts. Its dynamics in the

equatorial Pacific Ocean are largely associated with the

slow ocean adjustment, at interannual and basin scale

(Neelin et al. 1998; Kessler 2002). In ENSO theory, this

ocean adjustment may drive a phase reversal from

El Ni~no to La Ni~na and inversely, through the propa-

gation and reflection of equatorial waves (Suarez and

Schopf 1988) or the recharge–discharge of the equa-

torial heat content (Jin 1997a,b). This ocean adjust-

ment involves considerable energy exchanges through

variations of the equatorial thermocline depth (Goddard

and Philander 2000; Brown and Fedorov 2010b), and

explains the relatively high predictability of ENSO

(Cane and Zebiak 1985; Meinen and McPhaden 2000;

McPhaden 2012).

Various studies describe analytically this slow ocean

adjustment, with various degrees of complexity. Some of

those studies consider in particular a low-frequency

approximation to expand the long-wave equations (Jin

1997a,b; Fedorov 2010; Clarke 2010). This permits in-

tegration of, on an interannual time scale, fast processes

of the equatorial Pacific Ocean. Jin (1997a) has illus-

trated the major recharge–discharge paradigm of ENSO

in a conceptual model, with the long-wave equations

averaged into a western and eastern box of the equato-

rial Pacific, and where, in the low-frequency approxi-

mation, the propagation time of the equatorial Kelvin

wave is omitted. Jin (1997b) has further derived a strip-

ped-down coupled model with a collective representa-

tion of equatorial waves, exhibiting in the low-frequency

approximation an ENSO regime with essential physics

from Jin (1997a). Fedorov (2010) has considered the low-

frequency approximation to expand the long-wave

equations into power series. This allows describing
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ENSO with a rigorous and rich integro-differential

equation, which encompasses paradigms from Suarez

and Schopf (1988) and Jin (1997a,b). Clarke (2010) has

shown that, in the low-frequency approximation, the

Fourier solutions to an interannual wind stress forcing

decompose into a tilting and shallowing/deepening com-

ponent of thermocline anomalies.

At interannual time scales, thermocline variability can

be described by the evolution of two zonal modes of

basin scale, the so-called ‘‘Tilt’’ and ‘‘Warm Water Vol-

ume’’ (WWV) modes (Meinen and McPhaden 2000).

The Tilt and WWV modes can be statistically inferred

from the first and second EOF modes of observed

thermocline depth anomalies, as shown in Fig. 1 [from

Clarke et al. (2007)]. They consist of a zonal tilting and

a homogeneous shallowing/deepening of the equatorial

thermocline, respectively. The associated time series

show that the Tilt and WWV modes are in phase with

sea surface temperatures (SST) and time-integrated

SST anomalies (SSTA), respectively. Because at inter-

annual time scales SST anomalies are almost in phase

with wind stress anomalies, the Tilt mode adjusts in-

stantly to the wind stress forcing, while the WWVmode

adjusts as a time integrator. The WWV mode has been

shown to adjust more particularly to wind stress curl

(Clarke et al. 2007). The evolution of thosemodes is well

described by the long-wave equations (e.g., Bosc and

Delcroix 2008), and more particularly by the recharge–

discharge model (Jin 1997a,b). The evolution of the

WWVmode is, however, also known to be controlled in

part by diathermal transport (Clarke et al. 2007; Brown

and Fedorov 2010a; Lengaigne et al. 2011).

In this article, we propose a novel asymptotic expan-

sion of the long-wave equations in the low-frequency

approximation, similar to the one of Fedorov (2010).

The asymptotic model is, in essence, the ocean compo-

nent of the recharge–discharge model (Jin 1997a,b),

though with some notable differences, and is in broad

agreement with some essential results of other studies

(e.g., Clarke et al. 2007; Fedorov 2010; Clarke 2010).

While some of those studies are intended to describe the

full ENSO cycle, our focus here is on their treatment of

the slow thermocline adjustment to wind stress forcing.

For clarity, the asymptotic model will be denoted

hereafter as TW model (for Tilt and WWV model).

The article is organized as follows. Section 2 presents

the initial long-wave equations. Section 3 presents

solutions without wind stress forcing and without the

low-frequency approximation. Section 4 presents the

low-frequency approximation and the asymptotic ex-

pansion. Section 5 presents the TW model and its solu-

tions. Section 6 compares the TW model solutions with

observations. Section 7 is a discussion with concluding

remarks.

FIG. 1. (a) First EOF (51% of variance) of the 208C isotherm depth anomaly (m) in the equatorial Pacific Ocean

(58N–58S) and (c) corresponding first principal component (solid line). The dashed curve in (c) is the Ni~no-3.4 SSTA

time series (correlation r is 0.93). (b) Second EOF (35% of variance) and (d) the corresponding second principal

component (solid line). The dashed curve in (d) is the time-integrated Ni~no-3.4 SSTA time series. Time series are

normalized at a variance of 0.5 [from Clarke et al. (2007)].
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2. Long-wave equations

We consider linearized shallow-water dynamics in the

equatorial Pacific Ocean with the long-wave approxi-

mation: the long-wave equations [see Clarke (2008),

chapter 3]. The system is truncated at the three gravest

baroclinic modes (n 5 1, 2, 3) and at the equatorial

Kelvin and first-order Rossby wave (e.g., An and Kang

2000; Dewitte 2000; Thual et al. 2011). For each baro-

clinic mode n, the system evolution reads as follows:

(›t 1 «n)Kn1 cn›xKn 5 cnFK2n , (1)

(›t 1 «n)Rn 2 cn›xRn/35 cnFR2n , (2)

F
K2n

5P
n

ð

1‘

2‘

tu0 dy

2rl
n
c2n

, and (3)

FR2n5Pn

ð

1‘

2‘

(tu2/
ffiffiffi

2
p

) dy2

ð

1‘

2‘

tu0 dy

3rlnc
2
n

, (4)

where, for each baroclinic mode n, Kn is Kelvin wave

amplitude, Rn is Rossby-1 wave amplitude, and FK2n

and FR2n are projections of zonal wind stress anomalies t.

A friction coefficient is «n, cn is the phase speed of

Kelvin waves, and Pn is a projection coefficient. The

u05 c0(y/ln) and u25 c2(y/ln) are the zero- and second-

order Hermite functions, c0 and c2, scaled by the oceanic

Rossby radius ln 5
ffiffiffiffiffiffiffiffiffi

cn/b
p

(see Clarke 2008). The beta-

plane parameter is b and the ocean density is r. Param-

eters of the ocean baroclinic structure are taken from

Thual et al. (2011, their Table 1). Equatorial waves reflect

at the western boundary (x5 0) and eastern boundary (x

5 L) of the equatorial Pacific. This reads, for each

baroclinic mode n:

Kn(0, t)5 gRn(0, t) and (5)

R
n
(L, t)5hK

n
(L, t) , (6)

where g and h are reflection coefficients, and L is the

basin length (18 000 km) that extends from 1208E to

808W. For boundary conditions of no flow at the eastern

boundary and of no net flow at the western boundary,

h 5 1 and g 5 0.5. Thermocline depth anomalies H are

recovered by summing up contributions from all baro-

clinic modes and equatorial waves:

H5 �
3

n51

hn, with
hn
s
n
c2n

5 (Kn1Rn)u01Rn

u2
ffiffiffi

2
p , (7)

where sn is a scaling factor estimated at the mean ther-

mocline depth (see Dewitte 2000; Thual et al. 2011).

Hereafter, we will solve the system of Eqs. (1)–(6) in-

dependently for each baroclinic mode and omit the

subscript n for simplicity.

3. Solutions without wind stress forcing

At first, we solve the long-wave Eqs. (1)–(6) without

wind stress forcing and without low-frequency approxi-

mation. Those solutions are shown for comparison with

the asymptotic solutions of Eqs. (1)–(6) that will be

presented in the following sections. The elementary

solutions read as follows:

K5 �
p
Ap exp[2st2 («2s)x/c1 ikp(x2 ct)] , (8)

R5 �
p
B
p
exp[2st1 3(«2s)x/c2 ik

p
(3x1 ct)] , (9)

s5 «2 ln(gh)c/4L, and (10)

k
p
52pp/4L , (11)

where p is a positive integer, andAp andBp are arbitrary

constants satisfying boundary conditions. Figure 2 shows

the spatial structure of the four first solutions (p 5 0, 1,

2, 3). Similar modes have been described by Jin [1997b,

its Eq. (2.7)] and Jin (2001) and designated as free ocean

adjustment modes. They can be illustrated by the

standing oscillations of an elastic beam with two free

boundary conditions. Those solutions are however not

valid for high values of p, for which the small zonal scales

are in contradiction with the long-wave approximation.

FIG. 2. Solutions of long-wave equations without wind stress

forcing at t 5 0 and as a function of longitude x. Kelvin (dashed

line) andRossby (thick line) wave, for (a) p5 0, (b) p5 1, (c) p5 2,

and (d) p 5 3. For visualization, x extends to four times the basin

length L. We choose Ap 5 1, Bp 5 1, g 5 0.7, and h 5 1.
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The dissipation rate s in Eq. (10) is identical for all so-

lutions that are indexed by p. It accounts for losses by

friction « and boundary reflections, where over each

round-trip propagation across the basin lasting 4L/c the

signal is multiplied by gh# 1. The dissipation rate s is of

particular interest because it will be encountered in the

asymptotic solutions of Eqs. (1)–(6) presented in the

following sections.

4. Low-frequency approximation

We consider a low-frequency approximation (Jin

1997b; Fedorov 2010; Clarke 2010) to derive asymptotic

solutions of Eqs. (1)–(6) in the case of nonzero wind

stress forcing. The low-frequency approximation here is

an approximation of large spatial scales, of large tem-

poral scales, and of small dissipation. We omit the zonal

peculiarities of wind stress forcing and rather consider

its basinwide average. Projections of wind stress forcing

read fK/L and fR/L, where fK and fR are zonally in-

tegrated projections:

f
K
5

ðL

0
F
K
dx and f

R
5

ðL

0
F
R
dx: (12)

Approximations of large spatial scales have already

been made in the initial long-wave Eqs. (1)–(6). The

contribution from higher-order Rossby waves is omit-

ted. Those describe smaller meridional scales, as well as

smaller zonal scales because of their slow propagations:

at first order, we suppose that they are interfering or

dissipating with no upscale contribution to the large

scale flow. A similar argument is considered to omit the

contribution from higher-order baroclinic modes. We

nevertheless retain only the three gravest baroclinic

modes that we suppose are relevant to the large-scale

flow (Dewitte 2000; Thual et al. 2011). The system os-

cillation frequencies v are supposed to be small relative

to the frequency c/4L of a round-trip propagation across

the basin: v � c/4L. Finally, the temporal dissipation

rate of solutions from previous section [cf. Eq. (10)] is

supposed to be small: s � c/4L. This implies both small

losses by friction: « � c/4L, as well as small losses at

boundaries:2ln(gh)� 1. To achieve this last condition,

we consider near-perfect reflections (i.e., near no-flow

conditions) at both the western and eastern boundaries:

g ’ 1 and h ’ 1. The row of approximations retained

here gives us an asymptotic path in parameter space,

which we will follow to choose an asymptotic expansion

of the system from Eqs. (1)–(6). The validity of this as-

ymptotic expansion will be assessed a posteriori: once

the asymptotic expansion is performed and the row of

approximations is taken back.

We consider the time–Fourier transform of Eqs. (1)–

(6) to perform the asymptotic expansion [see Fedorov

(2010)]. In Fourier space (we omit notation changes),

the solutions of Eqs. (1)–(6) read as follows:

K5A(x) exp(2rx) , (13)

R5B(x) exp(3rx) , (14)

r5 (2iv1 «)/c , (15)

A(x)5

ðx

0
FK exp(rs) ds1gB0 , (16)

B(x)52

ðx

0
3F

R
exp(23rs) ds1B0, and (17)

B0 5
1

12 exp[ln(gh)2 4rL]

�
ðL

0
3F

R
exp(23rs) ds

1h exp(24rL)

ðL

0
F
K
exp(rs) ds

�

, (18)

where i is the complex number and B0 5 B(0). To per-

form the asymptotic expansion, we use exp(a) ’ 1 1 a,

where a� 1 is for example a5 rx, a523rx, a5 4rL, or

a 5 ln(gh) 2 4rL. We obtain the following system in

Fourier space:

K5 (3x/4L)(fK 2 fR)2 (x/4L) ln(gh)B0 1B0 , (19)

R5 (3x/4L)(f
K
2 f

R
)1 (3x/4L) ln(gh)B0 1B0, and

(20)

(2iv1s)B05 (c/4L)(f
K
1 3f

R
) , (21)

whereB0 is a zonal-mean component at the first order of

the asymptotic expansion. Terms in x/L are a tilting

component at the second order. We must, however, re-

tain the second order because it accounts for spatial

variability. Consistent with the asymptotic expansion,

we choose to remove the zonal-mean component at the

second order, because it has the spatial structure of the

first order. This implies modifying x/L into (x/L 2 0.5).

We also choose to remove terms depending on B0 at the

second order. The system now reads as follows:

K5 (x/L2 0:5)(3/4)(f
K
2 f

R
)1B0 and (22)

(2iv1s)B05 (c/4L)(f
K
1 3f

R
) , (23)

with K 5 R. By performing the inverse Fourier trans-

form, one obtains the asymptotic model. The term 2iv

is replaced by ›t.
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5. TW model

From now on, we have finished the asymptotic ex-

pansion and take back the initial row of approximations.

This simply consists of reconsidering reference values of

system parameters (›t, «, g, h) and forcings (fK, fR) es-

timated from observations. We obtain an asymptotic

model for the thermocline adjustment to wind stress

forcing, the TW model. From Eqs. (7), (22), and (23),

thermocline depth anomalies for the baroclinic mode

considered (we omit the n notation) read as follows:

h

sc2
5

h�x

L
2 0:5

�

hTILT 1 hWWV

i

�

u01
u2

2
ffiffiffi

2
p

�

, (24)

where hTILT and hWWV are scalar functions of time.

Thermocline depth anomalies decompose into a Tilt

mode and a WWV mode. The amplitude of the Tilt

mode is hTILT and the amplitude of the WWV mode is

hWWV. Their temporal evolutions read as follows:

hTILT 5 (3/2)(fK 2 fR) and (25)

(›t 1s)hWWV 5 (c/2L)(fK 1 3fR): (26)

The spatial structure of the Tilt and WWV modes is

shown in Fig. 3. The Tilt mode consists of a zonal tilt of

thermocline depth anomalies, while the WWV mode is

constant zonally. This decomposition of thermocline

anomalies into a tilting and zonal-mean component is

also encountered in previous studies (Jin 1997a,b;

Fedorov 2010; Clarke 2010). Here, the meridional

structure is particular and is given by the gravest Her-

mite functions. The contribution of the second Hermite

function u2 is somewhat secondary and can be omitted.

The temporal evolution of the Tilt and WWV modes

is as in the recharge–discharge model from Jin (1997a,b).

One may interpret the Tilt mode as a dynamical mode

adjusting very rapidly to wind stress forcing (approxi-

mated here as adjusting instantly), and the WWV mode

as a dynamical mode adjusting slowly to wind stress

forcing with dissipation rate s (Burgers et al. 2005).

Consistently with Jin (1997a,b), Fedorov (2010), and

Clarke (2010), the WWV mode arises from the propa-

gation and reflection of equatorial waves that are not in

phase with wind stress forcing. Here, s is the same as the

one solved without wind stress forcing in Eqs. (8)–(11),

which is consistent because the WWV mode is obtained

from a linear composition of those solutions.

The WWV mode is forced explicitly by wind stress

curl (Clarke et al. 2007; Fedorov 2010). Using the

property of Hermite function derivatives (e.g., Clarke

2008, chapter 3) that

ldyu152u2 1u0/
ffiffiffi

2
p

(27)

and combining Eqs. (3), (4), and (12), we can rewrite Eq.

(26) into

(›t 1s)hWWV5 (c/2L)fCURL and (28)

FIG. 3. Nondimensional spatial structure of thermocline depth anomalies from the TW model as a function of lat

and lon. (a) Tilt mode structure onu0. (b)WWVmode structure onu0. (c) Tilt mode structure onu2. (d)WWVmode

structure on u2. We consider the contribution of the gravest ocean baroclinic mode (n 5 1).
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fCURL 5P

ð

1‘

2‘

ðL

0
(›yt)u1 dx dy

ffiffiffi

2
p

rc2
, (29)

where fCURL 5 fK 1 3fR is the zonally integrated pro-

jection of wind stress curl on u1 5 c1(y/l).

For each baroclinic mode, we define an integrated

energy as follows:

E5

ðL

0

ð

1‘

2‘

h2

2
dx dy . (30)

For this integrated energy, the contribution of the Tilt

mode may be approximately omitted. In this case, the

energy budget reads as follows:

(›t 1 2s)E5GhWWVfCURL , (31)

where G is a constant deduced from the problem. This

energy budget shares some similarities with the one of

Fedorov (2007, its appendix B) considered on the long-

wave equations [see also Brown and Fedorov (2010b),

their appendix B]. Here, the energy losses are explicit

and arise from friction and boundary reflections.

6. Comparison with observations

We compare the TW model solutions with observa-

tions from the Simple OceanData Assimilation (SODA)

reanalysis (Carton andGiese 2008) over the period 1958–

2007. Figure 4 shows the evolution of thermocline depth

anomalies in the equatorial Pacific Ocean, from the

SODA reanalysis (Fig. 4a), the long-wave Eqs. (1)–(6)

forced by SODA winds (Fig. 4b), and the TW model

forced by SODAwinds (Fig. 4c). The long-waveEqs. (1)–

(6) that are forced by SODAwinds accurately reproduce

the thermocline depth variability, indicating that the

initial truncation of ocean dynamics (first equatorial

waves and baroclinic modes) is appropriate. Because of

its simpler spatial structure, the TW model only accu-

rately reproduces the large-scale thermocline depth

variability. Its solutions slightly lead the observed signal,

probably because of the low-frequency approximation

that neglects the propagation time of equatorial waves

for the adjustment of the Tilt mode.

We further compare the TW model solutions with

observations using a Tilt mode index ITILT and a WWV

mode index IWWV. They read ITILT 5 (IE 2 IW)/2 and

IWWV 5 (IE 1 IW)/2, where IE and IW are averages ofH

within 1608–808W and 1208E–1608W, respectively, and

within 58N–58S. The ITILT measures the zonal tilting of

the thermocline. The IWWV measures the zonal-mean

thermocline depth and is also the conventional WWV

index (Meinen andMcPhaden 2000). This division of the

equatorial Pacific Ocean into a western and eastern half

is also considered in the recharge–discharge model (Jin

1997a,b). Figure 5 shows evolution of ITILT and IWWV,

which are estimated from the SODA reanalysis (black)

and from the TW model forced by SODA winds (red).

The TW model solutions are in overall agreement with

observations (correlations are 0.89 and 0.73 for ITILT and

IWWV, respectively), despite the model simplicity [also

see Fig. 9 of Fedorov (2010) for a similar diagnostic]. To

compute Fig. 5, we have slightly increased the western

boundary reflection coefficient g from 0.5 to 0.7, which

gives the best match to observations (the same values

are also used in Fig. 4). This slight heuristic adjustment is

not obligatory in the TW model; however, it corrects an

artificial source of dissipation. The Kelvin wave result-

ing from the reflection at the western boundary is

slightly too weak, which is likely caused by the omission

of higher Rossby waves.

7. Discussion

An asymptotic model (the TW model) has been de-

rived from the long-wave equations. It describes the

slow thermocline response to wind stress forcing in the

equatorial Pacific. Despite its simplicity, the asymptotic

model is nonheuristic. It captures the essential dynamics

thanks to an asymptotic expansion with an approxima-

tion of large spatial and temporal scales, and of small

dissipation.

The TWmodel is, in essence, the ocean component of

the recharge–discharge model (RD model) from Jin

(1997a,b). However, the RD model’s truncation of the

initial long-wave equations is different, with vertically

a two-layer ocean and meridionally a two-strip approx-

imation. Jin (1997b) proposes two derivation methods

for the RD model, a two-box approximation [its Eq.

(3.2)] or a low-frequency approximation based on delay

equations with no friction [its Eq. (5.8)]. A third deri-

vation method for the RD model could be found using

the same asymptotic procedure as in the present study,

starting with Eqs. (2.4)–(2.6) from Jin (1997b) that

consist of an eastward- and westward-propagating Rie-

mann invariant with associated boundary reflections.

For this reason, the RD and TW model can be seen as

having similar dynamics. Since its formulation by Jin

(1997a,b), the RD model has allowed for a very broad

range of applications because of its synthetic representa-

tion of the slow ocean adjustment. Because theTWmodel

is in essence the ocean component of the RD model,

though with some notable differences, perspectives for

future work may be considered within a similar line of

study. A first simple step to implement is the coupling to

1412 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 43



FIG. 4. Hovm€oller diagram of thermocline depth anomalies (average 58N–58S) for

(a) the SODA reanalysis, (b) the long-wave Eqs. (1)–(6) forced by SODA winds, and

(c) the TWmodel forced by SODAwinds (see text). Contour interval is 10m and the thick

line (from blue to green) is the zero contour. Time series of thermocline and wind stress

forcing were detrended and smoothed at 6 months with the time mean removed.
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the SST and the atmosphere, in order to invoke ENSO-

like oscillations (Jin 1997a,b; An and Kang 2000; An and

Jin 2001; Burgers et al. 2005; Clarke et al. 2007; Thual

et al. 2011).

In the present study, the long-wave equations are

truncated at the equatorial Kelvin and first-order Rossby

waves and at the three first baroclinic modes (see also

An and Kang 2000; Dewitte 2000; Thual et al. 2011). In

particular, the low-frequency approximation considered

here is a large-scale approximation: high-order Rossby

waves are omitted because they describe smaller merid-

ional scales and zonal scales. At first order, we suppose

that they are interfering or dissipating with no upscale

contribution to the large-scale flow. Note that a similar

argument is commonly considered to omit high-order

baroclinic modes (e.g., in two-layer models). Here, to

select the equatorial wave and baroclinic mode trun-

cations, we have retained only the fastest propagations of

Rossby waves: this phase speed is in 2cn/(2m 1 1), and

this shows a slower decay on the first baroclinic modes

with order n than on the first Rossby waves with odd

orderm (Rossby waves with an even orderm are omitted

as they do not reflect onto Kelvin waves). The first

baroclinic modes are also worth considering because they

have a similar large-scale vertical structure with respect

to the upper ocean (’300 first meters), and because they

project a significant amount of momentum from wind

stress forcing (Dewitte 2000; Thual et al. 2011). The

present asymptotic expansion could nevertheless be

extended to higher-order Rossby waves (at least a few)

for more accuracy. Notably, this may correct a slight

artificial source of dissipation (on g) arising from a too

weak Kelvin wave reflected at the western boundary (cf.

the previous section).

A Tilt and WWV mode with similar features to the

present study are also found in the asymptotic model

from Fedorov [2010, the first and second terms in the

right-hand side of its Eq. (4.1), respectively] and the

Fourier solutions fromClarke [2010, its Eq. (5.4)]. Those

studies also consider a low-frequency approximation to

expand the long-wave equations in Fourier space: the

most notable differences with the present study are that

the flow is not truncatedmeridionally (though there is an

assumption of the meridional shape of wind stress forc-

ing), and that the energy leakage at the western boundary

(i.e., the no-net-flow condition) is retained when per-

forming the asymptotic expansion. As a result, the slow

thermocline adjustment in Fedorov (2010) is described by

a richer integro-differential equation, which can be ap-

proximated to describe delayed propagations as well. In

Clarke (2010), the meridional dependency of westward

propagation speed (i.e., the higher Rossby modes) is

found to be essential to theWWVmode disequilibrium,

in discrepancy with the present study.

In the TWmodel, the WWVmode is explicitly forced

by wind stress curl. Clarke et al. (2007) has found a

FIG. 5. Time series (m) of (a) ITILT and (b) IWWV measured in the SODA reanalysis (black)

and in the TW model forced by SODA winds (red). Correlation between time series is 0.89 in

(a) and 0.73 in (b). Time series of thermocline and wind stress forcing were detrended and

smoothed at 6 months with the time mean removed.
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similar relation using a box average of thermocline

anomalies. Fedorov (2010) has also evidenced this sen-

sitivity using a prescribed wind stress forcing with curl

parameter. In the TWmodel, due to the equatorial wave

truncation, wind stress curl projects on the first asym-

metric Hermite function (i.e., u1). Wind stress curl that

forces the WWV mode is nonessential at the equator

where u1 is zero, and is essential off-equator where u1 is

maximal (around638N for the first baroclinic mode). In

comparison, wind stress that forces the Tilt mode is es-

sential at the equator (where u0 is maximal). This calls

for a further exploration of the role of off-equatorial wind

stress curl on the WWV mode (e.g., of the intertropical

convergence zone).

Here, the Tilt mode sloping is rather simple (constant

with x), because of the approximation of zonally con-

stant wind stress forcing. In observations (Fig. 1), the

sloping is rather confined to the central Pacific where

wind stress forcing is maximal. To account for this, one

could derive the TW model with nonzero wind stress

forcing over a restricted domain [e.g., from 1/4 to 3/4 of the

basin length as in An and Jin (2001)]. One could also

adequately relax the assumption of zonally constant

wind stress forcing once the TW model is derived (e.g.,

replace fK(x/L2 0:5)’
Ð x

0 FK ds2 0:5
ÐL

0 FK ds for the

Tilt mode). A similar treatmentmay be found to account

for the WWVmode’s zonal dependency in observations

(Fig. 1).

The low-frequency approximation considered here

has implications for interpreting the slow thermocline

adjustment, or ‘‘ocean memory,’’ that is essential to

ENSO (Neelin et al. 1998). The time delay of equatorial

wave propagation has been considered in various studies

to be the building element of ocean memory. This in-

terpretation is best illustrated by the delayed oscillator

(Suarez and Schopf 1988) and related studies. The in-

terpretation here is different. In the low-frequency

approximation, the WWV mode or ocean memory in-

tegrates the net adjustment from round-trip propagations

of equatorial waves across the basin (for which explicit

time-delays are nonessentials). This net adjustment is

nonzero because the planetary Coriolis force renders

eastward and westward propagations asymmetric (bound-

ary reflections are also asymmetric but this is not accounted

for in the present asymptotic expansion). This inter-

pretation, in terms of a net adjustment, is best illustrated

by the recharge–discharge model (Jin 1997a,b).
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